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MAURO FABRIZIO (%)

An evolution model for the Ginzburg-Landau equations (**)

1 - Introduction

For a steady problem the Ginzburg-Landau equations (see [3], [4], [7], [8], [9])
are minimizers of a Gibbs free energy represented as a function of the vector po-
tential A, connected with magnetic field by B=V x4, and of a complex par-
ameter y = |y |e” =fe”, where f= |y| denotes the concentration of supercon-
ducting electrons.

A system of equations equivalent to the Ginzburg-Landau one is obtained by
means of a free energy represented as a functional of the observable variables J,
and f'[15]. The aim of this work is to extend this point of view to a time-dependent
model.

The dynamic Ginzburg-Landau equations was developed by Gor’kov and

N OF
Eliashberg [6]. In this model the term 5 of the first Maxwell equation is as-

sumed negligible. Therefore, this new system represents an approximated prob-
lem, which we shall call quasi dynamic model, whose we prove the compatibility
with the thermodynamic laws. It is important to observe that the hypotheses con-
sidered in [6] are not in agreement with the thermodynamies, when the dynamical
(not-approximated) case is considered. For this reason, in this work following the
point of view considered in [15], we introduce a new constitutive hypothesis, which
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is able to provide a model in full agreement with the thermodynamic laws, either
for the quasi-dynamic problem or for the general case.

2 - Superconductivity and Ginzburg-Landau model

The most outstanding property of a superconductor is the complete disappear-
ance of the electrical resistivity at some low critical temperature T,, which is
characteristic of the material. However, there exists a second effect which is
equally meaningful. This phenomenon, called Meissner effect, is the perfect dia-
magnetism. In other words, the magnetic field is expelled from the superconduc-
tor, independently of whether the field is applied in the superconductive state
(zero-field-cooled) or already in the normal state (field-cooled).

The London theory [1], [2] assumes that in a superconductor the current J, is
the sum of a supercurrent J, and of a normal current J,. Moreover, it is assumed
that J, obeys Ohm’s law

)] J,=oE

where E is the electric field and o is the electric contuctivity.
The peculiar equation in the London theory, as proved in [14], is that relating
J, with the magnetic field H

@) VxAJ, = — ul

where A(x) is a scalar coefficient characteristic of the material, and u is the mag-
netic permeability. The constitutive equations (1), (2) must be related to
Maxwell’s equations

3E
3) e— =VxH-J,—J, V-E=0
at
oH
@) w—y =-VXE, V-H=0

where ¢ is the dielectric constant. For sake of simplicity, we shall suppose ¢, u, o
scalar and constant coefficients.

Equation (2), together with (3) (4) is able to explain the lack of the electrical
resistivity (see the proof in [14]) and the Meissner effect [2]. In the London the-
ory, A(x) is a constitutive coefficient related to the local density of superconduct-
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ing electrons n, by

m
5) A(x) =

€y My

where m, and e, are respectively the mass and the charge of a super-elec-
tron.

An important step in the phenomenological description of superconductivity
was the introduction of an order parameter distinguishing the superconducting
phase from the normal phase by Ginzburg-Landau [3] in 1950. This order par-
ameter was assumed to be a complex field y = fe?, representing a kind of macro-
scopic wave function, such that f=mn, and 0 is a suitable phase (}).

Ginzburg and Landau [3] proposed a phenomenological extension of the Lon-
don equations, in order to take into account the parameter iy as a new
unknown.

In absence of an applied magnetic field, there is no latent heat associated with
the transition, which will be called second-order phase change. If the transition
occurs in presence of a magnetic field at T < T, there exists a latent heat corre-
sponding to an absorbing of heat when the sample goes normal. This transition is
a first-order phase change. In this case theoretical arguments lead one to expect
breakup into a domain structure, with alternating normal and superconducting re-
gions. Landau suggests to represent this «intermediate state» through the intro-
duction of a positive surface energy associated with the creation of an interface
between a normal and a superconducting region.

3 - Steady state

In [3], Ginzburg and Landau consider only the steady case with the electric
field E =0. Therefore, from the Maxwell equation (3) we have

(6) VxH=J,

(Y) Various authors use a standard normalization, for which

L g

T

where 7, is the value of n, at T=0°K, so that f2=1 at T=0°K and f2=0 at
T=T,
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from which V-J, = 0. Since B = uH is solenoidal, it is possible to introduce a vec-
tor potential A satisfying

) VxA=B, V-A=0.
Comparing (7) with (2) we got
® AJ,=—A+ Vo

where ¢ is a smooth scalar function. Clearly (2) is equivalent to (8).

Following a general theory for phase transitions of the second kind, Ginzburg-
Landau [3] assume that near the critical temperature 7', the Gibbs free energy of
a superconducting material, occupying the domain QcR, is given by

Je(w,A) de = f(—a|1/1|2+ é [y |*+ h |V xA|?
Q Q 2 2u
1

2m

+ |(—ihV—e*A)1/)|2)dx—J'agAmesnda

where a and 8 are coefficients depending on the temperature 7', such that a(7)
>0 (<0)for T<T,(T>T, and B(T) >0, and % is the Planck’s constant. The
vector H,, represents the magnetic field on the boundary.

Let us consider the new functional

2 1 , 2
Qjew,A) dx=gj(e<w,A>+ ;‘—ﬂ) dngf(g(\/ﬁlwl - %)

1 1
+— |VXA]P+ — |(—ihV—e*A)1/J|2) dx — fA x H,,-n do
2u 2m 4 s

(10)

where n is the local outer unit normal to the boundary 9.

The functionals (9) and (10) are equivalent in the sense that they present the
same critical points, but the functional (10) is non-negative.

The search for a minimum of (9) or (10) by means of the variations with re-
spect to v* and A, leads to the so called Ginzburg-Landau equations

11 (ihV + e APy —ay + Bly|?yp =0

2m

ihe 4 €4’

(12) J=u'VxVxA=— (w*Vw—wVw*)—ilwle
2 m

sk
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while the boundary conditions appropriated at an insulating surface are
(13) (th+e*A)1/)n|aQ=0, (VXA)anagzﬂHexXn.

Equations (11)-(13), taken along with (6), form the basis of the Ginzburg-Landau
theory. These equations lead to the usual London theory, when the density of su-
perconducting electrons fZ is a given function.

Equation (12) can be written as

h
(14) A(f)JSZ—(—VH-FA .
€
. . . h
Therefore (14) becomes identical to (8), if we set ¢ = — —0.

€ x
Moreover, the free energy (9) and the Ginzburg-Landau equations (11), (12)
are invariant under gauge transformations of the form

(15) (P, A) = (pe™, A+ Vy)

(2
where k= —.
h

It is natural to ask whether such functional may be made independent of A
and 6, but dependent on observable variables as J, and f. In order to have this
kind of representation we show (see [8]) that

|ihVy + e Ap|* = 12 (VF)2 + f2(hVO + e , A)

=1 (VI + AL =12 (Vf¥ + A ' p?
(U2

(16)

where if v, is the supercurrent velocity and f>0, p,= v, = AJ, is the mo-

mentum field, which satisfies the equation

=

an VXp,=—uH.

When f=0, the meaning of p, is given by the equation (17). In other words

ps=— (iVQ—I—A).

€ x

In any case, we can consider on the boundary

(18) Psn|s=0.
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Hence, we consider the free energy (9) written in the form

je(f,H)dx=j(—afz+ ﬁf4+ i|V><ps|2
Q Q 2 24

19) 2
P AR do = [ b Hondo.
2M 2

R

+

The theory is now essentially completed by minimizing the total free energy
for variations in f and p,. This finally leads to the system

> € x
(20) Vif— Ipi+af=pff=0
2m 2M 4
21) u VXV xXp+ AT () py=0

on 2, and to the boundary conditions
(22) Vfn=0, (Vxp)xXn=-H,Xn

on 09. It is easy to observe that equation (20) is equal to the real part of the
Ginzburg-Landau equation (11), while equation (21) corresponds to the Maxwell
equation

(23) VXH=A'p,
which is equivalent to the restriction
(24) V-J,=0

because we have from (21)

€ s>

0=V-J,= fVfp,+A1V-p,.

*

Besides, as we can see, the system of four scalar equations (20)-(21), written in
terms of real variables, is absolutely equivalent to the system (11), (12) {see [8]
eq. (23), (24), and [12] eq. (6)-(8)}. Namely, the case for which the gauge is fixed
by the problem

(25) V-A=0; An=0, on 99Q.

It is possible to obtain an analogous result for the system (20), (21), starting
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from the new form of free energy

jé(f,H) dw
o
B B 1 #? 1
(26) —Qf —af2+ Ef4_ E/,tHer T (Vf)z— E/l(f)(V x H)?\ da
— jp;’xH-ndo
o0

where p¢ is the momentum field on the boundary 09Q.
Minimizing the total free energy for variations in f and H, we obtain the
system

h? 5

@mn V2f— 2f‘?’(V xH?+af—pf2=0
2m 2e,

(28) VX(A(f)VxH)=—uH

on 2, and the boundary conditions
(29) Vin=0, (A(FY)VXH)Xn=p’Xn

on 0Q. It is possible to prove that the system (27), (28) is equivalent to (20),
(21).

Let briefly discuss the boundary conditions (29). First, (29); is equivalent to
(13);, when the boundary condition A-n =0 holds. Next, (29), is different from
(18),, but its physical meaning is clear and related with (13)s.

4 - Evolution model. Quasi-dynamic case

The generalization of the Ginzburg-Landau theory to the evolution problem
was analyzed by Schmid [5], Gor’kov and Eliashberg [6] in the context of the BCS
theory of superconductivity. In addiction to the variables 1, A a third variable,
the electric potential ¢, is necessary to describe the physical state of the evolu-
tion system. The potentials A and ¢ are such that

A
E:—ﬁ_—V¢, B=VxA.
at



162 MAURO FABRIZIO [8]

The evolution model of superconductivity is governed by the differential sys-
tem [5], [6]

(30) y(a—w +i1«p1p)=— ! (ithV + e APy + ayp — By |y
ot 2m 4
(31) a(% +V¢))=—V><V><A+JS
with
ihe 4 e
(32) J,=— (*Vy —pVy*) — — |y |*A

and y a suitable coefficient representing a relaxation time. The associated bound-
ary conditions are still given by (13).
Equation (31) is essentially Ampere’s law

oE
VxH=J,+J,+¢e&—
ot

OE
when 5 is supposed negligible. For this reason the system (30)-(32) will be

called the quasi-steady problem.
Moreover, the system (30)-(32) must be invariant under a gauge trasforma-
tion

(¥, A, )= (pe™, A+ Vy,p—3)

where the gauge y can be any smooth scalar function of (x, t). Various gauges
have been considered [10], [11], [13]. In the London gauge, y is chosen so that
V:A=0, An|;0=0. In the Lorentz gauge we have

¢p=—-V-A
and in the zero electrical potential gauge ¢ =0. It is not possible to have both

¢ =0, and the London gauge simultaneously in £ x (0, 7).
We now proceed by relating the phenomenological boundary problem (20),
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(21) and (22) to the non stationary model (30)-(32). It is natural to work with the
system

2

33) S e o
- = — s af —
ot T amr om, D
(34) VXxp,=—ull
3E
(35) VXH:A_IPS'FO‘E"FEE
3H
5

on 2, and with the boundary conditions
87 Vfn|;o=0, HXxn|lso=9, pyn|s=0
and the initial conditions

fw,0)=fi(w),  pyx, 0)=pyx).

Actually, equation (33) is the real part of (30), while (34) corresponds to (32).
Finally, (835) and (36) are the Maxwell equations.

In (35), the total current density J is given by J =J, +J,, where J,= A "1p,
and J, obeys the Ohm’s law

(38) J,=oFE .

In the two fluid models, it is assumed that the super and normal current den-
sities J, and J,, are related to the super and normal charge densities ¢ ; and ¢, by
means of the conservation law

dos 9o,

VT, + Vg, = —
at o

Of course, the total charge density ¢ is such that

0=0s10nu-
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From the equations (34) and (36), we have

op;

39
(39) p

=E+V¢,

where ¢ ,(x, t) is a smooth scalar function. The equation (39) corresponds to the
Euler equation for a non-viscous electronic liquid (see [2], pag. 59) «where ¢, is
the thermodynamic potential per electron; a function, in particular, of the concen-
trations of the superelectrons and of the normal electrons».

In order to obtain the evolution problem (30)-(32), «the pressure» ¢, will be
related to the charge density 0 = o, + 0, by means of the identity (see [8])

(40) ps=Af)o.

In the quasi-dynamic approximation, equations (33)-(36) are equivalent to the
new system

2

of €
41 - = Vz _ % + af — 3
(41) Y5 T o f 2m*p<f o = pf
(42) VXxp,=—uH
(43) VxH=A'p,+0oE
ap,
(44) E= ”; + V..

Moreover from (43) and (40), we get
(45) V-J,=V-(Af)p,)=—0V-E=—00=—0A"(f) ¢,.

The system (41)-(44) can be written in the form

2
of #? €
46 G VZ _ 2 4 _ 3
(46) S T e 2m*psf af = Bf
47) VXV xp,=—uA~'(f)p,— uok
(48) =P vy

ot
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This system and the equation
(49) V(AN f)ps) =0A7Nf) ¢

provide a system completely equivalent to the equations (30)-(32) (See [8], formu-
lae (26)-(28)). Moreover, as we shall prove in the next section, this model is in
agreement with the second law of thermodynamics. On the contrary, the general
system (33)-(36) under the condition (40) does not satisfy this law.

5 - Evolution model - General case

For the study of the general evolution model, in a neighborhood of the critical
temperature T,, we consider the equations (33)-(36) or equivalently the sys-

tem
(50) I P e O e
=L = — s af —
"o T ame 2m, D
(51) VXxps=—ull
OF
op;
(53) E=P vy
A

Instead of (40), which leads to a system that is not in agreement with thermody-
namics, it seems natural to assume the following constitutive relation:

(54) ps=0-.

This condition can be represented, by means of the equation (52), as

(55) VJ,=—0¢,— e,

Now, we are able to prove that the dynamical model described by the equations
(50)-(55) satisfies the Second Law of Thermodynamics. Under the hypothesis of
processes near the transition temperature T,, this law reduces to
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Dissipation Principle. If 2 denotes the domain occupied by the super-
conductor body, for every closed cycle, the inequality

dp

(56) jﬁf BH+DE+JE)dxdt=0

0Q

holds, where d, is the time duration of the cycle.

Theorem 1. Under the hypothesis (54), the inequality (56) holds for any
cycle only if

(B7) y=0, 0=0.

Proof. Consider the integral

d

3(9)=§ j (BH+DE+ J,+J,)-E)dcdt
0 Q

dp
~ 1d, ., (d ,
(58) _Oﬂﬁgj [EE(EE + ul?) + J, (a(A(f)Js)+V¢S)+oE dec dt

dP
=§f {l %(6E2+uH2+A(f)J§)+ % % (A)) P2+ Ve -J, + o2 dudt .
0Q

2

It follows from (37);, (33) and (55) that (58) reduces to

e 2

dP k .
J(Q)=§J’(_ m (A(f)Je)sz_¢§VJe+0E2
0Q *

da dit

dp
(59) =Ef;J(nyzﬂ—mp%-f—6¢8¢8+0E2)dxdt
00

d,

= ﬂ (2vf%+ 0p2 + oE?) dedt =0
0Q

from which we have the conditions (57).
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Let now consider the hypothesis (40) and its compatibility with the Dissipation
Principle.

Theorem 2. Under the hypothesis (40), the quasi-steady problem satisfies
the inequality (56) if the conditions (57) hold. On the contrary, the evolution
problem (50)-(53) and (55) is not in agreement with (56).

Proof. Under the quasi-steady approximation, the integral (59) takes the
form

dp
Q) = H (BH+DE+ (J,+J,)-E)dcdt
0Q

(60) ;

= H (272 + 6A"1(f) p% + oE?) dx dt
0Q

which is compatible with (56), if the constitutive equation (40) holds.
Consider now the evolution problem represented by the system (41)-(45). In
such case, from (58) we have

dp

I(Q) = §J'(2yf‘2+0’/171(f)¢_29+£Q([JS+O'E2) da dt .
00

This integral is not positive, because of the term

d, d, d,
§[ con,dudi=§[e(A (N g,) g dedt—§[ (A7 (N g,) g, dedt
0Q 0Q 0Q

whose sign is related to the chosen process.

Remark 1. If we compare the two constitutive equations (40), (54), we ob-
serve that the latter brings to a full thermodynamic compatibility, while the first
1s 1 agreement with thermodynamics only for the quasi-dynamic approxima-
tion.

Thanks for the previous remark, we believe that working with the condition
(54) is more suitable also in the quasi-dynamic approximation. With such a choice
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we have
(61 e
o 2m* 2m 4
62) Vxp,= — uH
63) VxH=A"p,+0E
p;
(64) E= ;’t + V..

Moreover, from (63) we get
V-J,=0V-E =00 .

Therefore, in the quasi-steady approximation the system (61)-(64) is now imple-
mented with the equation

V- (A(f) ps) = 0¢

instead of equation (49).
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Abstract

The aim of this paper is addressed to the study of the Ginzburg-Landaw theory that
yields the behaviour of a superconductor near to the transition phase. We show that the
pertinent equations can be derived starting from the representation of the free energy in
terms of the magnetic field H, instead of the vector potential A, such that Vx A =uH,
and the modulus |y |, which denotes the concentration of superconducting electrons, in-
stead of the complex parameter . Such a representation gives also a conceptual stmplifi-
cation of the model since it makes use of observable quantities. In addition, the free en-
ergy n terms of H and |y | makes the theory gauge-invariant in that is free from the vec-
tor potential A and the phase of . The compatibility with thermodynamics is examined
and it follows that the generality of the second law is related to the specific approxima-
tion of the model.



