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1 - Introduction and definitions

Among the interesting problems arising in Banach spaces, the following two
attracted much interest during the last two-three decades; the first one is related
to extension of maps in some optimal way, while the second one is important in
approximation theory.

P r o b l e m A). Suppose a contractive map, or a lipschitz map, is defined in
the unit ball (or on a convex body); is it possible to extend it to the whole space
preserving contractiveness, or the lipschitz constant? Otherwise, what it the
smallest lipschitz constant such an extension can have?

P r o b l e m B). Is a Chebyshev set in a Hilbert space necessarily convex? Re-
call that a Chebyshev set is a set admitting a single best approximation from any
point in the space.

Both Problem A and Problem B are related to properties of «retractions» of
the space onto the unit ball, or onto the unit sphere. In particular, concerning
Problem A, satisfactory results have been given, mainly by considering retrac-
tions onto the unit ball along rays (from outside); Problem B remains unsolved,
but «inversion» with respect to the unit sphere gives some insight and allows dif-
ferent fomulations of the problem.
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In this paper we want to study the kind of retractions used in the above con-
text: we study in details their properties, we consider the connections between the
radial projection and the angular distance and we obtain some new characteriza-
tions of inner product spaces. In fact, unfortunately, «best» properties for the ra-
dial projection, seem more or less characterize inner product spaces (see also [A]).
In any case, we shall also try to indicate the best inequalities which can be given
in general.

Here we list the notations and the basic facts that shall be used in the
paper.

Let (X , V .V) be a normed space over the real field R ; by S (or, when necessary,
by SX ) we shall denote its unit sphere.

We shall consider different ways of moving points along rays from the origin;
i.e., transformations T such that for xcu, Tx belongs to the «ray»:

R(x)4]lx ; lD0( .

We recall some definitions.
We say that X is an inner product space, i.p.s. for short, if the norm is gener-

ated by an inner product, denoted by (. , .).
Given x , y in X , if Vx1lyVFVxV for all l�R we shall write

x»y (x is orthogonal to y according to Birkhoff and James) .

We say that orthogonality is symmetric if x»y implies y»x . Recall the fol-
lowing fact (see e.g. [A], § 4):

P r o p o s i t i o n 1. Let X be a normed space with dimension at least 3; then
orthogonality is symmetric if and only if X is an inner product space.

The radial projection RP is defined in the following way:

RP (x)4
.
/
´

x

x

VxV

if VxVG1

if VxVD1 .

Also, set (see e.g. [T]):

NRPN4 sup { VRP (x)2RP (y)V

Vx2yV
; x , y�X ; xcy} .

Sometimes, to be more precise, we shall also write RPX , and NRPXN , to denote the
radial projection for a given space X, and its «lipschitz norm».
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We recall another definition (see e.g. the end of § 3 in [A]); let, for x,
ycu :

a[x , y]4
V

x

VxV
2

y

VyV V
.

This number is called the angular distance, or also the Clarkson angle between x
and y.

A space is said to be uniformly non square if there exists a constant eD0
such that for VxV4VyV41 we have min ]Vx2yV , Vx1yV(E22e .

In this paper we consider radial motions of points in real normed spaces. We
study properties of X which depend on the values of NRPN (for example: X is an
i.p.s.); we indicate the connections with the angular distance and we relate several
existing results, trying to avoid the use of duality mappings, projection constants,
and —as far as possible— of orthogonality.

The angular distance is related to the radial projections onto the unit sphere,
both from inside and from outside. We consider other displacements along radial
directions, like those sending pairs of points to the same distance from the origin.
Also, we try to indicate the best constants which control these radial move-
ments.

All examples are collected in the last but one Section 5.
Finally, in the last Section 6, we indicate some facts concerning «sunny» re-

tractions onto convex bodies and inversions.

2 - The radial projection

It is not difficult to see that in any space we have:

1GNRPNG2 .(1)

The following facts are well known (see [T]); note that they have been redis-
covered from time to time, also recently: see e.g. [H] and [H-p].

P r o p o s i t i o n 2. For a space X the following properties are equivalent:

(a) NRPN41 (the radial projection is nonexpansive);
(b) orthogonality is symmetric.
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Also, NRPNE2 if and only if the space is uniformly non square.
Moreover, we have:

NRPN4 sup
{ Vx2

y

VyV V

Vx2yV
; x , y�X ; VxVG1EVyV

}
;(c)

NRPN4 sup m Vx2yV

Vx2lyV
; x , y�X ; VxVG14VyV , lD1n .(c8)

The equivalence between (c) and (c8) is clear. More precisely: the proof of (c)
given in [T] also shows that

sup { V RP (x)2RP (y)V

Vx2yV
; x , y�X ; 1GVxVEVyV}

4 sup m Vx2yOVyVV

Vx2yV
; x , y�X ; VxV41EVyVn .

(c9)

A slightly stronger statement is the following, that we shall prove directly.

P r o p o s i t i o n 28. In any space X, we have:

NRPN4sup
{ Vx2 y

VyV V

Vx2yV
; VxV41GVyV

}
4sup m a[x, y]

Vx2yV
; VxVF1; VyVF1n .(d)

P r o o f . We prove the first equality (which clearly implies the second one). It
is clear by the definition that NRPN is not smaller than the second member of (d);
conversely, we have to prove that given dD0, we can find a pair x , y with VxV41GVyV

such that
Vx2yOVyVV

Vx2yV
DNRPN2d . Also, we can assume NRPND1 (otherwise

the result is trivial); given d� (0 , NRPN21), according to (c) we can find x , y
�X ; VxVG1EVyV , such that

Vx2yOVyVV

Vx2yV
DNRPN2d .

Let x 84xOVxV ; y 84yOVxV QVyV , so that Vx 8V41; Vy 8V41OVxV ; RP(y 8)4yOVyV :
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we have

Vx 82y 8V

Vx 82yOVxVV
DNRPN2dD1 .(˜)

Now consider the convex function of t : f (t)4Vx 82 tyV ; we have (by (˜)) f (1OVxV

QVyV)4Vx 82y 8 VDVx 82yOVxVV4 f (1OVxV); since
1

VyV
G

1

VxV QVyV
E

1

VxV
, this

implies f g 1

VyV
hF f g 1

VxV QVyV
h, thus

V
x 82

y

VyV V
FVx 82y 8 V , so

÷

V
RP (x 8)2RP g y

VxV
h
V

V
x 82

y

VxV V

4
V

x 82
y

VyV V

V
x 82

y

VxV V

F
Vx 82y 8V

V
x 82

y

VxV V

DNRPN2d .

Since
V

y

VxV V
D14Vx 8V, this proves the proposition. r

Clearly (d) is equivalent to

NRPN4 sup m Vx2yV

Vx2lyV
; VxV4VyV41; lF1n .(d8)

We recall the following result.

P r o p o s i t i o n 3 (see [KX], Proposition 1, or [D1], Proposition 8 for X strictly
convex). For a normed space X, the condition NRPN41 is equivalent to:

(e) if VxVGVwV , then Vx2wVGVx2lwV for all lD1.

Now, it is clear that (e) is equivalent to:

(e8) there exists rD0, such that if VxV4r and VwVDr , then Vx2wVGVx
2lwV for all lD1.

Also (take a sequence wn4y (111/n) ), it implies, so it is equivalent to:

(e9) if VxV4r and VyVFr , then Vx2yVGVx2lyV for all lD1 (for some given
r, or equivalently, for any rD0).

But the convexity in t of the function:

W(t)4Vx2 tyV ,
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for x , y given, also implies the equivalence of the previous conditions to

(eR) if VxV4VyV4r , then Vx2yVGVx2lyV for all lD1.

Already in [DK], Proposition 1, the equivalence between NRPN41 and (eR) had
been indicated, in the following form: if VxV4VyV , then min

t
W(t) is attained for

NtNG1.
Note that, according to (d8), NRPN41 implies (eR) (with r41), so Proposition

28 implies Proposition 3.
Also, the condition NRPN41 is clearly equivalent to the following fact:

(f ) given x, y with VxV4VyV (equivalently: for x, y in S), we have Vlx2myV
FVx2yV for l , mF1.

In fact, (f ) clearly implies (e9); conversely, if VxV4VyV41 and for example lFm

F1, we obtain from (e9):

V

l

m
x2y

V
FVx2yVF

V

x2y

m
V

, which implies (f ) .

3 - Moving up and down; the angular distance

In this section we indicate what happens if we move (radially) points to the
unit sphere, not only from outside, but also from inside.

It is simple to see that in general we have (see [KS]):

a[x , y]G
4Vx2yV

VxV1VyV
for every x , ycu ;(2)

also, we have strict inequality unless x4y , and the constant 4 cannot be im-
proved (see Example 1 in Section 5).

Moreover, if X is an i.p.s., then

a[x , y]G
2Vx2yV

VxV1VyV
for every x , ycu .(28)

The right hand side of (2) (or (28)) is homogeneous in x, y, thus it is enough to
state those inequalities e.g. for pairs x, y with norm F1.

Note (see [KS]) that equality in (28) is equivalent to: either VxV4VyV , or
yVxV1xVyV40.

We also have:
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P r o p o s i t i o n 4 (see [A], p. 83). A space X is an i.p.s. if (and only if ):

a[x , y]G
2Vx2yV

VxV1VyV
for every x , y in X with x»y .(29)

Other estimates concerning a[x , y] are known (see e.g. [KS]); in particular,
the following inequality, stronger than (2), is always true (see [A], p. 32):

a[x , y]G
2Vx2yV

max ]VxV , VyV(
.(3)

Note that the above inequality is «sharp», in any space (see Example 2 in Section
5); in other terms we always have:

s1 (X)4 sup m a[x , y] Qmax ]VxV , VyV(

Vx2yV
; x , y�S2]u(; xcyn

4 sup m a[x , y] Qmax ]VxV , VyV(

Vx2yV
; 14VxVGVyVn42 .

(38)

Note that this constant was considered in [A-R] (where it was denoted by
C Q (X) ); it was not realized there that it cannot be smaller than 2: for this rea-
son, some results in [A-R] are meaningless.

Now take in S a pair x»y , then consider x/n , y/n ; it is clear from this that we
always have:

sup m a[x, y]

Vx2yV
; x, y�X2]u(; xcyn4sup m a[x, y]

Vx2yV
; x, y�X2]u(; x»yn41Q .

Now set:

s 1 (X)4 sup { a[x , y] Q (VxV1VyV)

2Vx2yV
; x , ycu ; xcy}

4 sup { a[x , y] Q (VxV1VyV)

2Vx2yV
; 14VxVGVyV}

4 sup { a[x , y] Q (VxV1VyV)

2Vx2yV
; 0EVxVGVyV41} ;

(4)

the last equalities easily follow from homogeneity.
Clearly (take VxV4VyV) s 1 (X)F1 always, so we have (see (38)):

1Gs 1 (X)Gs1 (X)42 .(48)
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The inequality NRPNG2 is usually indicated as a consequence of (2) (see [T]). But
the implication (2) (or (3)) ¨NRPNG2 is not completely trivial, since also in inner
product spaces, for VxVG1GVyV , we can have Vx2yOVyVVDa[x , y] (see
Example 3; see also Remark 3 in Section 4); so the above implication relies on
Proposition 2’: in fact, according to (d), we obtain by (2):

NRPN4 sup m a[x , y]

Vx2yV
; VxV41GVyVnGs 1 (X)G2 .(49)

Similarly, the implication (28) ¨NRPN41 is obvious.
The number a[x , y] was considered by J. J. Schäffer, who proved the following

(see [A], p. 145): in any space, we have (use independent pairs x, y in S):

1

2
G lim inf

a[x , y]K01

Vx2yV

a[x , y] Qmax ]VxV , VyV(
G1 ;

moreover, the above limit is equal to 1 if, and when dim (X)F3 only if, X is an
i.p.s. .

We shall also consider the inverse of the above ratio, and set, according to
[D2]:

s(X)41 N lim inf
a[x , y]K01

Vx2yV

a[x , y] Qmax ]VxV , VyV(

4 lim sup
a[x , y]K01

a[x , y] Qmax ]VxV , VyV(

Vx2yV
� [1 , 2] .

(5)

R e m a r k 1. The analogues of the last two equalities in (4), hold for s(X) too;
i.e., for example:

s(X)4 lim sup
a[x , y]K01

m a[x , y] QVyV

Vx2yV
; 14VxVGVyVn .(58)

Also, it is not difficult to see that in the definition of s(X), lim sup
a[x , y]K01

can be re-

placed by lim sup
Vx2yVK0

. Similar remarks apply to s (X) (see (7) below).

Note that s(X)G2 follows from s(X)Gs1 (X)42.
In fact, more was proved in [D2]; i.e.:

P r o p o s i t i o n 5 (see [D2 ], Lemma 6 + Proposition 4, and Lemma 7). We al-
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ways have:

NRPXNGs(X) ;(6)

also, if dim (X)EQ , the converse inequality, therefore equality, is true.

In fact, it easily follows from the above results that

NRPXNGs(X) for any X ,(68)

since

s(X)4 sup ]s(Y); Y is a two-dimensional subspace of X(

4 sup ]NRPYN ; Y is a two-dimensional subspace of X(4NRPXN .

For the sake of completeness, we give a direct, simple proof of the «converse
inequality».

P r o p o s i t i o n 58. We always have:

s(X)GNRPXN .(69)

P r o o f . Given e� (0 , 1 ), let d4
e

3
then take a[x , y]Ed .

Given x, y with 14VxVGVyV , we obtain:

if Vx2yVG
e

2
, then VyVG11

e

2
and so

a[x , y] QVyV

Vx2yV
GNRPNg11 e

2
h

GNRPN1e .

If Vx2yVD
e

2
, for VyVG3/2 we have

a[x , y] QVyV

Vx2yV
G

d Q (3 /2)

e/2
41;

for VyVD3/2 , we have
a[x , y] QVyV

Vx2yV
G

d QVyV

VyV21
E

d Q (3 /2)

3

2
21

43dE1 .

Therefore, in any case,
a[x , y] QVyV

Vx2yV
GNRPN1e for a[x , y]Ed ; 14VxVGVyV ,

and this proves (69). r

As a consequence of (68), we have the following result:

P r o p o s i t i o n 6 (see [A], p. 145). If dim (X)F3, then X is an i.p.s. if and
only if s(X)41.
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In other terms, inner product spaces of dimension F3 are characterized by
the following property:

given dD0, there exists eD0 such that a[x , y]G (11d)
Vx2yV

max ]VxV , VyV(for a[x , y]Ge .

Now set

s (X)4 lim sup
a[x , y]K01

a[x , y] Q (VxV1VyV)

2Vx2yV
.(7)

Clearly we have:

1Gs (X)Gs(X) .(8)

To see that the left inequality is true, it is enough to take x, y�S , xcy .
But a careful reading of the proof of Lemma 6 in [D2 ] shows that NRPXN

Gs (X) always, therefore, according to (8) and (68):

NRPXN4s (X)4s(X) in any space X .(88)

We know (see Proposition 4) that s 1 (X)41 ` X is an inner product space,
so (see (38)) s1 (X)41 ` X is an inner product space. Therefore, if we take a 2-
dimensional space X where orthogonality is symmetric, but which is not an i.p.s.,
then we have (see (88)):

NRPXN414s(X)4s (X)Es 1 (X) .

We also have:

P r o p o s i t i o n 7. The condition s 1 (X)E2 is equivalent to: X is uniformly
non square.

P r o o f . If X is not uniformly non square, then we have (see Proposition 2
and (4)): 24NRPXNGs 1 (X)G2, so s 1 (X)42.

Now let s 1 (X)42; given any eD0 we can find x, y, say with 14VxVGVyV ,
such that (use also (3)):

22
e

2
E

a[x , y] Q (VxV1VyV)

2Vx2yV
G

2Vx2yV

max ]VxV , VyV(
Q
VxV1VyV

2Vx2yV
411

1

VyV
;
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this implies VyVE
2

22e
, so we obtain

RP (x)2RP (y)

Vx2yV
4

a[x , y]

Vx2yV
F

42e

11VyV
D

42e

11
2

22e

422e ;

since eD0 is arbitrary, this shows that NRPN42. r

We indicate some other estimates.

P r o p o s i t i o n 8 (see (3) in [KS]). In any space, we always have

a[x , y]G
Vx2yV1NVxV2VyVN

max ]VxV , VyV(
for every x , ycu .(9)

P r o o f . Let max ]VxV , VyV(4VxV ; we have:

V

x

VxV
2

y

VyV V
4
V

x

VxV
2

y

VxV
1

y

VxV
2

y

VyV V

G
Vx2yV

VxV
1
V

y

VxV
2

y

VyV V
4

Vx2yV

VxV
1VyV Q N 1

VxV
2

1

VyV
N4 Vx2yV1VxV2VyV

VxV
,

which implies the thesis. r

R e m a r k 2. It easy to see that inequality (9) implies the following one: if
VxVG1, VyVG1, then a[x , y]GVx2yV122 (VxV1VyV).

Also this estimate is —in a sense— sharp: see e.g. Example 1 in Sec-
tion 5.

C o r o l l a r y . In any space, we always have

a[x , y]G
4 QVx2yV

VxV1VyV1Vx2yV
for every x , ycu .(98)

P r o o f . It is enough to prove that for every x and ycu we have:

Vx2yV1NVxV2VyVN

max ]VxV , VyV(
G

4 QVx2yV

VxV1VyV1Vx2yV
.

Note that both members of the previous inequality are homogeneous (in the sense
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that for any lD0, if they are true for a pair x, y, then they are also true for lx ,
ly); so it is enough to prove it for 0EVyVGVxV41. With these assumptions, it
becomes:

Vx2yV112VyVG
4 QVx2yV

Vx2yV111VyV
,

or

(Vx2yV11)22VyV2G4Vx2yV ;

by setting Vx2yV4a , this can be written as

a 222a112VyV2G0 .

Since we have equality here for a416VyV , and our assumptions imply 12VyV
GVx2yV4aG11VyV , the last inequality is true, and this proves the corol-
lary. r

Among the different estimations we have given for a[x , y], we have the fol-
lowing implications:

(9) ¨ (98 ) ¨ (3) ¨ (2).

As we said, in general, the constant 4 in (2) cannot be lowered: this implies
that in (3) the constant 2 cannot be lowered in general; more precisely, we ob-
served that in (3), in any space, we cannot change 2 with a smaller constant. But
something more than 1 in (3) is enough in inner product spaces, if Vx2yV is small
with respect to VxV and VyV (Proposition 6).

Note that equality in (3) does not hold if VxV4VyV , xcy (see [G]: in [A],
p. 32, there is a «misprint» concerning the last statement, probably due to a
wrong translation of [G]). More precisely, it was shown in [G] that both in (2) and
in (3), given any ec0, there exist pairs x, y such that VyV4 (11e) QVxV , which re-
alize equality in (3) and «almost» equality in (2).

For the previous reason, we cannot hope to decrease the constant 4 in (98), or
to put a constant smaller than 1 in the right hand side of (9), in any space:
whichever the shape of the unit sphere in span ]x , y( is, (98) becomes an equality
if we take VxV4VyV41 and x42 y . (9) is an equality whenever VxV4VyV (in
these cases we have inequality in (3)).
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Equality in (9) for a pair x, y with 0EVyVGVxV41 implies (see the proof of
(9)):

V
x2

y

VyV V
4Vx2yV112VyV4Vx2yV1

V
y2

y

VyV V
;(X)

if x and y are independent, this implies that X is not strictly convex.
Now assume that we have equality in (98) for a pair x, y, xc6 y , with 0EVyV

GVxV41; this implies equality in (9), so (X), and moreover (see the proof that (9)

implies (98)): either 12VyV4Vx2yV which implies
V

x2
y

VyV V
42Vx2yV , so

equality in (3), therefore VxVcVyVc1; or 11VyV4Vx2yV , so
V

x2
y

VyV V
42

(see also Example 4 in Section 5).

4 - Averaging distances: escaping from the center of the unit ball

We consider now displacements both from inside and from outside the unit
sphere. Revisit now inequality (2); since both members are homogeneous in x, y, it
is equivalent to:

a[x , y]G2Vx2yV whenever VxV1VyV42 .(10)

In fact, switch any pair x, y to x 84
2x

VxV1VyV
, y 84

2y

VxV1VyV
where Vx 8V

1Vy 8V42; we have

a[x 8 , y 8]

Vx 82y 8V
4

a[x , y]

Vx2yV
.

Or also, we can consider displacements along rays sending any pair of different
points x, y with VxV4d1 , VyV4d2 to points at the same distance from the origin,
equal to their «average» distance from it:

Ax, y(x)4
d11d2

2d1

x, Ax, y(y)4
d11d2

2d2

y gVAx, y(x)V4VAx, y(y)V4
d11d2

2
h .(A)

We have (see (2)):

VAx , y (x)2Ax , y (y)V4a[x , y]
d11d2

2
G2Vx2yV for every pair x , y .(108)

Again by homogeneity, (108) is equivalent to (10).



184 M. BARONTI AND P. L. PAPINI [14]

Accordingly, Proposition 4, characterizing inner product spaces (X of arbitrary
dimension), can be formulated by using only pairs x, y with VxV1VyV42 (pairs x,
y�S are not enough!) and saying that a[x , y]GVx2yV for them, or that the
above transformations Ax , y are nonexpansive for every pair x , y (compare with
Proposition 2).

Similarly (see Proposition 7), not uniformly non square spaces are character-
ized by the existence of pairs x, y such that VAx , y (x)2Ax , y (y)V is approximately
equal to 2Vx2yV (see Example 1 in Section 5).

R e m a r k 3. Let X be an i.p.s.; then the condition NRPN41 says that in this
case, if we project radially from outside two points in the unit ball, we act
nonexpansively.

This is no more true if we project radially onto the unit sphere two points x , y
such that min ]VxV , VyV(E1, or only the point of smaller norm, unless VxV1VyV
42: (28) indicates what constant control the distances (see also Example 4). In
these cases, we cannot say if we increase or decrease the distance; for example, in
many cases a[x , y] is larger than Vx2yV , but it can be smaller (see Example 3 in
Section 5).

Consider points x, y inside the unit ball; in inner product spaces we
have:

V

x

VxV
2

y

VyV V
FVx2yV ` g x

VxV
2

y

VyV
,

x

VxV
2

y

VyV
hF (x2y , x2y)

`
2(x , y)

VxV QVyV
G22Vx2yV2`

2(x , y)

VxV QVyV
(12VxV QVyV)G22VxV22VyV2

` cos (x , y)G
22VxV22VyV2

2(12VxV QVyV)
;

in particular, it is easy to see that this is true when max ]VxV , VyV(G1 and

cos (x , y)4
(x , y)

VxV QVyV
G

1

2
,

which is also clear from its geometrical meaning.
In general the relations between a[x , y] and Vx2yV are controlled by the in-

equalities (2) and (3), and the above remark applies. But something can be said
also in general when Vx2yV is not small with respect to VxV , VyV ; some simple re-
sults of this type appear in the literature: we recall a couple among them.
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(i) (see [YZW], Lemma 1). Let x, y�X ; l , m�R ; Vx2yVFmax ]VxV , VyV(;
then we have

Vlx2myVFVx2yV Qmin ]l , m( .

( i i ) ( s e e [M P] , L e m m a 3 . 1 ) . L e t x�X , VyVGm (mc0 , ycu) an d
VxVGVx2yV . Then we have

Vx2yVGVx2myOVyVV .

They easily follow from the convexity of the function

W(t)4Vx2 tyV .

In fact, Vx2yVFVxV implies Vx2 tyVFVx2yV for tF1. More precisely, we
have:

P r o p o s i t i o n 9. Let 0GVxVGVyV ; then

a[x , y]F
Vy2xV

VxV
112

VyV

VxV
(11)

P r o o f . Let a4W g VyV

VxV
h; by convexity, we have:

a2W(0)

VyVOVxV
FW(1)2W(0) ` a2W(0)F

VyV

VxV
(Vx2yV2VxV)

` a[x , y]4
a

VyV
F11

Vy2xV

VxV
2

VyV

VxV
,

which is (11). r

R e m a r k 4. If Vx2yVFVyV4max ]VxV , VyV((x , ycu), then easy compu-
tations show that (11) implies (compare with (3)):

a[x , y]F
Vx2yV

max ]VxV , VyV(
.(118)

Note that (118) follows also from (i), by setting l4
1

VxV
; m4

1

VyV
.
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5 - A few simple examples

The first two examples show that inequalities (2) and (3) are «sharp».

E x a m p l e 1 (inequality (2) is sharp). Let X4R 2 with the sum norm
(this space is not uniformly non square, cf. Proposition 7). Let eD0, small;

x4(12e , 0 ) gso VxV412e ;
x

VxV
4(1 , 0)h; y4(12e , e) (so VyV41). We have

Vx2yV4e ; VxV1VyV422e ; a[x , y]42e4
Vx2yV

VxV1VyV
Q2(21e). With relation

to Remark 2 in Section 3, note that Vx2yV122 (VxV1VyV)42e4a[x , y].
Also:

Ax , y (x)4 g 22e

2
, 0h ; Ax , y (y)4 g (22e)(12e)

2
,

(22e) e

2
h ;

Ax , y (x)2Ax , y (y)4g e(22e)

2
,

e(22e)

2
h ;

VAx , y (x)2Ax , y (y)V

Vx2yV
4

e(22e)

e
.

E x a m p l e 2 (inequality (3) is sharp). Take, in any space, x such that VxV41
and y42nx . We have:

a[x , y]42 ; Vx2yV4n11 ;
a[x , y] Qmax ]VxV , VyV(

Vx2yV
4

2n

n11
.

E x a m p l e 3. In any space we can take x�S ; y near the origin and so that
yOVyV is near to x: so

a[x , y]EVx2yV (0EVyVEVxV41) .(‡)

Of course, the same can happen also for a pair such that 0EVyVE1EVxV .
But we can give examples showing that we can have (‡) also for points x, y

which are «near». For example, take in the plane x4 (1 , 0 ); y4 (12e , e 2 ). If we
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endow the plane with the euclidean norm, then by setting d4k(12e)21e 4 (`1
2e) we have:

a[x , y]4
V
g12 12e

d
,

e 2

d
h
V
`ce 3/2 ; Vx2yV4ke 21e 4

`e .

If we endow instead the plane with the sum norm, then

a[x, y]4
V
(1, 0)2g 12e

12e1e 2
,

e 2

12e1e 2 hV4 2e 2

12e1e 2
`2e 2; Vx2yV`e .

E x a m p l e 4. Let be X4R 2 with the max norm; x4 (1 , 1 ); y4 (1 /2 , 21/2);

then we have Vx2yV43/2 ;
Vx2yV1NVxV2VyVN

max ]VxV , VyV(
424a[x , y] (so equality in

(98) and in (9));
2Vx2yV

max ]VxV , VyV(
43/2 (so inequality in (3)). Note that x»y ;

y»x ; Vx1yV4Vx2yV .
If we take u4 (1 , 2 ), then Vx2uV414VxV ; VuV42; a[x , y]41, so equality

in (3).

6 - Other radial displacements

Among the different ways to move points of normed spaces along rays, we

also recall the inversion I, defined by Iu4u and, for xcu , I(x)4
x

VxV2
.

Also this transformation is well behaved only when X is an inner product
space; something similar can be said for similar maps, e.g. when exponents differ-
ent from 2 are considered: see [A], § 11 and [F].

Given a set C, assume that T from dom (T) onto C is a retraction; i.e.,
Tx4x for all x�C ; we say that T is sunny if x�dom (T) and x 84Tx implies
T (x 81 t(x2x 8 ) )4x 8 whenever tD0 and x 81 t(x2x 8 )�dom (T). Some results
concerning sunny retractions are indicated in [P], §§ 5 and 7; see also [KT], [TT]
and [ST].

We can project radially, instead of over the unit ball of X, onto a starshaped
set, with at least one point interior to its kernel: for results concerning these pro-
jections see [V], and [SP], § 2.
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A b s t r a c t

We consider radial motions of points in real normed spaces. Radial projections, i.e.
retractions of points of the space onto the unit ball, have been studied extensively: in fact,
the radial projection constant is, among all parameters, one of the most studied. Recall
that radial projections are seldom nonexpansive (outside the case of norms defined by in-
ner products). We consider here also other displacements along radial directions: for
example, radial projections onto the unit sphere both from inside and from outside (or
sending points at the same distance from the origin). We study the best constants by
which these radial movements can be controlled.

* * *


