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An evolution model for the Ginzburg-Landau equations (**)

1 - Introduction

For a steady problem the Ginzburg-Landau equations (see [3], [4], [7], [8], [9])
are minimizers of a Gibbs free energy represented as a function of the vector po-
tential A , connected with magnetic field by B4˘3A , and of a complex par-
ameter c4NcNe iu4 fe iu , where f4 NcN denotes the concentration of supercon-
ducting electrons.

A system of equations equivalent to the Ginzburg-Landau one is obtained by
means of a free energy represented as a functional of the observable variables Js

and f [15]. The aim of this work is to extend this point of view to a time-dependent
model.

The dynamic Ginzburg-Landau equations was developed by Gor’kov and

Èliashberg [6]. In this model the term
¯E

¯t
of the first Maxwell equation is as-

sumed negligible. Therefore, this new system represents an approximated prob-
lem, which we shall call quasi dynamic model, whose we prove the compatibility
with the thermodynamic laws. It is important to observe that the hypotheses con-
sidered in [6] are not in agreement with the thermodynamics, when the dynamical
(not-approximated) case is considered. For this reason, in this work following the
point of view considered in [15], we introduce a new constitutive hypothesis, which
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is able to provide a model in full agreement with the thermodynamic laws, either
for the quasi-dynamic problem or for the general case.

2 - Superconductivity and Ginzburg-Landau model

The most outstanding property of a superconductor is the complete disappear-
ance of the electrical resistivity at some low critical temperature Tc , which is
characteristic of the material. However, there exists a second effect which is
equally meaningful. This phenomenon, called Meissner effect, is the perfect dia-
magnetism. In other words, the magnetic field is expelled from the superconduc-
tor, independently of whether the field is applied in the superconductive state
(zero-field-cooled) or already in the normal state (field-cooled).

The London theory [1], [2] assumes that in a superconductor the current J , is
the sum of a supercurrent Js and of a normal current Jn . Moreover, it is assumed
that Jn obeys Ohm’s law

Jn4sE(1)

where E is the electric field and s is the electric contuctivity.
The peculiar equation in the London theory, as proved in [14], is that relating

Js with the magnetic field H

˜3LJs42 mH(2)

where L(x) is a scalar coefficient characteristic of the material, and m is the mag-
netic permeability. The constitutive equations (1), (2) must be related to
Maxwell’s equations

e
¯E

¯t
4˜3H2Js2Jn , ˜ QE40(3)

m
¯H

¯t
42˜3E , ˘ QH40(4)

where e is the dielectric constant. For sake of simplicity, we shall suppose e , m , s

scalar and constant coefficients.
Equation (2), together with (3) (4) is able to explain the lack of the electrical

resistivity (see the proof in [14]) and the Meissner effect [2]. In the London the-
ory, L(x) is a constitutive coefficient related to the local density of superconduct-
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ing electrons ns by

L(x)4
m *

e *
2 ns

(5)

where m * and e * are respectively the mass and the charge of a super-elec-
tron.

An important step in the phenomenological description of superconductivity
was the introduction of an order parameter distinguishing the superconducting
phase from the normal phase by Ginzburg-Landau [3] in 1950. This order par-
ameter was assumed to be a complex field c4 fe iu , representing a kind of macro-
scopic wave function, such that f4ns and u is a suitable phase (1).

Ginzburg and Landau [3] proposed a phenomenological extension of the Lon-
don equations, in order to take into account the parameter c as a new
unknown.

In absence of an applied magnetic field, there is no latent heat associated with
the transition, which will be called second-order phase change. If the transition
occurs in presence of a magnetic field at TETc , there exists a latent heat corre-
sponding to an absorbing of heat when the sample goes normal. This transition is
a first-order phase change. In this case theoretical arguments lead one to expect
breakup into a domain structure, with alternating normal and superconducting re-
gions. Landau suggests to represent this «intermediate state» through the intro-
duction of a positive surface energy associated with the creation of an interface
between a normal and a superconducting region.

3 - Steady state

In [3], Ginzburg and Landau consider only the steady case with the electric
field E40. Therefore, from the Maxwell equation (3) we have

˜3H4Js(6)

(1) Various authors use a standard normalization, for which

ns

n0

4 f 2

where n0 is the value of ns at T40 7K , so that f 241 at T40 7K and f 240 at
T4Tc .
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from which ˜ QJs40. Since B4mH is solenoidal, it is possible to introduce a vec-
tor potential A satisfying

˜3A4B , ˜ QA40 .(7)

Comparing (7) with (2) we got

LJs42A1˜W(8)

where W is a smooth scalar function. Clearly (2) is equivalent to (8).
Following a general theory for phase transitions of the second kind, Ginzburg-

Landau [3] assume that near the critical temperature Tc the Gibbs free energy of
a superconducting material, occupying the domain V%R , is given by

�
V

e(c , A) dx4�
V

g2aNcN21
b

2
NcN41

1

2m
N˜3AN2

1
1

2m *
N(2iˇ˜2e * A) cN2hdx2�¯V A3Hex Qn ds

(9)

where a and b are coefficients depending on the temperature T , such that a(T)
D0 (E0) for TETc (TDTc ) and b(T)D0, and ˇ is the Planck’s constant. The
vector Hex represents the magnetic field on the boundary.

Let us consider the new functional

�
V

e(c , A) dx4�
V

ge(c , A)1
a 2

2b
h dx4�

V

g 1

2
(kbNcN22

a

kb
h2

1
1

2m
N˜3AN21

1

2m *
N(2iˇ˜2e * A) cN2h dx2 �

¯V

A3Hex Qn ds

(10)

where n is the local outer unit normal to the boundary ¯V .
The functionals (9) and (10) are equivalent in the sense that they present the

same critical points, but the functional (10) is non-negative.
The search for a minimum of (9) or (10) by means of the variations with re-

spect to c* and A , leads to the so called Ginzburg-Landau equations

1

2m *
(iˇ˜1e * A)2 c2ac1bNcN2 c40(11)

Js4m21 ˜3˜3A42
iˇe *
2m *

(c*˜c2c˜c*)2
e *

2

m *
NcN2 A(12)
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while the boundary conditions appropriated at an insulating surface are

(iˇ˜1e * A) c QnN¯V40 , (˜3A)3nN¯V4mHex3n .(13)

Equations (11)-(13), taken along with (6), form the basis of the Ginzburg-Landau
theory. These equations lead to the usual London theory, when the density of su-
perconducting electrons f 2 is a given function.

Equation (12) can be written as

L( f )Js42 u ˇ

e *
˜u1Av .(14)

Therefore (14) becomes identical to (8), if we set W42
ˇ

e *
u .

Moreover, the free energy (9) and the Ginzburg-Landau equations (11), (12)
are invariant under gauge transformations of the form

(c , A)D (ce ikx , A1˜x)(15)

where k4
e *
ˇ

.

It is natural to ask whether such functional may be made independent of A
and u , but dependent on observable variables as Js and f . In order to have this
kind of representation we show (see [8]) that

Niˇ˜c1e * AcN24ˇ2 (˜f )21 f 2 (ˇ˜u1e * A)2

4ˇ2 (˜ f )21LJs
24ˇ2 (˜f )21L21 ps

2
(16)

where if vs is the supercurrent velocity and fD0, ps4
m *
e *

vs4LJs is the mo-
mentum field, which satisfies the equation

˜3ps42 mH .(17)

When f40, the meaning of ps is given by the equation (17). In other words

ps42 u ˇ

e *
˜u1Av .

In any case, we can consider on the boundary

ps QnN¯V40 .(18)
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Hence, we consider the free energy (9) written in the form

�
V

e( f , H) dx4�
V

g2af 21
b

2
f 41

1

2m
N˜3psN

2

1
ˇ2

2m *
(˜f )21

1

2
L21 ( f ) ps

2h dx2 �
¯V

ps3Hex Qn ds .

(19)

The theory is now essentially completed by minimizing the total free energy
for variations in f and ps . This finally leads to the system

ˇ2

2m *
˜2 f2

e *
2m *

f ps
21af2bf 340(20)

m21 ˜3˜3ps1L21 ( f ) ps40(21)

on V , and to the boundary conditions

˜f Qn40 , (˘3ps )3n42Hex3n(22)

on ¯V . It is easy to observe that equation (20) is equal to the real part of the
Ginzburg-Landau equation (11), while equation (21) corresponds to the Maxwell
equation

˜3H4L21 ps(23)

which is equivalent to the restriction

˜ QJs40(24)

because we have from (21)

04˜ QJs4
e *

2

m *
f˜f Qps1L21 ˜ Qps .

Besides, as we can see, the system of four scalar equations (20)-(21), written in
terms of real variables, is absolutely equivalent to the system (11), (12) ]see [8]
eq. (23), (24), and [12] eq. (6)-(8)(. Namely, the case for which the gauge is fixed
by the problem

˜ QA40 ; A Qn40 , on ¯V .(25)

It is possible to obtain an analogous result for the system (20), (21), starting



161AN EVOLUTION MODEL FOR THE GINZBURG-LANDAU EQUATIONS[7]

from the new form of free energy

�
V

eA( f , H) dx

4�
V

{2af 21
b

2
f 42

1

2
mH21

ˇ2

2m *
(˜ f )22

1

2
L( f )(˜3H)2} dx

2 �
¯V

ps
s3H Qn ds

(26)

where ps
s is the momentum field on the boundary ¯V .

Minimizing the total free energy for variations in f and H , we obtain the
system

ˇ2

2m *
˜2 f2

m *
2e *

2
f 23 (˜3H)21af2bf 340(27)

˜3 (L( f ) ˜3H)42 mH(28)

on V , and the boundary conditions

˜f Qn40 , (L( f ) ˜3H )3n4ps
s3n(29)

on ¯V . It is possible to prove that the system (27), (28) is equivalent to (20),
(21).

Let briefly discuss the boundary conditions (29). First, (29)1 is equivalent to
(13)1 , when the boundary condition A Qn40 holds. Next, (29)2 is different from
(13)2 , but its physical meaning is clear and related with (13)2 .

4 - Evolution model. Quasi-dynamic case

The generalization of the Ginzburg-Landau theory to the evolution problem
was analyzed by Schmid [5], Gor’kov and Eliashberg [6] in the context of the BCS
theory of superconductivity. In addiction to the variables c , A a third variable,
the electric potential f , is necessary to describe the physical state of the evolu-
tion system. The potentials A and f are such that

E42
¯A

¯t
2˜f , B4˜3A .
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The evolution model of superconductivity is governed by the differential sys-
tem [5], [6]

g g ¯c

¯t
1 ikfch42

1

2m *
(iˇ˜1e * A)2 c1ac2bNcN2 c(30)

s g ¯A

¯t
1˜fh42˜3˜3A1Js(31)

with

Js42
iˇe *
2m *

(c*˜c2c˜c*)2
e *

2

m *
NcN2 A(32)

and g a suitable coefficient representing a relaxation time. The associated bound-
ary conditions are still given by (13).

Equation (31) is essentially Ampere’s law

˜3H4Js1Jn1e
¯E

¯t

when
¯E

¯t
is supposed negligible. For this reason the system (30)-(32) will be

called the quasi-steady problem.
Moreover, the system (30)-(32) must be invariant under a gauge trasforma-

tion

(c , A , f)D (ce ikx , A1˜x,f2x
.
)

where the gauge x can be any smooth scalar function of (x , t). Various gauges
have been considered [10], [11], [13]. In the London gauge, x is chosen so that
˜ QA40, A QnN¯V40 . In the Lorentz gauge we have

f42˜ QA

and in the zero electrical potential gauge f40. It is not possible to have both
f40, and the London gauge simultaneously in V3 (0 , T).

We now proceed by relating the phenomenological boundary problem (20),
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(21) and (22) to the non stationary model (30)-(32). It is natural to work with the
system

g
¯f

¯t
4

ˇ2

2m *
˜2 f2

e *
2

2m *
ps

2 f1af2bf 3(33)

˜3ps42mH(34)

˜3H4L21 ps1sE1e
¯E

¯t
(35)

˜3E42 m
¯H

¯t
(36)

on V , and with the boundary conditions

˜f QnN¯V40 , H3nN¯V4g , ps QnN¯V40(37)

and the initial conditions

f (x , 0 )4 f0 (x) , ps (x , 0 )4ps0 (x) .

Actually, equation (33) is the real part of (30), while (34) corresponds to (32).
Finally, (35) and (36) are the Maxwell equations.

In (35), the total current density J is given by J4Js1Jn , where Js4L21 ps

and Jn obeys the Ohm’s law

Jn4sE .(38)

In the two fluid models, it is assumed that the super and normal current den-
sities Js and Jn are related to the super and normal charge densities r s and r n by
means of the conservation law

˜ QJs1˜ QJn42
¯r s

¯t
2

¯r n

¯t
.

Of course, the total charge density r is such that

r4r s1r n .
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From the equations (34) and (36), we have

¯ps

¯t
4E1˜f s(39)

where f s (x , t) is a smooth scalar function. The equation (39) corresponds to the
Euler equation for a non-viscous electronic liquid (see [2], pag. 59) «where f s is
the thermodynamic potential per electron; a function, in particular, of the concen-
trations of the superelectrons and of the normal electrons».

In order to obtain the evolution problem (30)-(32), «the pressure» f s will be
related to the charge density r4r s1r n by means of the identity (see [8])

f s4L( f ) r .(40)

In the quasi-dynamic approximation, equations (33)-(36) are equivalent to the
new system

g
¯f

¯t
4

ˇ2

2m *
˜2 f2

e *
2

2m *
ps

2 f1af2bf 3(41)

˜3ps42 mH(42)

˜3H4L21 ps1sE(43)

E4
¯ps

¯t
1˜f s .(44)

Moreover from (43) and (40), we get

˜ QJs4˜ Q (L21 ( f ) ps )42 s˜ QE42 sr42 sL21 ( f ) f s .(45)

The system (41)-(44) can be written in the form

g
¯f

¯t
4

ˇ2

2m *
˜2 f2

e *
2

2m *
ps

2 f1af2bf 3(46)

˜3˜3ps42 mL21 ( f ) ps2msE(47)

E4
¯ps

¯t
1˜f s(48)
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This system and the equation

˜ Q (L21 ( f ) ps )4sL21 ( f ) f s(49)

provide a system completely equivalent to the equations (30)-(32) (See [8], formu-
lae (26)-(28)). Moreover, as we shall prove in the next section, this model is in
agreement with the second law of thermodynamics. On the contrary, the general
system (33)-(36) under the condition (40) does not satisfy this law.

5 - Evolution model - General case

For the study of the general evolution model, in a neighborhood of the critical
temperature Tc , we consider the equations (33)-(36) or equivalently the sys-
tem

g
¯f

¯t
4

ˇ2

2m *
˜2 f2

e *
2

2m *
ps

2 f1af2bf 3(50)

˜3ps42 mH(51)

˜3H4L21 ps1sE1e
¯E

¯t
(52)

E4
¯ps

¯t
1˜f s .(53)

Instead of (40), which leads to a system that is not in agreement with thermody-
namics, it seems natural to assume the following constitutive relation:

f s4r .(54)

This condition can be represented, by means of the equation (52), as

˜ QJs42 sf s2ef
.

s .(55)

Now, we are able to prove that the dynamical model described by the equations
(50)-(55) satisfies the Second Law of Thermodynamics. Under the hypothesis of
processes near the transition temperature Tc , this law reduces to
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D i s s i p a t i o n P r i n c i p l e . If V denotes the domain occupied by the super-
conductor body, for every closed cycle, the inequality

�
0

dp

�
V

(B
.
QH1D

.
QE1J QE) dx dtF0(56)

holds, where dp is the time duration of the cycle.

T h e o r e m 1. Under the hypothesis (54), the inequality (56) holds for any
cycle only if

gF0 , sF0 .(57)

P r o o f . Consider the integral

I (V)4�
0

dp

�
V

(B
.
QH1D

.
QE1 (Js1Jn ) QE ) dx dt

4�
0

dp

�
V

m 1

2

d

dt
(eE21mH2 )1Js Q g d

dt
(L( f ) Js )1˜f sh1sE2n dx dt(58)

4�
0

dp

�
V

m 1

2

d

dt
(eE21mH21L( f ) Js

2 )1
1

2

d

dt
(L( f ) ) Js

21˜f s QJs1sE2n dx dt .

It follows from (37)3 , (33) and (55) that (58) reduces to

I (V)4�
0

dp

�
V

u2 e *
2

m *
(L( f ) Js )2 f f

.
2f s ˜ QJs1sE 2v dx dt

4�
0

dp

�
V

(2g f
.

21sf s
21ef

.
s f s1sE 2 )dx dt(59)

4�
0

dp

�
V

(2g f
.

21sf s
21sE 2 ) dx dtF0

from which we have the conditions (57).
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Let now consider the hypothesis (40) and its compatibility with the Dissipation
Principle.

T h e o r e m 2. Under the hypothesis (40), the quasi-steady problem satisfies
the inequality (56) if the conditions (57) hold. On the contrary, the evolution
problem (50)-(53) and (55) is not in agreement with (56).

P r o o f . Under the quasi-steady approximation, the integral (59) takes the
form

I (V)4�
0

dp

�
V

(B
.
QH1D

.
QE1 (Js1Jn ) QE ) dx dt

4�
0

dp

�
V

(2g f
.

21sL21 ( f ) f s
21sE2 ) dx dt

(60)

which is compatible with (56), if the constitutive equation (40) holds.
Consider now the evolution problem represented by the system (41)-(45). In

such case, from (58) we have

I (V)4�
0

dp

�
V

(2g f
.

21sL21 ( f ) f s
21erW s1sE 2 ) dx dt .

This integral is not positive, because of the term

�
0

dp

�
V

er
.

W s dx dt4�
0

dp

�
V

e (L21 ( f ) W s ). W s dx dt2�
0

dp

�
V

e (L21 ( f ) W s ) W s dx dt

whose sign is related to the chosen process.

R e m a r k 1. If we compare the two constitutive equations (40), (54), we ob-
serve that the latter brings to a full thermodynamic compatibility, while the first
is in agreement with thermodynamics only for the quasi-dynamic approxima-
tion.

Thanks for the previous remark, we believe that working with the condition
(54) is more suitable also in the quasi-dynamic approximation. With such a choice
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we have

g
¯f

¯t
4

ˇ2

2m *
˜2 f2

e *
2

2m *
ps

2 f1af2bf 3(61)

˜3ps42 mH(62)

˜3H4L21 ps1sE(63)

E4
¯ps

¯t
1˜f s .(64)

Moreover, from (63) we get

˜ QJs4s˜ QE4sr .

Therefore, in the quasi-steady approximation the system (61)-(64) is now imple-
mented with the equation

˜ Q (L( f ) ps )4sf s

instead of equation (49).
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A b s t r a c t

The aim of this paper is addressed to the study of the Ginzburg-Landau theory that
yields the behaviour of a superconductor near to the transition phase. We show that the
pertinent equations can be derived starting from the representation of the free energy in
terms of the magnetic field H , instead of the vector potential A , such that ˜3A4mH ,
and the modulus NcN , which denotes the concentration of superconducting electrons, in-
stead of the complex parameter c. Such a representation gives also a conceptual simplifi-
cation of the model since it makes use of observable quantities. In addition, the free en-
ergy in terms of H and NcN makes the theory gauge-invariant in that is free from the vec-
tor potential A and the phase of c. The compatibility with thermodynamics is examined
and it follows that the generality of the second law is related to the specific approxima-
tion of the model.

* * *


