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A simple approach to compute integrals

in collocation and Galerkin BEMs for 2D problems (**)

1 - Introduction

The Boundary Element Methods (BEM) have become an important technique
for solving linear elliptic partial differential equations appearing in many relevant
engineering applications (e.g. acustics, elastostatic, elastodynamics, etc.) (see [18],
[32], [33]). By means of the foundamental solution of the considered differential
equation a large class of both exterior and interior elliptic boundary value prob-
lems can be formulated as a linear integral equation on the boundary of the given
domain.

The numerical analysis of this method for two dimensional problems is now
fairly well studied; see [5], [13], [27], [31] for collocation methods and [15], [28],
[16] for Galerkin methods.

More recently, in [30] for collocation methods and in [29] for Galerkin BEM,
the analysis has been extended to a nonlinear boundary value problem, where the
partial differential equation itself is linear but the boundary conditions are nonlin-
ear. In various applications, the problems involve nonlinearities in the boundary
conditions. Among these is the steady-state heat transfer [6] where the boundary
has a variable thermal heat conductivity or the body obeys the Newton low of
cooling. Further applications arise in some electromagnetic problems that contain
nonlinearities in the boundary conditions; for instance problems where the electri-
cal conductivity of the boundary is variable.

(*) Dipartimento di Matematica, Università di Parma, Via D’Azeglio 85, 43100 Parma,
Italy; Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129
Torino, Italy.
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The BEM can offer substantial computational advantages over other numeri-
cal techniques. However, in order to achieve an efficient numerical implementa-
tion of general validity, a number of issues have to be dealt with special attention.
One of the most significant and important issue of the practical application of the
BEM analysis is the evaluation of weakly singular, Cauchy singular and even hy-
persingular integrals over boundary elements. The integral with a hypersingular
kernel is not defined in the usual sense, neither as a Cauchy principal value, but
as the finite-part. Boundary integral equations with hypersingular kernels arise
whenever the gradient (or, e.g. the normal derivative) of a classical boundary inte-
gral equation is taken.

Recently in ([2], [3]) we have considered problems on 2D domains. In particu-
lar, we have examined all «difficult» integrals whose evaluation is required when
the integral equations are solved by a Galerkin BEM based on piecewise polyno-
mial approximants of arbitrary local degree. By «difficult» integrals we mean the
singular and the nearly singular ones. To compute these integral we have pro-
posed new numerical integration schemes, which require the user only to define
an arbitrary mesh on the boundary and specify the local degrees of the approxi-
mant. These formulas enable the construction of adaptive routines for the imple-
mentation of the h2p version of the BEM. Of course these schemes can be used
also to compute the integrals generated by collocation methods. They are formu-
las of product-interpolatory type, which integrate exactly the nasty component of
the integrand.

In this paper we consider all difficult integrals required by collocation and
Galerkin BEMs, when these are applied to 1D weakly singular and singular inte-
gral equations. In particular we show that they can be evaluated very efficiently
by means of very simple quadrature formulas, thus avoiding the use of special
rules, such as those of product type. Numerical evidences of the effectiveness of
our approach, as well as some applications, are presented.

2 - Basic quadrature formulas

One of the most frequently used quadrature rule is certainly the well-known
Gauss-Legendre formula

�
21

1

f (x) dx4 !
i41

n

l i f (j i )1Rn ( f ) ,(2.1)

which has the maximum degree of exactness, i.e., Rn ( f )40 whenever f (x) is a
polynomial of degree at most 2n21.
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While it is very accurate when f (x) is smooth, its performance becomes poor
when f (x) has irregularities. Indeed, given any f�C m [21, 11] we have, for
example, Rn ( f )4o(1) when m40 and Rn ( f )4O(n 2m ) otherwise. We will how-
ever show that,using very elemetary tools, with this rule we can also easily handle
several other cases where the function f (x) is not smooth at all. For instance,
one case of interest in Sect. 3 will be the one where f (x) is very smooth, usually
analytic, except at the endpoints 61 where it has mild singularities of the type
log (16x) or (16x) log (16x). Also in such cases we can recover the high accu-
racy of (2.1) for smooth functions, by introducing in (2.1) a simple change of vari-
able (see [24]).

By choosing a new function W(t), with W 8 (t)F0, mapping (21, 1 ) onto ifself,
we obtain

�
21

1

f (x) dx4 �
21

1

f (W(t) ) W 8 (t) dtf �
21

1

F(t) dt .(2.2)

If furthermore

W (i) (21)40 , W ( j) (1 )40 , i41, R , p121 ; j41, R , p221 ,

then we can make F(t) as smooth as we like simply by taking integers p1 , p2 suffi-
ciently large.

In [25] the following polynomial transformation

W(t)4
(p11p221) !

(p121) !(p221) !
�

0

t

u p121 (12u)p221 du , p1 , p2F1 ,(2.3)

has been proposed. The integral in (2 . 3 ) can be evaluated exactly (up to machine

accuracy) by means of (2.1) with n4D p11p2

2
F. Finally, if we apply the n-point

Gauss-Legendre rule (2.1) to the final form of (2.2) we obtain

�
21

1

f (x) dx4 !
i41

n

l i f (W(j i ) ) W 8 (j i )1Rn (F) .(2.4)

For this formula, with p141, we have the following convergence result (see
[22]).
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T h e o r e m 1. If f (x)4 (12x)m log (12x), with m being a non negative in-
teger, then we have

Rn (F)4O(n 22p2 (m11) log n) .(2.5)

The above smoothing procedure has been actually generalized to integrals of type
(2.1) with f (x) possibly having also (or only) a fixed number of internal weak sin-
gularities (see [24]).

R e m a r k 1. If the function f (x) in (2.4) is of the form like that of Theorem 1,
but with an internal singularity, for example f (x)4x m log x, then we only have

Rn (F)4O(n 2p2 (m11)11 ) .

Therefore, when the singularity is at the endpoints of the interval of integration,
the rate of convergence is more than twice that one has for corresponding interior
singularities.

The effectiveness of this approach is shown by the following two examples,
which can be taken as test cases for the applications we will consider in the next
section.

I14�
0

1

x log x dx I24�
0

1

[2 log x1 log (12x) ] dx .

Some numerical results are reported in Tables I, II. Here and in the following ex-
amples, all computation has been performed on a PC using double precision (16
digits) arithmetic. The sign «–» means that full accuracy has been achieved.

In spite of the error estimate we have recalled at the beginning of the section
for the Gauss-Legendre rule, in practice also the requirement that f (x) is analityc
in [21, 1 ] is not sufficient to guarantee a high accuracy to (2.1). The presence of
(real or complex conjugate) poles very close to the interval of integration usually
gives rise to a poor performance of (2.1), at least when the number of nodes is not

TABLE I. – Relative errors given by rule (2.4) applied to I1 .

p1 p2 n42 n44 n48 n416 n432 n464

2 1 1.2E22 3.2E25 1.5E27 6.7E210 2.9E212 1.2E214
3 1 7.9E22 1.4E25 2.5E29 6.9E213 — —
4 1 1.1E21 9.6E25 1.7E210 — — —
5 1 1.0E21 2.9E23 4.0E211 — — —
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TABLE II. – Relative errors given by rule (2.4) applied to I2 .

p1 p2 n42 n44 n48 n416 n432 n464 n4128

2 2 4.3E21 2.5E22 1.8E23 1.2E24 8.1E26 5.2E27 3.3E28
3 3 4.7E21 1.8E22 2.7E24 4.6E26 7.7E28 1.2E29 2.0E211
4 4 1.6E21 5.5E22 7.7E25 3.0E27 1.2E29 5.1E212 2.8E214
5 5 2.8E21 1.7E21 4.5E25 3.0E28 3.1E211 3.6E214 —

very high. Indeed, although the estimate NRn ( f )NGCn 2k, with k arbitrarily
large, holds for analytic functions, the constant C can be quite large when f has
poles very close to [21, 1 ]. This behaviour is clearly shown by the following sim-
ple example (see Table III):

I34 �
21

1
e x

x 21e 2
dx .

For such type of integrals a smoothing procedure can be, however, easily sug-
gested. To illustrate it we consider the following integral

I44�
0

1 f (x)

[ (x2ae)21b 2 e 2 ]1/2
dx ,(2.6)

where a , b are two real constants, while e is a positive parameter which may as-
sume very small values. This is the form of integrals that we shall encounter in
our BEM applications. Recalling some elementary complex variable calculus, it is
quite natural to set

x4ae1 t q

TABLE III. – Relative errors given by the Gauss-Legendre rule applied to I3 .

n e41 e40.1 e40.01

4 6.5E24 0.59 0.96
8 5.8E27 0.32 0.92
16 4.1E213 7.4E22 0.84
32 — 3.1E23 0.69
64 — 5.3E26 0.43
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with q positive integer, odd when aeD0. Indeed, in the new form

I44q �
2(ae)1/q

(12ae)1/q

f (ae1 t q ) t q21

(t 2q1b 2 e 2 )1/2
dt , q odd, when aeD0 ,

4q �
(2ae)1/q

(12ae)1/q

f (ae1 t q ) t q21

(t 2q1b 2 e 2 )1/2
dt , when aeE0 ,

(2.7)

the presence of (2q) poles in the integrand function is less adverse as q increases,
up to a certain value after which there is no improvement. The case aeE0 is more
favorable and this shows up also in the example we consider next. In this case, as
qKQ the length of the interval of integration tends to zero, since here we are
considering NaeN very small.

To show the effectiveness of this procedure, we take in (2.6) first a4b41 and
then a421, b41, with f (x)4e x, rewrite the corresponding integrals in the
form (2.7) and then apply to them the Gauss-Legendre rule. In Tables IV-VII we
report the results we have obtained.

As remarked earlier, the case eE0 is more favorable. Moreover, values of q
larger than those reported do not seem to produce any further improvement. This
phenomenon is a straightforward consequence of the behaviour of the poles in the
new form (2.7) (as well as that of its interval of integration).

In some applications of interest, however, the integral is of the form

I44�
0

1

K(x , e) f (x) dx(2.8)

where K(x , e) has the behavior [(x2ae)21b 2 e 2 ]21/2, but we may not want to de-

TABLE IV. – Relative errors given by the Gauss-Legendre rule applied to (2.7).

e41.E22 I447.531164310779 a4b41

n q41 q43 q45

4 2.1E21 1.3E21 3.7E22
8 6.6E22 8.8E23 2.1E22
16 1.7E22 3.1E24 3.1E24
32 6.9E24 9.8E27 6.7E28
64 4.4E27 2.7E212 1.7E211
128 1.5E212 — —
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TABLE V. – Relative errors given by the Gauss-Legendre rule applied to (2.7).

e41.E24 I4412. 103560321358 a4b41

n q41 q43 q45 q47
4 5.5E21 1.2E21 1.7E21 2.7E21
8 4.4E21 1.4E21 5.2E22 3.1E22
16 3.3E21 2.2E22 1.2E22 4.8E24
32 2.0E21 1.2E23 3.2E24 3.7E24
64 3.5E22 4.8E26 2.1E27 6.4E28
128 1.1E22 1.2E210 1.7E212 1.8E212
256 1.6E23 — — —

termine the value of a. In this situation one can then set x4 t q in (2.8), obtaining
the new form

I44q�
0

1

K(t q , e) f (t q ) t q21 dt .(2.9)

This transformation leaves unchanged the interval of integration and it is a bit
less effective than the previous one. This is clearly shown by the following Tables
VIII-X, which refer to the cases considered in Tables V-VII, respectively. There-
fore the explicit evaluation of a turns out to be worthwhile.

A final variant of (2.1) is the corresponding «Gaussian» formula for Hadamard
finite part integrals, of the form

�=
21

1 f (x)

12x
dx4w0 f (1)1 !

i41

n l i

12j i

f (j i )1Rn
FP ( f ) ,(2.10)

where Rn
FP ( f )40 whenever f (x) is a polynomial of degree 2n. Notice that (2.9)

TABLE VI. – Relative errors given by the Gauss-Legendre rule applied to (2.7).

e421.E22 I445.6906262374672 a421, b41

n q41 q42 q43 q44 q48 q412
4 1.1E21 5.1E23 2.5E23 7.0E24 4.3E24 5.7E24
8 1.4E22 4.5E26 1.2E25 1.8E26 5.0E27 6.9E28
16 1.4E24 3.8E28 1.1E210 6.2E211 3.7E213 1.0E212
32 4.0E28 — — — — —
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TABLE VII. – Relative errors given by the Gauss-Legendre rule applied to (2.7).

e421.E24 I4410.339112542551 a421, b41

n q41 q42 q43 q44 q46 q48 q412
4 4.7E21 1.4E21 1.3E22 8.3E23 8.2E23 5.0E23 1.7E23
8 3.5E21 1.8E22 4.5E23 8.5E24 1.8E24 1.2E24 3.0E25
16 2.2E21 2.4E23 5.5E25 1.3E26 1.2E29 6.4E28 3.3E29
32 1.1E21 1.5E25 1.1E28 8.9E211 5.0E213 — —
64 2.4E22 8.9E210 — — — — —
128 3.1E24 — — — — — —
256 2.5E26 — — — — — —

can be viewed as a Gauss-Radau rule associated with the weight function
1

12x
.

The coefficient w0 is given by the expression

w04 log 22 !
i41

n l i

12j i

.

For this rule we have the following result (see [23]).

T h e o r e m 2. Let f�C m ( [21, 1], mF1, with f (m)�Hm [21, 1] for some
0EmG1. Then

Rn
FP ( f )4O(n 2m2m ) .(2.11)

Our last basic quadrature rule refers to the evaluation of double integrals of

TABLE VIII. – Relative errors given by the Gauss-Legendre rule applied to (2.9).

e41.E24 a4b41

n q41 q42 q43 q44 q45

4 5.5E21 1.9E21 3.4E21 1.9E21 1.8E21
8 4.4E21 1.2E21 1.1E21 9.5E22 7.4E22
16 3.3E21 7.2E22 1.3E22 1.2E22 2.1E24
32 2.0E21 1.5E22 4.0E23 2.5E24 1.8E23
64 3.5E22 2.4E24 2.7E25 2.0E25 6.3E26
128 1.1E22 2.0E26 1.6E28 9.7E210 1.1E29
256 1.6E23 7.0E212 — — —
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TABLE IX. – Relative errors given by the Gauss-Legendre rule applied to (2.9).

e421.E22 a421, b41

n q41 q42 q43
4 1.1E21 8.4E23 3.4E23
8 1.4E22 6.5E24 4.1E24
16 1.4E24 6.6E27 2.9E28
32 4.0E28 4.2E213 4.7E213

the form

�
0

1

�
0

y

K(x , y) f (x , y) dx dy ,(2.12)

where

K(uy , y)4y a K(u , 1 ) , aF21 ,(2.13)

or

K(uy , y)4 log y1K(u , 1 ) ,(2.14)

and both K(u , 1 ) and f (x , y) are smooth functions, while K(x , y) is singular at
x4y40. Consider for example

K(x , y)4 (x 21y 2 )21/2 ,

TABLE X. – Relative errors given by the Gauss-Legendre rule applied to (2.9).

e421.E24 a421, b41

n q41 q42 q43 q44 q46

4 4.7E21 7.7E22 1.5E21 9.1E22 4.9E22
8 3.5E21 6.8E22 2.6E22 1.0E22 1.4E22
16 2.2E21 4.9E23 7.6E24 7.6E25 3.5E24
32 1.1E21 6.3E26 5.2E27 5.0E27 2.7E27
64 2.4E22 2.6E28 1.5E211 8.4E213 1.2E213
128 3.1E24 — — — —
256 2.5E26 — — — —
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and

K(x , y)4 logNx1yN .

By introducing the very simple change of variable x4uy, usually called
«Duffy transformation» (see [12]), we obtain

�
0

1

y a11�
0

1

K(u , 1 ) f (uy , y) du dy(2.15)

or

�
0

1

y log y�
0

1

f (uy , y) du dy1�
0

1

y�
0

1

K(u , 1 ) f (uy , y) du dy4: I11I2 .(2.16)

To compute (2.15) we use a Gauss-Legendre rule for the inner integral, and a
Gauss-Jacobi rule with weight y a11 for the outer. For the evaluation of I1 we use
a Gauss-Legendre rule for the internal integral and (2.4) for the outer. Integral I2

can be computed by means of the product of two Gauss-Legendre rules or by «op-
timal» cubatures for the unit square, such as those reparted in [9].

3 - Evaluation of the elements of collocation and Galerkin matrices

In this section we consider those integrals which are required by collocation
and Galerkin methods, and whose evaluation cannot be performed efficiently by
means of Gaussian rules. In the collocation case, these are integrals which refer
to collocation points that are inside, or outside but close to, an element of integra-
tion. In the Galerkin case, they are double integrals refering either to the same
boundary element or to two consecutive ones (see however [11]).

Thus, first we examine the case of collocation integrals, assuming that the col-
location point belongs to the element of integration. Using the parametric repre-
sentation of the element, the integrals of interest to us can be written (see [3]) in
the form

�
0

1

K(u , s) f (u) du , s� [0 , 1 ](3.1)

with

K(u , s)4 logNu2sNK0 (u , s)(3.2)
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or

K(u , s)4
K0 (u , s)

u2s
,(3.3)

where K0 (u , s) is smooth and s is a parameter representing the collocation
point.

In the case of kernel (3.2) we can make use of relation (2.2), taking a function
W(t) which smooth the log singularity. For example, setting

u4W(t)4s1 t q ,

q being an odd positive integer, we obtain

q �
2s 1/q

(12s)1/q

K(s1 t q , s) f (s1 t q ) t q21 dt .(3.4)

This integral is then evaluated using the Gauss-Legendre rule (2.1). This ap-
proach appears to be cheaper than the classical product rule for the logNu2sN
kernel (see [20]).

R e m a r k 2. In the case of an integral equation defined on a curve given by a
parametric representation G(u)4 (g 1 (u), g 2 (u) ), and with a log-kernel, the form
of this latter becomes

k(u , s) log ][g 1 (u)2g 1 (s) ]21 [g 2 (u)2g 2 (s) ]2( ,(3.5)

where k(u , s) is smooth. In this situation there is no need to reduce (3.5) to the
form (3.2), by adding and subtracting logNu2sN to the above log factor, as done
in [3]. Indeed, one can introduce the proposed change of variable directly into the
original expression (3.5).

Kernel (3.3) gives rise to a Cauchy principal value integral (3.1) if s� (0 , 1 ),
and to a finite part integral when s40 or s41. In former case we rewrite (3.1) as
follows

�=
0

s

1�=
s

1 K0 (u , s)

u2s
f (u) du(3.6)

and apply rule (2.9) to each of the two (sub-)integrals. The composite formula is a
(2n11)-point rule which has degree of exactness 2n; thus it is of interpolatory
type and represents, at least in this case, a more convenient alternative to the
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classical product rule (see [21]). See also the formula proposed in Sect. 5 of that
paper. When s40 or s41 we apply (2.9) directly to the whole interval.

Next we consider the case of a collocation point that belongs to an element
which is consecutive to the element of integration and has the same parametric
representation functions. In this circumstance the kernel of integral (3.1) assumes
one of the following two forms

K(u , s)4 logNu1asNK0 (u , s) ,(3.7)

K(u , s)4
K0 (u , s)

u1as
,(3.8)

where a denotes a positive constant, and as is supposed small; let us say
asE0.5 (1).

In the case of (3.7) we proceed as for (3.2); in particular we introduce the
change of variable u4W(t) with

W(t)42 as1 t q ,

and use the Gauss-Legendre rule. Notice that also this situation can be treated as
described in Remark 2.

The case of (3.8) is even simpler. Since K0 (u , s) and f (u) are both defined also
in the element where the collocation point is lying, we rewrite the integral as
follows

�
0

1 K0 (u , s) f (u)2K0 (2as , s) f (2as)

u1as
du1K0 (2as , s) f (2as) log

11as

as

and then apply (2.1) to the integral above. Since the pole 2as is outside the inter-
val of integration, no significant numerical cancellation is generated by the above
divided difference when it is evaluated at the Legendre points.

In the final case the collocation point is assumed lying on an element consecu-
tive to that of integration, but having a different parametrization. In this situation
the behaviour of the kernel around the corner is either of the type

log [ (u2as)21b 2 s 2 ] ,(3.9)

(1) Otherwise the integral can be evaluated efficiently by means of (2.1).
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or

[ (u2as)21b 2 s 2 ]21/2 ,(3.10)

with a and b that can be easily determined (see [3]). Here too we are considering
the critical case, i.e., NbNs very small, otherwise also these integrals can be effi-
ciently evaluated using (2.1) directly.

To compute these integrals we suggest to use the procedure we have proposed
in the previous section to evaluate I4 . In particular we introduce into the expres-
sion of K(u , s) the change of variable we have proposed for the evaluation of I4 .
Unless NbN, hence NbNs, is excessively small, in which case the use of product for-
mulas as those described in [3] appears to be more convenient. By excessively
small we mean NbNsB1026.

In the case of integrals arising from the application of Galerkin boundary ele-
ment methods we basically follow the approach proposed at the end of the previ-
ous section to compute integrals over a reference triangle (2.12).

In particular, in the case of kernels (3.2), (3.7) and (3.9), that we denote in the
form k(t , s) K0 (t , s), we write

�
0

1

f j (s)�
0

1

k(t , s) K0 (t , s) f i (t) dt ds4�
0

1

�
0

s

1�
0

1

�
s

1

4�
0

1

f j (s)�
0

1

k(u , 1 ) K0 (us , s) f i (us) du ds1�
0

1

f i (t)�
0

1

k(1 , u) K0 (t , ut) f j (ut) du dt

4�
0

1

�
0

1

F(u , s) du ds ,

where we have set

F(u , s)4f j (s) k(u , 1 ) K0 (us , s) f i (us)1f i (s) k(1 , u) K0 (s , us) f j (us) .(3.11)

Hence we apply a product of two Gauss-Legendre rules or a (global) rule for the
unit square.

In the case of (3.10), k(u , 1 ) and k(1 , u) have poles which are very close to the
interval of integration when the angle u between the left and the right tangents at
the corner (see [3]) is very close to 0 or p. In such a circumstance the approach
based on product rules, described in [3], can be more efficient.

Notice also that in practice there is no need to rewrite the kernel of the inte-
gral, that in the following we shall denote by K(t , s), in the form k(t , s) K0 (t , s).
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Indeed, in (3.11) k(u , 1 ) K0 (us , s) and k(1 , u) K0 (s , us) can be replaced by
K(us , s) /s and K(s , us) /s, respectively.

The treatment of the cases (3.2), (3.7) and (3.9) is very similar and follows
from relationship (2.14).

Also in the case of kernel (3.3) we essentially apply the previous procedure,
but with some modifications. First we write

I4�
0

1

f j (s)�
0

1 K0 (t , s)

t2s
f i (t) dt ds4�

0

1

�
0

s

1�
0

1

�
s

1

4: I11I2 ;

then we proceed as follows:

I14�
0

1

f j (s)�
0

s K0(t, s) f i (t)2K0 (s, s) f i (s)

t2s
dt ds1�

0

1

f j (s) K0 (s, s) f i (s)�
0

s
dt

t2s
ds

4�
0

1

f j (s)�
0

1 K0(us, s) f i (us)2K0 (s, s) f i (s)

u21
du ds2�

0

1

log sf j (s) K0 (s, s) f i(s) ds ,

I24�
0

1

f j (s)�
s

1 K0 (t, s) f i (t)2K0(s, s) f i(s)

t2s
dt ds1�

0

1

f j (s) K0 (s, s) f i (s)�
s

1
dt

t2s
ds

4�
0

1

�
0

1

f j(ut)
K0(t, ut) f i(t)2K0(ut, ut) f i(ut)

12u
du dt2�

0

1

log (12s) f j(s) K0(s, s) f i(s) ds .

The expression that finally we propose to evaluate is

I4�
0

1

�
0

1

G(u , s) du ds1�
0

1

log
12s

s
f j (s) f i (s) K0 (s , s) ds ,(3.12)

where we have set

G(u, s)

4f j(s)[K(us, s)f(us)2K(s, s)f i(s)]/s1f j(us)[K(s, us)f i(s)2K(us, us)f i(us)]/s .

Since this function is smooth, we propose to approximate the double integral in
(3.12) by the product of two Gauss-Legendre rules, or by an optimal rule for the
unit square. The weakly singular integral in (3.12) can be evaluated using
(2.4).
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4 - Test problems

The first example we consider is the computation of integrals of the
form

I4 �
21

1

E1 (Nu2sN) f (u) du , s� [21, 1] ,(4.1)

where E1 (t) is the exponential integral function (see [1]) and f (u) is generally a
smooth function, for example a polynomial. Here we will take f (u)4e u. Integrals
of this type arise, for instance, in the solution of the linear transport equation in
slab geometry (see [20]).

An efficient procedure to compute these integrals, suggested in [20], is based
on the decomposition

E1 (t)4k1 (t 2 )1 tk2 (t)1 log t ,(4.2)

where k1 and k2 are entire functions. In this case the quadrature rule used to com-
pute (4.1) requires the (fairly expensive) construction of two product rules based
on Gauss-Legendre nodes: one for the kernel logNu2sN and one for the kernel
Nu2sN.

With our procedure we do not need to use (4.2), neither to construct special
product rules. We simply introduce in (4.1) the change of variable u4s1 t q, q
odd integer, and then approximate the corresponding integral by using our
Gauss-Legendre rule (2.1). Routines for the evaluation of E1 (t) are easily avail-
able from many standard software libraries. Thus we have

I4q �
2(11s)1/q

(12s)1/q

E1 (NtNq ) t q21 e s1 t q
dtBq

g

2
!

i41

n

l i E1 (Nh i N
q ) h i

q21 e s1h i
q
,(4.3)

where

g4 (12s)1/q1 (11s)1/q

and

h i4
1

2
[gj i1 (12s)1/q2 (11s)1/q ] .

In Table XI we have reported some relative errors produced by this rule. The
reference value has been computed using (4.3) with n4256 and q49.
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TABLE XI. – Relative errors produced by rule (4.3).

I42.45800813061196 s40.5

n q41 q43 q45 q47 q49

8 1.5E21 1.6E22 4.2E24 8.9E24 2.7E23
16 3.9E22 1.6E23 5.4E25 2.6E26 2.6E27
32 3.7E22 1.7E24 1.3E26 9.3E29 4.3E210
64 9.9E23 1.1E26 2.2E29 1.7E210 —
128 9.4E23 4.1E26 2.0E29 5.0E213 —
256 2.5E23 3.2E27 5.7E211 — —

The second example refers to a classical weakly singular integral equation of
the second kind, that for simplicity we take of the form

z(y)1 �
21

1

logNy2xNz(x) dx41 , 21GyG1 .(4.4)

We consider this equation defined on [-1,1], but our numerical procedure would
performe equally well also in the case of a curvilinear domain.

The solution z(x) of this equation is analytic in (-1,1), but not at the endpoints
61 where it has a singular behaviour of the form (16x) log (16x). An efficient
method to solve (4.3), recently proposed in [25], suggests to introduce prelimi-
narly the change of variable

y4f(s) , x4f(u)

where f is defined by (2.3) with p14p24p. This has the effect of transforming
(4.3) into the new equation

v(s)1 �
21

1

logNf(s)2f(u)Nf 8 (s) v(u) du4f 8 (s), 21GsG1 ,

where the new unknown v(u)4z(f(u) ) f 8 (u) can be made arbitrarily smooth at
61, by taking the integer p sufficiently large. At this point a classical collocation
method can be applied, setting

v(u)BvN (u)4 !
k40

N21

ck Pk (u) ,
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where Pk (u) denotes the Legendre polynomial of degree k, and taking as colloca-
tion points the N zeros of PN (s).

The entries of the final linear system one has to solve are of the form

f 8 (si ) �
21

1

logNf(si )2f(u)NPk (u) du , k40, R , N21 .(4.5)

To compute these integrals we simply set

u4si1 t q , q odd integer ,

and apply the n-point Gauss-Legendre rule (2.1) to the resulting form. In our case
(4.4), taking as in [25] n42N, and setting, for example, p45 and q49, we obtain
for vN the same accuracy that the method proposed in [25] gives for the same
value of p. But in that method the rule used to compute the quantities (4.4) is
more expensive. Incidentally we remark that special care must be taken when
Nf(s)2f(s1 t q )N is excessively small; instead of computing the corresponding
log term we can neglet it, since it ought to be multiplied by the factor t q21.

The third example we consider the following Dirichlet problem for the Laplace

Figure 1 - Domain of Example 3.
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Figure 2 - Analytical gradient and the behaviour of the approximated flux on G.

equation

.
/
´

˜2 u40

u4u0

in V

on G .

This equation stands for many physical problems, such as a steady-state heat con-
duction, fluid flou in porous media, potential of electrostatic field and more. Fig-
ure 1 shows the domain employed, the boundary G is parameterised by

g(t)4 ((21cos 3 t) cos t , (21cos 3 t) sint ) t� (0 , 2p) .

The potential distribution over the domain is the harmonic function in D2

u(x , y)4 log [ (x24)21 (y24)2 ]1/21x 22y 2 .

The boundary condition provided every where is the potential, with the normal
gradients as unknowns. The solution can be obtained applaying the Galerkin
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BEM to following integral equation

1

2
u(x)4�

G

K(x , y) q(y) dG(y)2�–
G

¯K(x , y)

¯n(y)
u(y) dG(y) x�G(4.1)

where the function K(x , y) :4
1

2p
log

1

Nx2yN
is the fundamental solution of

Laplace’s equation in a two-dimensional isotropic domain, q(y) :4
¯u

¯n
and n is

the unit outward normal vector of G. Figure 2 shows the analytical gradient and
the behaviour of the approximated flux on G, obtained with a uniform decomposi-
tion of the interval (0 , 2p) in 32 elemets and using shape functions of degree
p41. Figure 3 shows the behaviour of the relative error obtained with a uniform
decomposition of the boundary in 32 elements and using shape functions of de-
gree p41 and p42.

Figure 3 - Relative errors on the boundary of Example 3.
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Figure 4 - Domain of Example 4 and boundary conditions.

Figure 5 - Relative error on the side AD of Example 4.
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TABLE XII. – Nodal fluxes at the endpoints of each side of the domain of the Example 4.

Point Exact p43 p44 p45

A2 23.1416 23.1341 23.1431 23.1415
B1 236.4172 236.2917 236.4101 236.4167
B2 0.0 0.1 0.01 0.0001
C1 0.0 0.1 0.01 0.0001
C2 236.4172 236.2917 236.4101 236.4167
D1 23.1416 23.1341 23.1431 23.1415
E1 1.9297 1.9298 1.9297 1.9297
E2 2.9425 2.9420 2.9426 2.9425
F1 11.8242 11.8203 11.8241 11.8242
F2 211.6136 211.6082 211.6137 211.6136
G1 211.6136 211.6082 211.6137 211.6136
G2 11.8242 11.8203 11.8241 11.8242
H1 2.9425 2.9420 2.9426 2.9425
H2 1.9297 1.9298 1.9297 1.9297

In this final example we consider the Dirichlet-Neumann problem for the
Laplace equation

.
/
´

˜2 u40

u4u0

¯u

¯n
fq4q0

in V

on G 1

on G 2

where V is a bounded domain in D2 shown in Figure 4 with boundary G4G 1NG 2

and we choose as boundary data

.
/
´

u0 (x , y)4sin px cosh py

q0 (x , y)4
¯u0

¯n

on G 1

on G 2 .

The function u0 is harmonic, it also serves as a reference analytical solution. The
solution can be obtained applying the Galerkin BEM as in the Example 3. The
unknowns of our equation (4.1) are therefore the potential u on the side AD and
the flux q on the remaining part of the countour. In a corner point, e.g., B with the
potential prescribed over both elements forming the corner, the potential is
approximated by continous elements while the flux should have a jump at B.
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Hence two unknown fluxes (q 1
B , q 2

B ) and one known potential uB are associated
with this node. In Figure 4 the numbers 1 and 2 attached to letter e.g., B1 and B2,
associated the vertex denoted by the letter B with the left side (B1 ) and the right
side (B2 ), respectively. Table 12 contains analytical results compared with the
results produced by p2version of the Galerkin BEM, with local polynomial
degree p43, 4 , 5, at the endpoints of each side of the domain. Figure 5 shows
the behaviour of the relative error on G 2 obtained by using local Lagrange basis
of degree p43 on a uniform decomposition (n44) of the side AD.
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A b s t r a c t

In this paper we consider all difficult integrals required by collocation and Galerkin
BEMs, when these are applied to weakly singular and singular 1D integral equations. In
particular we show that they can be evaluated very efficiently by using very simple
quadrature formulas. Several numerical examples are presented.

* * *


