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ERHARD AI C H I N G E R (*)

On maximal ideals of tame near-rings (**)

1 - Notation and results

For the basic notions of near-ring theory, such as near-ring, zero-symmetric,
N-group, ideal, we refer to [20].

Let N be a zero-symmetric near-ring with identity. Then the unital N-group G

is called k-tame iff for all g , x1 , x2 , R , xk�G and n�N there is an element
m�N such that

n * (g1xi )2n * g4m * xi for all i� ]1, 2 , R , k( .

As an example, the near-ring of zero-preserving polynomial functions on an V-
group is k-tame for every natural number k. A 1-tame N-group is simply called
tame [23]. For a tame N-group G , every N-subgroup I is an ideal. The zero-sym-
metric near-ring N with identity is called k-tame iff it has a faithful, k-tame N-
group. Our first result gives information on unique maximal ideals of a 2-tame
near-ring N.

T h e o r e m 1.1. Let N be a zero-symmetric near-ring with identity. We as-
sume that N is 2-tame and has the DCC on left ideals. If N has precisely one
maximal ideal, say I , and if the quotient N/I is not a ring, then I40.

Thus a 2-tame near-ring with a unique maximal ideal and without (nontrivial)
quotients that are rings has to be simple. The proof is given in section 4.

Our next goal is to relate the maximal ideals of a tame near-ring to certain an-
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nihilators of sections of its tame N-group. We abbreviate the lattice of ideals of G

by Id G. In the view of lattice theory, Id G is a complete algebraic modular lat-
tice (cf. [16]). We call an ideal M of G strictly meet irreducible iff for every subset
X of Id G with M4 R

X� X
X we have M� X. Then the ideal M 1 defined by

M 1 »4 R
X� Id G , XDM

X

satisfies M 1DM , and there are no ideals I with MEIEM 1. For I� Id G , the
quotient GOI is subdirectly irreducible iff I is strictly meet irreducible. We will use
the the subdirect representation theorem in the version that every ideal I of G is
the meet of a set of strictly meet irreducible ideals ([16], Theorem 2.19). For two
ideals A , B� Id G with AGB , we denote the interval ]I� Id GNAGIGB( by
I[A , B]. We write ATB iff AEB and there is no I� Id G with AEIEB. For two
ideals A , B of G with AGB , we define the set B/A»4]b1ANb�B(. On this set
we define addition by (b11A)1 (b21A) »4 (b11b2 )1A , and the operation of N
by n * (b1A) »4 (n * b)1A. If G is a tame N-group and A , B are ideals of G

with AGB , then the N-group B/A is tame, too. If furthermore ATB in Id G , then
the N-group B/A has no ideals except 04A/A and B/A. We write Ann (B/A) for
the annihilator of B/A , which means

Ann (B/A)4]n�NNn * B’A( .

The annihilator Ann (B/A) is an ideal of the near-ring (N , 1 , i ). Suppose that
the tame near-ring N has the DCC on left ideals (called DCCL from now on).
Tameness yields that for A , B� Id G with ATB the near-ring NOAnn(BOA) is 2-
primitive. Since 2-primitive near-rings with identity and DCCL are simple, the
ideal Ann(B/A) is maximal. It is not so clear whether these annihilators of some
section in the ideal lattice of G account for all maximal ideals; G. A. Cannon’s and
L. Kabza’s solution [5] of [24], Problem 5 supports this hope. At least for finite
and tame N and G it can be proved using [19], Lemma 1.4 and [17], Theorem 6.27
that for every maximal ideal I there are N-subgroups A , B of G such that I is the
annihilator of B/A. Actually, from [19] and [4] one obtains that often the maximal
ideals of N are in bijective correspondence to the N-isomorphism classes of mini-
mal sections of the ideal lattice of G (cf. Corollary 2.3). We will now give a gener-
alization to near-rings without any finiteness or chain conditions. Let G be a faith-
ful N-group. We say that a subnear-ring S is dense in N iff for every n�N and
for every finite number g 1 , g 2 , R , g k of elements of G there is an
s�S with s * g i4n * g i for i41, 2 , R , k.
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T h e o r e m 1.2. Let N be a zero-symmetric near-ring with identity, let G be
a faithful tame N-group, and let I be a maximal ideal of N. Then either I is
dense in N or there is a strictly meet irreducible ideal E of G such that
I4Ann(E 1OE).

In the case that N has the DCCL, the only subnear-ring of N that is dense in
N is N itself. So the alternative that a maximal ideal is dense in N cannot occur in
this case. We prove this result in section 3.

We investigate what these results mean for the near-ring P0 (V) of zero-pre-
serving polynomial functions on an algebra V with group reduct. For the notion
V-group, we refer to [10]; polynomial functions are defined, e.g., in [11] or [16],
Definition 4.4. The near-ring operations of P0 (V) are pointwise addition of func-
tions, and functional composition.

T h e o r e m 1.3. Let V be an V-group whose ideal lattice satisfies both the
DCC and the ACC. We assume that P0 (V) has the DCCL. If P0 (V) has precisely
one maximal ideal, then V is either simple and not abelian, or V is nilpo-
tent.

Here, being abelian and nilpotent is defined via the commutator operation
used in universal algebra ([16], Definition 4.150). In V-groups, we work with ide-
als rather than with congruences. For two ideals A , B of V , the commutator
[A , B] is the ideal generated by all elements p(a , b), where a�A , b�B and p is a
binary polynomial function on V with p(v , 0 )4p(0 , v)40 for all v�V. This ideal
product has been defined in [25]; it is equal to the commutator studied in univer-
sal algebra (cf. [7], Theorem 2.6; [2]). An V-group V is nilpotent if the series D0

4V , Dm4 [Dm21 , V] is 0 from some k�N onward. It is abelian if [V , V ]40. As
an example for our techniques, we study when the inner automorphism near-ring
of a group or the near-ring of polynomial functions on a ring with unit have pre-
cisely one maximal ideal. This is done in section 5. In section 6, we shall investi-
gate endomorphism near-rings with precisely one maximal ideal; this also pro-
vides a description of finite groups G for which I(G) (A(G), E(G)) is simple.

2 - Preliminaries

Let N be a near-ring which is tame on G. In the sequel, we state two condi-
tions on ideals A , B , C , D with AGB and CGD that imply that the N-groups
B/A and D/C are N-isomorphic. We say that two N-groups G and H are N-iso-
morphic iff there is a group isomorphism W : GKH with n * W(g)4W(n * g) for
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all n�N , g�G. For the first condition, we need some concepts of lattice theory.
For A , B , C , D� Id G with AGB , CGD , we say that the interval I [A , B]
projects up to I [C , D] iff A4BRC and D4BSC , and we write
I [A , B] 6I [C , D] or I [C , D] 7I [A , B]. The smallest equivalence relation that
contains 6 will be abbreviated by po. If I [A , B]poI [C , D], we say that the
two intervals are projective.

P r o p o s i t i o n 2.1. Let N be a zero-symmetric near-ring, and let G be a tame
N-group. Let A , B , C , D be ideals of G with AGB , CGD such that the intervals
I [A , B] and I [C , D] are projective. Then the N-groups B/A and D/C are
N-isomorphic.

P r o o f . We assume I [A , B]6I [C , D]. Then every element in d�D can be
written as d4b1c with b�B , c�C. The mapping W : D/CKB/A with W((b1c)
1C )4b1A is an isomorphism. r

The result is actually well-known as the homomorphism theorem (B1C) /B
`N B/(COB) ([17], Theorem 2.28).
The next method to find isomorphic N-groups is a generalization of the known
fact that for a finite simple ring with unit R , all faithful simple unital R-modules
are isomorphic (cf. [22], Proposition 2.1.15, p. 154; [4], Theorem 4.3). We need the
following version:

P r o p o s i t i o n 2.2. Let N be a zero-symmetric near-ring, let I be an ideal of
N , and let G be an N-group that satisfies Ann (G)4I and N * g4G for all g�G

with gc0.
We assume that we have a left ideal L of N such that LDI and there is no

left ideal L 8 of N with LDL 8DI.
Then the N-group G is N-isomorphic to the N-group L/I.

For I40, this is [20], Theorem 4.56(a).

P r o o f . Since LGO Ann (G), we have elements l0�L , g 0�G with l0 * g 0c0.
We define a mapping W by

W : LKG , lO l * g 0 .

It is easy to see that W is an N-homomorphism from the N-group L to the N-group
G. Since l0 * g 0c0, the assumptions on G yield N * l0 * g 04G. Since N * l0’L ,
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we get L * g 04G , and hence W is surjective. We take L 8 to be the kernel of W ,
i.e.

L 84]l�LNl * g 040( .

We check that L 8 is a left ideal of N. Furthermore, every element of I4Ann (G)
lies in L 8. So we have

IGL 8GL .

Since by the assumptions L covers I , L 8 has to be either L or I. The element l0

shows L 8EL , and so L 84I. The homomorphism theorem yields that the N-
group L/ker W4L/I is N-isomorphic to G. r

If two N-groups are N-isomorphic, they have the same annihilators. Some-
times, the converse is true:

C o r o l l a r y 2.3. Let N be a zero-symmetric near-ring with identity, and let
G be a tame N-group. Let A , B , C , D be ideals of G with ATB , CTD , and
Ann (B/A)4Ann (D/C).

If the near-ring N/Ann (B/A) has a minimal left ideal, the N-groups B/A and
D/C are N-isomorphic.

P r o o f . Since ATB , and since G is a tame N-group, B/A has no N-sub-
groups. For every b�B/A , the set N * b forms an N-subgroup of B/A , and since
for the identity of id of N we have id * b4b , we see N * b4B/A for every non-
zero b�B/A.

The fact that N/Ann (B/A) has a minimal left ideal gives us the left ideal L re-
quired in the assumptions of Proposition 2.2. Now the result follows from this
Proposition. r

We need the following elementary fact about density and DCCL:

L e m m a 2.4. Let G be a near-ring that is faithful on the G-group G , and let
F be a subnear-ring of G which is dense in G. If one of the two near-rings F and
G has the DCCL, then the near-rings are equal.

P r o o f . For simplicity, we assume that both near-rings are subnear-rings of
the near-ring M(G) of all mappings on G. For every subnear-ring R of M(G), and
for every natural number n�N , we introduce the near-ring Ln R»4]l�M(G)N(S
’G : NSNGn ¨ )r�R : rNS4 lNS( and let LR»4 1

n�N
Ln R. The fact that F is
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dense in G can now be written as

F’G’LF .(2.1)

We say that D’G is a base of equality for R iff every function in R that is zero at
all elements of D is zero everywhere on G. For every subset C of G the set ]r
�RNr(c)40 for all c�C( is a left ideal of R. If no finite base of equality for R
exists, then we can construct an infinite descending chain of such left ideals. So
every subnear-ring of M(G) with DCCL has a finite base of equality.

If we assume that F has the DCCL, then it has a finite base of equality. By [1],
Proposition 2, it follows that LF4F , and therefore the inclusions of (2.1) yield
F4G.

If G has the DCCL, then we show G’F as follows: Take g�G , and let D be
the finite base of equality for G. By density, we have f�F such that fND4gND .
Both functions lie in G and agree on D , and so f4g. This shows g�F. r

3 - Maximal ideals are dense or annihilators

P r o o f o f T h e o r e m 1.2. We assume that I is not dense in N. Then there is
a a finite subset D of G and there is an element n�N such that there is no i�I
that satisfies (d�D : i * d4n * d.

We take a set D of minimal cardinality with this property, and note that D
cannot be the empty set. We choose d�D. We define two sets S and B by

S»4] i * dNi�I , i * d40 for all d�D2]d( (

B»4]n * dNn�N , n * d40 for all d�D2]d( (.

Let n0�N be such that there is no i�I with n0 * d4 i * d for all d�D. Since D is
minimal, there is an element i0�I such that n0 * d4 i0 * d for all d�D2]d(. The
element (n02 i0 ) * d obviously lies in B. It does not lie in S: suppose it did. Then
we have an element i1�I such that (n02 i0 ) * d4 i1 * d and i1 * d40 for all d�D
2]d(. Thus we have n0 * d4 (i11 i0 ) * d for all d�D, a contradiction to the
choice of n0 . Therefore S is a subset of B, but not equal to B.

Since I is an ideal of N, both sets S and B are N-subgroups of G, and hence, by
tameness, ideals. We will now study the N-group B/S. We know that i i n�I for
all i�I , n�N. So i * b�S for all i�I , b�B. Therefore the ideal I satisfies

IGAnn (B/S) .

Let X be the set of all strictly meet irreducible ideals E of G with the property
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EFS. By [16], Theorem 2.19, the intersection R
X� X

X is equal to S. Since BGO S,

there is at least one element M in X with MFO B. So we have found a meet irre-
ducible ideal M of G that satisfies MFS and MFO B. So we have

SGMRBGM 1RBGB .

Now we show that the interval I [MRB , M 1RB] projects up to I [M , M 1 ] in
the lattice Id G. To this end, we have to prove

(M 1RB)RM4MRB(3.1)

and

(M 1RB) SM4M 1 .(3.2)

Property (3.1) is true since M 1RM4M. For (3.2), we observe that (M 1RB)
SMGM 1 and (M 1RB)SMFM. Since MTM 1, (3.2) can only fail if (M 1

RB)SM4M. But we show

(M 1RB)SMDM .(3.3)

We obviously have F, so suppose that we have equality in (3.3). Since the lattice
Id G is modular, (M 1RB)SM4M 1R (BSM), and so we obtain

M 1R (BSM)4M .

Since M is meet irreducible, this implies BSM4M, and thus BGM which con-
tradicts the fact that M was chosen such that BGO M. This proves (3.3). The prop-
erty (3.3) also implies MRBEM 1RB.

Since SGMRBGM 1RBGB, we know Ann ((M 1RB)O(MRB) )
FAnn (B/S). But already Ann (B/S) contains the maximal ideal I. Since

Ann ((M 1RB)O(MRB) )

does not contain the identity function, it cannot be equal to N, so we get

Ann ((M 1RB)O(MRB) )4I .

By Proposition 2.1, the N-groups (M 1RB) /(MRB) and M 1/M are N-isomor-
phic. Therefore they have the same annihilator, which gives Ann (M 1OM)4I.
Thus M is the meet irreduible ideal E that we are looking for. r
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4 - 2-tame near-rings with unique maximal ideals

The key to proving Theorem 1.1 is the observation that for two different
strictly meet irreducible ideals A , B of the 2-tame module G the N-modules A 1/A
and B 1/B can only be isomorphic if N/Ann (A 1/A) is a ring. This observation is
motivated by [8].

P r o p o s i t i o n 4.1. Let N be a zero-symmetric near-ring with identity, let G

be a 2-tame N-group, and let A and B be two meet irreducible elements of Id G

such that AcB. We assume that the N-groups A 1/A and B 1/B are N-isomor-
phic. Then N/Ann (A 1/A) is a ring.

P r o o f . Since AcB , we either have AGO B or AFO B. Without loss of gener-
ality we assume AFO B. Then we have ASBDA , and so ASBFA 1. We fix
a1

1 , a2
1�A 1 and n�N. We compute

n * (a1
11a2

1 )2n * a1
12n * a2

1 .(4.1)

Since A 1GASB , there are a1�A , b1�B such that a1
14a11b1 . Furthermore,

the N-groups A 1/A and B 1/B are N-isomorphic. Let W be the isomorphism, and
let b2

1�B 1 be such that b2
11B4W(a2

11A). We will now prove

For all r�N : (r * b2
1�B ¨ r * a2

1�A) .(4.2)

For proving (4.2), we assume r * b2
1�B. Then in the N-group B 1/B , we have

r * (b2
11B)401B. Thus we know 01B4r * (b2

11B)4r * (W(a2
11A) )

4W (r * (a2
11A) ). Since W is an isomorphism, W(x) can only be 01B if the ar-

gument x is equal to 01A. So we have

r * (a2
11A)401A .

This implies r * a2
1�A , and thus finishes the proof of (4.2).

Using the equality a1
14a11b1 , the expression (4.1) becomes

n * (a11b11a2
1 )2n * (a11b1 )2n * a2

1 .

Modulo A , this is expression is congruent to

n * (b11a2
1 )2n * b12n * a2

1 .

Since N is 2-tame on G , there is an element m�N such that

m * x4n * (b11x)2n * b1 for x� ]a2
1 , b2

1( .(4.3)
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Thus we have

n * (b11a2
1 )2n * b12n * a2

14m * a2
12n * a2

14 (m2n) * a2
1 .

We show

(m2n) * a2
1�A .(4.4)

By (4.2), it is sufficient to show (m2n) * b2
1�B. By (4.3), we have (m2n) * b2

1

4m * b2
12n * b2

14n * (b11b2
1 )2n * b12n * b2

1 . This is congruent to
n * b2

12n * b2
140 modulo B , thus (m2n) * b2

1 lies in B ; this proves (4.4). Al-
together, we have shown that n * (a1

11a2
1 )2n * a1

12n * a2
1 lies in A.

Taking n to be the identity, we obtain that the group A 1/A has abelian addi-
tion; all n�N , a1

1 , a2
1�A 1 satisfy

n * ((a1
11A)1 (a2

11A) )4n * (a1
11A)1n * (a2

11A) .

Thus N/Ann (A 1/A) is a ring. r

P r o p o s i t i o n 4.2. Let N be a zero-symmetric near-ring with identity and
DCCL. We assume that N has a unique maximal ideal, say I. Let G be a tame N-
group, and let A , B , C , D be ideals of G with ATB , CTD. Then the N-groups
B/A and D/C are N-isomorphic.

P r o o f . The annihilator Ann (B/A) is contained in a maximal ideal, and since
the only maximal ideal is I , we have

Ann (B/A)GI .(4.5)

To prove that equality holds in (4.5), we show that Ann (B/A) is a maximal ideal of
I. We know that the near-ring N/Ann (B/A) is 2-primitive on B/A. By [4] (or [18],
Corollary 3), every 2-primitive near-ring with DCCL is simple. The quotient
N/Ann (B/A) being simple, Ann (B/A) is a maximal ideal of N and hence equal to
I. In the same way, we obtain Ann (D/C)4I , and so by Corollary 2.3, the N-
groups B/A and D/C are N-isomorphic. r

We can now describe 2-tame near-rings with DCCL, a unique maximal ideal
and no ring quotients.

P r o o f o f T h e o r e m 1.1. Let G be a faithful 2-tame N-module, and let E be
a strictly meet irreducible ideal of G.

Now let A be any other strictly meet-irreducible ideal of G. By Proposition 4.2,
the N-groups A1/A and E 1/E are N-isomorphic. We know that Ann (E 1/E) is a
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maximal ideal of N, and hence equal to I. Since, by assumption, N/I
4N/Ann (E 1/E) is not a ring, Proposition 4.1 yields A4E.

So E is the only strictly meet-irreducible ideal in Id G. Every ideal of G is the
intersection of a set of strictly meet-irreducible ideals. But since there is only E to
form such an intersection, we get G and 0 as the only ideals of G. Therefore E40
and E 14G, and thus I4Ann (E 1/E) is equal to Ann (G). But since G is faithful,
we obtain Ann (G)40, thus I40, which we had to prove. r

In particular, we obtain that N is primitive on its N-group G, and thus by [23],
Theorem 8.4, N is dense in M0 (G). Since N satisfies the DCCL, Lemma 2.4 tells
that it is equal to M0 (G), and again by DCCL, G, and thus N, are finite. The finite-
ness of a near-ring satisfying the assumptions of Theorem 1.1 also follows from
[23], Theorem 8.5.

5 - Near-rings of polynomials with a unique maximal ideal

We will now see what Theorem 1.1 yields for the near-rings of zero-symmetric
polynomial functions on expansions of groups. It is interesting to observe that
near-rings such as E(G) can be viewed as near-rings of zero-symmetric polynomi-
al functions. For obtaining E(G), we take V to be the V-group V»4 (G , 1 , ]e : G
KGNe is an endomorphism of G(). Then P0 (V)4E(G). Similarly, all compatible
(cf. [23], p. 283) near-rings can be obtained.

Let A , B , C , D be ideals of the V-group V with AGB , CGD. The interval
I [A , B] is called abelian iff [B , B]GA. The centralizer of B modulo A , abbrevi-
ated by (A : B), is the largest ideal C of V such that [C , B]GA. We will need the
following properties of the commutator operation:

Proposition 5.1. Let A , B , C be ideals of the V-group V. Then we have

1. [ASB , C]4 [A , C]S [B , C]

2. [A , B]4 [B , A]
3. [A , B]GARB
4. Let AGB. Then an element z�V lies in (A : B) iff s(z , b)�A for all b�B

and for all binary polynomial functions s on V that satisfy (v�V : s(v , 0 )
4s(0 , v)40.

The first three properties are well known in commutator theory [6]; number
(4) follows from [25], Proposition 9.5.
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P r o o f . We call a binary polynomial function s a commutator polynomial iff
s(v , 0 )4s(0 , v)40 for all v�V. For (1), we only show G. For a�A , b�B , c�C
and a commutator polynomial s , we have s(a1b , c)4s(a1b , c)2s(b , c)
1s(b , c). Considering s1 (x , y) »4s(x1b , y)2s(b , y), we see s(a1b , c)
2s(b , c)4s1 (a , c)� [A , C]. The second term s(b , c) obviously lies in [B , C].

For (4), we are done if we show that the set

Z»4]z�VNs(z , b)�A for all b�B and all commutator polynomials s(

is an ideal of V. To this end, let z be in Z , and let p�P0 (V). We want to show that
p(z) is in Z. We fix b�B and a commutator polynomial s , and compute s (p(z), b ).
Since z�Z , we know that t(z , b) lies in A, where t(x , y)4s (p(x), y ). Thus
s (p(z), b )�A. For showing that Z is closed under addition, let z1 , z2�Z. We
write s(z11z2 , b) as s(z11z2 , b)2s(z2 , b)1s(z2 , b). Defining t(x , y) »4 t(x
1z2 , y)2 t(z2 , y), we see that s(z11z2 , b)2s(z2 , b) lies in A ; since s(z2 , b) also
lies in A , we get s(z11z2 , b)�A. Hence Z is also closed under addition, and
therefore an ideal. r

Some of the properties given in [6] that hold if I [A , B] is projective to I [C , D]
still hold if we assume the weaker fact that the P0 (V)-groups B/A and D/C are
isomorphic.

P r o p o s i t i o n 5.2. Let V be an V-group, and let A , B , C , D be ideals of V
with AGB , CGD such that the P0 (V)-groups B/A and D/C are P0 (V)-isomor-
phic. Then (A : B)4 (C : D).

We remark that this has been proved in [25], Theorem 12.1.

P r o o f . We show (C : D)G (A : B). Let z be an element of (C : D). We fix
a binary polynomial s of the V-group V with s(v , 0 )4s(0 , v)40 for all v�V ,
and we also fix b�B. We compute s(z , b). Since [(C : D), D]GC , the polynomial
p(x) »4s(z , x) has the property p(D)’C. Since D/C and B/A are P0 (V)-isomor-
phic, we have p(B)’A. This implies p(b)�A , which means s(z , b)�A. So, by
Proposition 5.1 (4), the element z lies in the centralizer (A : B), and we have
(C : D)G (A : B). Interchanging the roles of A , B with those of C , D , we obtain
the required equality. r

P r o p o s i t i o n 5.3. Let V be a V-group, and let A , B , C , D be ideals of V
with ATB , CTD such that the P0 (V)-groups B/A and D/C are P0 (V)-isomor-
phic. If I [A , B] is abelian, then I [C , D] is abelian.
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P r o o f . We assume [D , D]GO C. Then we have d1 , d2�D and a binary poly-
nomial s of the V-group V with s(v , 0 )4s(0 , v)40 for all v�V and s(d1 , d2 )�C.
Since CTD , the P0 (V)-group D/C has only two P0 (V)-subgroups, namely 04C/C
and D/C. Therefore, P0 (V) * (d11C)4D/C. Hence we have a polynomial function
p�P0 (V) such that p(d1 )�d21C. We consider the polynomial t(x) »4s (x , p(x) ).
We know that t(d1 )4s (d1 , p(d1 ) ) is congruent to s(d1 , d2 ) modulo C ; thus we get
t(d1 )�C. So we have t(D) +C. Since the P0 (V)-groups D/C and B/A are isomor-
phic, we have t(B) +A. Therefore there is an element b�B such that t(b)
4s (b , p(b) )�A. But s 8 (x , y) »4s (x , p(y) ) is 0 whenever one of its arguments
is 0 ; so t(b) lies in [B , B]. This shows [B , B]GO A , and thus I [A , B] is not
abelian. r

If P0 (V) has only one maximal ideal, then all minimal sections in the ideal lat-
tice of V have to be P0 (V)-isomorphic. As suggested by [8] and Proposition 4.1,
being isomorphic is particularly hard for non-abelian sections.

P r o p o s i t i o n 5.4. Let V be an V-group. We assume that P0 (V) has the DC-
CL and precisely one maximal ideal. If there are ideals C , D of V such that
CTD and I [C , D] is not abelian, then V is simple.

P r o o f . Let A and B be two strictly meet irreducible ideals of V. By Proposi-
tion 4.2, A 1/A and B 1/B are P0 (V)-isomorphic to D/C. Thus, by Proposition 5.3,
the interval I [A , A 1 ] is not abelian. Hence we have (A : A 1 )FO A 1. Since A is
meet irreducible, each ideal E with EFA satisfies either E4A or EFA 1.
Hence we have (A : A 1 )4A. In the same way we obtain B4 (B : B 1 ). So Propo-
sition 5.2 yields A4 (A : A 1 )4 (B : B 1 )4B. But if all strictly meet irreducible
ideals of V are equal, then V is simple. r

This result is particularly suitable for treating polynomial functions on rings
with unit: every ring R with unit has a maximal ideal. On a ring (R , 1 , Q) with
unit 1 , we consider the mapping s(x , y) »4x Qy. Since s(1 , 1 )41, we have [R , R]
4R. So for a maximal ideal C of the ring R , we know that the interval I [C , R] is
not abelian.

C o r o l l a r y 5.5. Let R be a ring with unit. If P0 (R) has the DCCL and pre-
cisely one maximal ideal, then R is simple.

P r o o f . Let C be a maximal ideal of R. Since R/C is a ring with unit, it has
nonzero multiplication, and thus the interval I [C , R] is not abelian. By Proposi-
tion 5.4 we conclude that R is a simple ring. r
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If for a finite V-group V the near-ring P0 (V) has only one maximal ideal, then
V is simple or nilpotent.

P r o p o s i t i o n 5.6. Let V be an V-group whose ideal lattice satisfies both the
DCC and the ACC. We assume that P0 (V) has the DCCL. If P0 (V) has precisely
one maximal ideal, then V is either simple and not abelian, or V is nilpo-
tent.

P r o o f . Let I be the maximal ideal of P0 (V), and let A be a meet irreducible
ideal of V. If I [A , A 1 ] is not abelian, then Proposition 5.4 yields that V is simple.
Since then A40 and A 14V , it follows that [V , V]c0, and thus V is not
abelian.

Now we assume that I [A , A 1 ] is abelian. We show that then the commutator
operation satisfies [V , D]ED for every ideal D of V. Therefore we have [V , V]
D [V , [V , V] ]D [V , [V , [V , V] ] ]DR , hence by the DCC on ideals of V , this
chain reaches 0 , making V nilpotent. Seeking a contradiction, we suppose that we
have an ideal D with [V , D]4D. Let E be a subcover of D in Id V, i.e., an ideal of
V with ETD. Since [V , D]GO E , we have (E : D)EV. Let M be a maximal ideal
of V. Then by Proposition 4.2, V/M and D/E are P0 (V)-isomorphic. This shows
that the centralizer (M : V) is equal to (E : D), and thus we have (M : V)EV. So
the interval I [M , V ] is not abelian. But by Proposition 4.2, the P0 (V)-groups V/M
and A 1/A are P0 (V)-isomorphic, and so by Proposition 5.3, the interval I [A , A 1 ]
is not abelian, a contradiction. r

An important fact in this proof is that all B/A , where A , B are ideals of G with
ATB , are P0 (V)-isomorphic. If I [A , B] is abelian, then using a maximal ideal of
V , one concludes that for all ideals with ATB the centalizer (A : B) is equal to V.
If P0 (V) has the DCC on ideals, Theorem 1.3 now also follows from [25],
Theorem 16.8.

But what if P0 (V) is simple?

P r o p o s i t i o n 5.7. Let V be an V-group that has at least one maximal ideal.
We assume that P0 (V) has the DCCL. If P0 (V) is simple, then V is either simple
or abelian.

P r o o f . Let M be a maximal ideal of the V-group V. If the interval I [M , V ]
is not abelian, then Proposition 5.4 yields that V is simple.

So we assume [V , V]GM. Since P0 (V) is simple, its ideal Ann (V/M) is either
P0 (V) or 0 , and since the identity mapping on V does not lie in Ann (V/M), we
have Ann (V/M)40. Now we show [V , V ]40. To this end, let s be a binary poly-
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nomial function on V with s(v , 0 )4s(0 , v)40 for all v�V. We fix w1 , w2�V.
Since [V , V ]GM , we know that the polynomial t(x) »4s(w1 , x) has the property
t(V)’M , and thus t lies in Ann (V/M). Since Ann (V/M)40, we get t40, and
thus s(w1 , w2 )4 t(w2 )40, which proves [V , V ]40. r

Slightly more information can be obtained for finite V-groups V:

P r o p o s i t i o n 5.8. Let V be a finite V-group. If P0 (V) has precisely one
maximal ideal then V is either simple and not abelian, or V is nilpotent and the
cardinality of V is a prime power.

P r o o f . Let M0 , M1 , R , Mr be ideals of V with V4M0DM1DRDMr40
such that for all i , Mi is a subcover of Mi21 in the ideal lattice of V.

If the interval I [0 , Mr21 ] is not abelian, then Proposition 5.4 yields that V is
simple; since then Mr214V , the V-group V is non-abelian.

Hence we assume [Mr21 , Mr21 ]40. Since then V cannot be simple and
nonabelian, Proposition 5.6 tells that V is nilpotent. We will now prove that its
cardinality is a prime power. Since Mr21 has no P0 (V)-subgroups,
R»4P0 (V) /Ann (Mr21 ) is 2-primitive on Mr21 . From [Mr21 Mr21 ]40, we ob-
tain that a1b4b1a , and p(a1b)4p(a)1p(b) for all for all a , b�Mr21 , p
�P0 (V). (To see this, define s(x , y) »4p(x1y)2p(y)2p(x), and observe that s
is zero whenever one of its arguments is 0. Thus s(a , b) lies in [Mr21 Mr21 ]40.)
Therefore R is a primitive ring, and by Jacobsons’s density theorem ([9], p. 28),
Mr21 can be seen as a vector space over the finite field D»4EndR (Mr21 ), which
shows that Mr21 has p k elements for some p , k�N , p prime. By Proposition 4.2,
every quotient Mi/Mi11 has p k elements, and thus V has p kr elements. r

Proposition 5.7 can also be sharpened if V is finite.

P r o p o s i t i o n 5.9. Let V be a finite V-group. If P0 (V) is simple, then V is
simple and not abelian, or (V , 1) is the additive group of a finite vector
space.

P r o o f . We assume that V is not both nonabelian and simple. We take a mini-
mal ideal Mr21 of V. As in the proof of Proposition 5.8, we see that Mr21 is the
additive group of a vector-space, and hence of exponent p for a prime number p.
Therefore the polynomial function xO x1x1R1x

���
p times

lies in Ann (Mr21 ). By the

simplicity of P0 (V), we have Ann (Mr21 )40, and thus (V , 1) is of exponent p.
Since, by Proposition 5.7, the V-group V is abelian, its addition satisfies v11v2
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4v21v1 for all v1 , v2�V , and thus (V , 1) is abelian. Hence (V , 1) is elemen-
tary abelian, which whe had to prove. r

6 - Endomorphism near-rings with unique maximal ideals

We will now study for which finite groups G the near-rings I(G), A(G), and
E(G) have precisely one maximal ideal, and when they are simple. In [13], it is
proved that if I(G) (A(G), E(G)) is local [15], then G is a p-group. It is known that
a local near-ring N has precisely one maximal ideal, say I , and the quotient N/I is
a near-field. Our contribution is that we do not put any restrictions on the maxi-
mal ideal; nevertheless, several steps work as in [13]. We can then also tell for
which finite groups G the near-ring I(G) (A(G), E(G)) is simple.

Although the results of this section follow from the results of section 5, the
considerable interest that these near-rings have received justifies to give proofs
that use the language of group theory.

P r o p o s i t i o n 6.1. Let G be a group with a finite principal series. We as-
sume that I(G) has the DCCL.

1) If I(G) has precisely one maximal ideal, then G is either simple or a
p-group.

2) If I(G) is simple, then G is simple or an abelian group of prime
exponent.

We remark that S. D. Scott has proved that if I(G) has the DCCL, it is finite
([23], Theorem 10.4).

P r o o f . We choose a maximal normal subgroup M1 of G. For proving item
(1), we assume first that G/M1 is not abelian. Then by Proposition 5.4 the group G
is simple.

If G/M1 is abelian, then being simple it has p elements for some prime number
p . Let G4M0DM1DM2DM3DRDMr40 be a principal series of G . Since
I(G) has only one maximal ideal, Proposition 4.2 gives that all Mi OMi11 have p
elements, so G has p r elements, and is thus a p-group. This finishes the proof of
item (1).

Now let I(G) be simple. If G is not simple, then by (1) G is nilpotent, hence the
quotient G/M1 is isomorphic to the cyclic group of order p for some prime p. For
proving that G has exponent p , we consider the polynomial function p Q id that
maps x to x1x1R1x

���
p times

. This function lies in Ann (G/M1 ), and since I(G) is sim-
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ple, we have Ann (G/M1 )40. So p Q id is the zero function, and thus G is of expo-
nent p.

For showing that G is abelian, we show that every element of G lies in the
centre. To this end, we fix g�G , and consider the mapping c(x) »42g2x1g
1x. It lies in Ann (G/M1 ), and thus c is the zero function. So g lies in the centre
of G. r

On the other hand, [13], Corollary 3.3 tells that for a finite p-group G , the
near-ring I(G) is even local; in particular it has a unique maximal ideal. Also if G
is finite, simple and not abelian, then I(G) is simple. For sake of completeness, we
summarize the argument that for a p-group G the near-ring I(G) has a unique
maximal ideal: In G , all sections B/A , where A and B are normal subgroups of G
with ATB , are I(G)-isomorphic; thus they all have the same annihilator
Ann (B/A). Since the annihilators account for all maximal ideals, there can be only
one maximal ideal.

We will now switch to the near-rings A(G) and E(G). The near-ring A(G)
is exactly the near-ring of zero-preserving polynomial functions of the V-group
GA »4 (G , 1 , ]a : GKGNa�Aut G(). The ideals of GA are precisely the charac-
teristic subgroups of G.

P r o p o s i t i o n 6.2. Let G be a finite group.

1) If A(G) has precisely one maximal ideal, then G is either characteristical-
ly simple or a p-group.

2) If A(G) is simple, then G is characteristically simple.

P r o o f . Let G4C0DC1DRDCr40 be a principal characteristic series
([21], p. 63) of G. We take H»4Cr21 to be a minimal characteristic subgroup of
G. By [21], 1.5.6, H is characteristically simple. If H is not an abelian group, then
by Proposition 5.4, we get G4H , and thus G is characteristically simple. If H is
an abelian group, then by [21], 3.3.15 there is a prime p such that H is elementary
abelian of exponent p. By Proposition 4.2, all sections Ci/Ci11 have the same num-
ber of elements, and thus G is a p-group. This proves (1).

For (2), we first assume that H is not abelian. As above, we see that this im-
plies that G4H , and G is thus characteristically simple.

If H is abelian, then by Proposition 4.2, the quotient G/C1 is isomorphic to H ,
an hence elementary abelian. As in the proof of Proposition 6.1, we see that G is
abelian of prime exponent, and therefore characteristically simple. r
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We view the near-ring E(G) as the near-ring of zero-preserving polynomial
functions of the V-group GE »4 (G , 1 , ]e : GKGNe�End G(). The ideals of GE

are precisely the fully-invariant subgroups of G.

P r o p o s i t i o n 6.3. Let G be a finite group.

1) If E(G) has precisely one maximal ideal, then G is either invariantly sim-
ple or a p-group.

2) If E(G) is simple, then G is invariantly simple.

P r o o f . Let G4I0DI1DRDIr40 be a principal fully-invariant series
([21], p. 63) of G. We take H»4Cr21 to be a minimal fully-invariant subgroup of
G. By [21], 1.5.6, H is invariantly simple. If H is not an abelian group, then by
Proposition 5.4, we get G4H , and thus G is invariantly simple. If H is an abelian
group, then (since for every n�N the subgroup n QH is fully invariant), there is a
prime p such that H is elementary abelian of exponent p. Now the remainder of
the proof is an adaption of the last seven lines of the proof of Proposition
6.2. r

Let us make some remarks about the reversions of Proposition 6.3 and Propo-
sition 6.2. For every finite characteristically simple group G , the near-ring A(G)
is either a primitive ring or a 2-primitive near-ring, and thus simple ([12], 3.6). In
the same way, E(G) is simple for every finite invariantly simple group G. But
there is a p-group G such that A(G) has more than one maximal ideal. As an
example, we consider the quaternion group Q8 with principal characteristic series
Q8DF(Q8 )`Z2D0. Now in A(Q8 ), the annihilators Ann (Q8/F(Q8 ) ) and
Ann (Z2 /0 ) account for two different maximal ideals. Since A(Q8 )4E(Q8 ) [14],
this also gives an example of a non-abelian p-group G for which E(G) has more
than one maximal ideal.

On the other hand, A(D8 ), where D8 is the dihedral group with eight elements,
has precisely one maximal ideal. This follows from the fact that D8 has the princi-
pal characteristic series D8DZ4DZ2D0, with all the quotients of size 2, and
(hence) A(D8 )-isomorphic. In fact, A(D8 ) is even local [13].
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A b s t r a c t

Let N be a zero-symmetric near-ring with identity, and let G be a faithful tame N-
group. We prove that every maximal ideal of N is either dense in N or equal to the an-
nihilator of a section in the submodule lattice of G. We study the case that there is preci-
sely one maximal ideal: often this maximal ideal has to be 0. As a consequence, we see
that if the near-ring of zero-preserving polynomial functions on a finite V-group V has
precisely one maximal ideal, then V is either simple or nilpotent. Finally, we look at
groups G for which the near-rings I(G), A(G), and E(G) have precisely one maximal
ideal, or are even simple.
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