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On the generalization of Strang’s splitting scheme (**)

1 - Introduction

The splitting algorithm is widely employed in the numerical analysis of the in-
itial value problem of the form:

¯f (j , t)

¯t
4A[ f ]1B[ f ] , j�R d , tD0 ,

f (j , 0 )4 f0 (j) ,

(1)

where A and B are (linear or nonlinear) operators acting from a Banach space F
to F, f�F, and f0�F. For brevity we assume that the operators act on j variables
only (autonomous case). The splitting scheme solves approximately the problem
(1) on a small interval t� [0 , Dt] in the following way. Equation (1) is split into
two equations:

dy

dt
4A(y) , y(0)4 f0 , 0G tGDt ,

(2)
dz

dt
4B(z) , z(0)4y(Dt) , 0G tGDt ,

and the approximate solution of problem (1) is obtained as

f (. , Dt)Bz(Dt) .(3)
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For the case where A and B are differential operators, the error of the split-
ting scheme has been investigated by Strang together with the modification for
the improvement of accuracy (Strang’s splitting) [1]. The evolution equations of
the form (1) are widely studied by physicists, engineers, and mathematicians, e.g.,
Boltzmann equation, Fokker-Planck equation, and Vlasov-Poisson equation,
which are employed in the analysis of rarefied gas flows, neutron transport, and
s emiconductor device modeling, etc. Many of such equations have operators
other than differential ones and Strang’s result is not sufficient for general cases.
As for the Boltzmann equation, one of the authors (O) discussed the accuracy of
the splitting method and developed higher order schemes from the discussion [2].
It is inefficient to discuss the accuracy of the method for each equation, however.
Instead of doing this, in the present study, we will consider the abstract Cauchy
problem (1) and examine the accuracy of the splitting method for general evolu-
tion equations. As an immediate consequence of the discussion, we will show that
the accuracy in time is improved from first order to second order by a simple
modification. This is the generalization of Strang’s result for PDEs. The accuracy
of Strang’s splitting method is also demonstrated numerically in a Cauchy prob-
lem for the BGK equation, which is widely employed as a model equation of the
Boltzmann equation.

2 - Error of splitting method

For the brevity, we express the solution of an abstract Cauchy problem

dY

dt
4P(Y) , YNt404Y0�F ,(4)

as

Y(t)4SP
t (Y0 ) .(5)

The splitting method for the case of P4A1B is nothing more than the following
approximation of the operator SA1B

Dt :

SA1B
Dt BSB

Dt SA
Dt .(6)

In the following, we first consider the simplest case of linear operators, and then,
proceed to the general case of nonlinear operators.
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2.1 - Linear operators

When A and B are linear operators, then we can write (by definition) P(x)
4P×x. In this case, SP

Dt4exp (DtP×). Then the error of the splitting method is
evaluated as follows:

d×(Dt)4exp [Dt(A×1B×) ]2e DtB× e DtA×

4 mI×1Dt(A×1B×)1
Dt 2

2
(A×1B×)21O(Dt 3 )n(7)

2mI×1DtB×1
Dt 2

2
B×21O(Dt 3 )n mI×1DtA×1

Dt 2

2
A×21O(Dt 3 )n ,

where I× denotes identity. A direct calculation leads to the formula

d×(Dt)4
Dt 2

2
[A×, B×]1O(Dt 3 ) ,(8)

where

[A×, B×]4A×B×2B×A×

denotes the commutator of the two linear operators. Hence, in the linear case, the
simple splitting scheme (2) is second order accurate only in the special case of
commuting operators.

2.2 - General case

Let us now consider the general case of nonlinear operators. Then we need to
assume that both of the operators A and B have continuous second derivatives.
That is, there exist bounded linear operators A×8x and B×8x and bilinear operators A×9x
and B×9x such that

lim
sK0

A(x1sh)2A(x)

s
4A×8x (h), lim

sK0

B(x1sh)2B(x)

s
4B×8x (h) ,

lim
sK0

A×8x1sh 8 (h)2A×8x (h)

s
4A×9x [h , h 8 ], lim

sK0

B×8x1sh 8 (h)2B×8x (h)

s
4B×9x [h , h 8 ] ,

and A×9x and B×9x (A×8x and B×8x also) are continuous with respect to x.
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If P has a continuous second derivative P×9x, the solution of (4) is expressed
as

Y(Dt)4Y01DtP(Y0 )1
Dt 2

2
P×8Y0

P(Y0 )

1
Dt 3

6
]P×9Y0

[P(Y0 ), P(Y0 ) ]1P×8Y0
P×8Y0

P(Y0 )(1o(Dt 3 ) .

(9)

Therefore the solution of (1) is expressed as

S Dt
A1B ( f0 )4 f01Dt[A( f0 )1B( f0 ) ]

1
Dt 2

2
[A×8f0

1B×8f0
][A( f0 )1B( f0 ) ]1O(Dt 3 ) .

(10)

On the other hand, the solution of (2) is expressed as

y(Dt)4S Dt
A ( f0 )4 f01DtA( f0 )1

Dt 2

2
A×8f0

A( f0 )1O(Dt 3 ) ,

z(Dt)4S Dt
B [y(Dt) ]4y(Dt)1DtB[y(Dt) ]1

Dt 2

2
B×8y(Dt) B[y(Dt) ]1O(Dt 3 ) .

(11)

Noting

B[ f01DtA( f0 )1R]4B( f0 )1DtB×8f0
A( f0 )1O(Dt 2 ) ,(12)

and

B×8y(Dt) B[y(Dt) ]4B×8f0
B( f0 )1Dt]B×9f0

[B( f0 ), B( f0 ) ]1B×8f0
B×8f0

B( f0 )(1o(Dt) ,(13)

we have

SB
Dt [SA

D t( f0 ) ]4 f01Dt[A( f0 )1B( f0 ) ]

1
Dt 2

2
[B×8f0

B( f0 )1A×8f0
A( f0 )12 B×8f0

A( f0 ) ]1O(Dt 3 ) .

(14)

Hence, we obtain

S Dt
A1B ( f0 )2S Dt

B [S Dt
A ( f0 ) ]4

Dt 2

2
]A×8f0

B( f0 )2B×8f0
A( f0 )(1O(Dt 3 ) .(15)

We remark that A×8f0
fA× and B×8f0

fB× if A and B are linear operators. That is,
the formula (8) is obtained from Eq. (15).
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3 - Strang’s splitting

We note that the leading error term (15) is antisymmetric with respect to op-
erators A and B. This simple observation leads immediately to the «symmetric
splitting» formula

S Dt
A1B ( f0 )4S Dt/2

B ]S Dt
A [S Dt/2

B ( f0 ) ](1O(Dt 3 ) ,(16)

which was first proposed by Strang [1] for PDEs. We can show now that this sec-
ond order accurate formula is valid for any operators A and B which have contin-
uous second derivatives. This is easily seen from

S Dt/2
B ]S Dt

A [S Dt/2
B ( f0 ) ](4S Dt/2

B [S Dt/2
A ]S Dt/2

A [S Dt/2
B ( f0 ) ](] ,(17)

Eq. (15), and

S Dt
A1B ( f0 )2S Dt

A [S Dt
B ( f0 ) ]42

Dt 2

2
]A×8f0

B( f0 )2B×8f0
A( f0 )(1O(Dt 3 ) .(18)

Equation (18) is obtained from Eq. (15) by changing A to B and vice versa. Simi-
larly, we have another Strang’s formula:

S Dt
A1B ( f0 )4S Dt/2

A ]S Dt
B [S Dt/2

A ( f0 ) ](1O(Dt 3 ) .(19)

Finally we notice a simple analogy between the above splitting formulas and
usual quadrature formulas for integrals. If u(t)�C2 [0 , 1 ], then standard rectan-
gular formulas yield

�
0

1

u(t) dt4SK (h)1O(h) , h4
1

N
K0 ,

where

SK (h)4h !
n4K

N211K

u(nh) , K40, 1 .

On the other hand, the simple averaging of the two formulas leads to the trape-
zoidal rule

�
0

1

u(t) dt4S2 (h)1O(h 2 ) , S24
S01S1

2
,

which has the second order of approximation. A similarity of this formula with
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Strang’s splitting formulas is quite obvious. It is remarkable that in both cases
one can obtain a higher order of approximation almost without changing the com-
putational procedure.

4 - Numerical example

In this section, we demonstrate the accuracy of Strang’s splitting method nu-
merically for the one-dimensional BGK equation. Let f (x1 , z i , t) be the nondimen-
sional distribution function, where xi , z i , and t are nondimensional space coordi-
nates, molecular velocity, and time, respectively. The nondimensional BGK equa-
tion in the spatially one-dimensional case is expressed as

¯f

¯t

A( f )

B( f )

r

rui

T

4 (A1B)( f ) ,

42 z 1
¯f

¯x1

,

4ry r

p 3/2 T 3/2
exp y2 (z i2ui )

2

T
z2 fz ,

4�f dz ,

4� f dz ,

4
2

3r
�(z i2ui )

2 f dz ,

(20)

where the integration is carried out over the whole velocity space (R 3). We con-
sider the Cauchy problem of this equation from the initial condition

f (x1 , z i , 0 )

a(x1 )

4
1

p 3/2ka(x1 )
exp g2 z 1

2

a(x1 )
2z 2

2 2z 3
2h ,

4114exp (25x1
2 ) .

(21)

The corresponding values of r, ui , and T are r41, ui4 (0 , 0 , 0 ), and T41
1 (4 /3) exp (25x1

2 ).
Owing to the symmetry of the problem, we have only to solve the problem for

x1D0. Furthermore, in the present case, u24u340 and the variables z 2 and z 3

can be eliminated by using Chu’s method [3].
We solve the Cauchy problem (20) and (21) numerically by using Strang’s

splitting method, i.e., S Dt/2
A S Dt

B S Dt/2
A . The computation by the conventional splitting
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method, S Dt
A S Dt

B , is a lso done for comparison. The condition of the computation is
as follows. The computational region for x1 is 0Gx1G5 and that for z 1 is 210
Gz 1G10; uniform mesh systems are employed for x1 and z 1 ; the number of
mesh points is 201 for x1 and that for z 1 is 401; the computation is carried out un-
til t40.4 for Dt40.2, 0.1, 0.05, 0.025.

Since the spatially homogeneous BGK equation is solved analytically [cf. the
orthogonality condition (23)], no error is induced in the computation of S Dt

B ] f0(.
In the computation of S Dt/2

A ] f (x1 , z i )(f f (x12z 1 Dt/2 , z i ), a higher order inter-
polation with the truncation error of O(Dx1

7 ) is employed, where Dx1 is the width
of x1 mesh and the truncation error is much less than Dt 3 for all cases of Dt. The
analytical solution for the spatially homogeneous equation and the same interpola-
tion are employed in the computation of conventional splitting method.

The values of r and T for (t , x1 )4(0.4, 0) are tabulated in Tables 1 and 2.
From these tables, we find that the rate of convergence is 2nd order for Strang’s
splitting and first order for the conventional splitting.

Finally we remark on the error of conventional splitting for the BGK equation.
The leading error of the conventional splitting, Eq. (18), is expressed as

e(x1 , z i )4
Dt 2

2
yz 1

¯B( f0 )

¯x1

1B×f0
8 g2z 1

¯f0

¯x1
hz ,(22)

TABLE 1. - The values of r at (t , x1 )4 (0.4, 0).

Dt40.2 Dt40.1 Dt40.05 Dt40.025

Strang’s splitting 0.74968 0.75199 0.75267 0.75282
Conventional splitting 0.76900 0.75964 0.75587 0.75428

TABLE 2. - The values of T at (t , x1 )4 (0.4, 0).

Dt40.2 Dt40.1 Dt40.05 Dt40.025

Strang’s splitting 1.30421 1.30615 1.30632 1.30636
Conventional splitting 1.35140 1.32958 1.31824 1.31236
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where the operators B and B×f0
8 satisfy the orthogonality condition

�u 1

z i

z j
2

v B( . ) dz40 ,(23)

�u 1

z i

z j
2

v B×f0
8 ( . ) dz40 .(24)

From this property, �e(x1 , z i ) dz40 but �z 1 e(x1 , z i ) dz and �z j
2 e(x1 , z i ) dz

are not equal to zero in general; the projection of e onto r is zero and that onto u1

and that onto T are O(Dt 2 ). Then, for t4Dt, the result for r is better than that
for T and u1 . However, the convergence rate of conventional splitting is first
order even for r. This is because the error of each time step is not accumulated
as it is. That is, the error e(x1 , z i ) becomes e (x12 (n21) z 1 Dt , z i )
A (n21) Dtz 1 (¯e/¯x1 ) at t4n Dt by the operation (SA

Dt )n21. Then, its projection
onto r is not zero and is O[ (n21) Dt 3 ). Taking account of (n21)1 (n22)1R

11An 2 /2 and nA1/Dt, we find that the amount of accumulated error for n time
steps becomes O(Dt) for r. The same discussion is applied to the case of the origi-
nal Boltzmann equation.
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A b s t r a c t

The accuracy of splitting method is investigated in an abstract Cauchy problem and
is shown to be first order in time for general evolution equations except for a special case.
A general formula for the leading term is obtained. It is also shown as an immediate con-
sequence of the formula that the accuracy is improved from first order to second order by
a simple modification. Such a modification was first proposed by Strang [G. Strang,
SIAM J. Numer. Anal. 5 (1968), 506] for PDEs. Thus, the Strang result is generalized in
the present paper to the case of arbitrary evolution equations. In particular, it is valid for
practically important case of integro-differential nonlinear kinetic equations and there-
fore there is no need to make additional error estimates in each particular case. The ac-
curacy of generalized Strang’s splitting method is demonstrated numerically for the BGK
equation.
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