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1 - Introduction

In the mid-1940’s, Nathan Jacobson noted an important connection between
rings and semigroups or groups. For any ring R define the circle or adjoint oper-
ation on R via a i b4a1b2ab , for each a , b�R . Then (R , i) is a group if and
only if R is a Jacobson radical ring. This group (semigroup) is called the adjoint
or circle group (semigroup) of the ring. This paper discusses the interplay be-
tween a radical ring and its adjoint group, giving both an exposition of the devel-
opment of the theory and some new results. Here ring will mean an associative
ring, with no unity assumed except where specifically noted, and R will always be
a ring. The Jacobson radical of R is denoted by J(R); so when R4J(R), then R is
a (Jacobson) radical ring.

The earliest date I can find for explicit recognition of the adjoint semigroup or
group, or even of i as a binary operation, is July 1946, see [14, p. 481], although
these concepts are implicit in Jacobson’s seminal paper on the radical written in
1944, [16]. (While certain authors have stated that the adjoint group/semigroup
concept can be found in earlier work, e.g., [16], [25], a careful reading of those pa-
pers reveals no evidence of this explicitly, although quasi-regular elements and
quasi-inverses are discussed.

The theory of adjoint groups has developed along three main lines:

(1) implications of ring theoretic conditions on the adjoint group;
(2) implications of group theoretic conditions (imposed on the adjoint group)

on the ring;
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(3) the implications of mixed conditions, group and ring theoretic, on the ring
and on its adjoint group.

Each of these have at times connections with the additive group of the ring.
Other allied lines of investigation are: connections between a ring and its group of
quasi-regular elements, (q(R), i ); the interplay between R , its Lie ring, and
(q(R), i ); and investigations of conditions on the semigroup (R , i) that imply R is
a radical ring.

This paper focuses on (1), (2), and (3), with some brief comments on the other
lines of attack.

2 - Preliminaries

Two different operations have been used for the adjoint group (semigroup),
the i defined previously and also the operation a3b4a1b1ab . The latter was
the one used by Perlis [25] and Jacobson [16] in their discussions of quasi-regular
elements. It is easy to see that (R , i) and (R , 3) are isomorphic semigroups and
(q(R), i ) and (q(R), 3 ) are isomorphic groups. (The earlies published use of this
3 operation appears to be by Hille in 1948; see [14, p. 681)]. Several other similar
operations give such isomorphisms also; (see [22, p. 11]). A more general formula-
tion is the following.

P r o p o s i t i o n 2.1 ([10]). Let a be an endomorphism on the bimodule RRR .
Define s *a t on R via: s *a t4s1 t1a(st), for each s , t�R . Then (R , *a ) is a
monoid and a :(R , *a )K (R , i) is a homomorphism. If a is an automorphism,
then (R , *a ) and (R , i) are isomorphic.

Observe that for a41R one gets the operation 3, and for a421R , the asso-
ciated operation is i .

It was recognized by Jacobson, [16], that every nilpotent element is quasi-reg-
ular. Consequently, the set N(R), of nilpotent elements in R , is a subset of q(R).
Implicit in [25] and [16] is that if R is nil, then (R , i) is a group.

Observe that if f : RKS is a ring homomorphism, then f : (R , i)K (S , i) is a
monoid homomorphism. The center of (R , i) is equal to the center of R . We use
Z(R) for this mutual center. (Here, whenever a property is ascribed to R , it is a
ring property, whereas group or semigroup properties will be ascribed to
(R , i) ).

For the remainder of this paper R will always be a Jacobson radical ring. The
quasi-inverse of x�R is denoted by x 8, and [x , y]4x 8i y 8i x i y , for x , y�R . If
A and B are nonempty subsets of R , then we use [A , B] for the subgroup of
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(R , i) generated by ][a , b]: a�A , b�B(. Then R 84R (1)4 [R , R], the commu-
tator subgroup of (R , i), and R (n)4 [R (n21) , R (n21) ], the n-th derived subgroup
of (R , i), for n�N . (Here N is the set of all natural numbers and R (0)4R). Also,
g 0 (R)4R , g 1 (R)4R 8 , and g n (R)4 [g n21 (R), R], for all n�N , the n-th term
of the lower central series for (R , i). We use aA , Bb for the ideal of R generated
by ]ab2ba : a�A , b�B(, the Lie ideal of R , and ROaR , Rb is commutative. The
next lemma will be useful in establishing some crucial connections between group
and ring properties.

L e m m a 2.1. Let x , y�R and let I and K be ideals of R.

(i) [x , y]4 (xy 82y 8 x)2x 8 (xy 82y 8 x)2 (xy 82y 8 x) y1x(xy 82y 8 x) y ;
(ii) [I , I]’ aI , Ib;
(iii) [I , K]4 [K , I]’IK1KI
(iv) R (n)’R 2n

, for each n�N ;
(v) g n (R)’R n11, for each n�N .

P r o o f . Part (i) follows from a routine calculation, and (ii) is an immediate
consequence of (i). Using (i), observe that [I , K]’IK1KI1IKI1KIK1IKIK
’IK1KI’IOK . Since x�I , y�K implies [y 8 , x 8 ]4 [x , y]8� [I , K]8’ [I , K],
we have [K , I]’ [I , K] and hence [K , I]4 [I , K]. Routine induction arguments
then establish (iv) and (v).

Since each ring endomorphisms is also an endomorphism on (R , i), the fully
invariant subgroup R (n), n�N , is invariant under every ring endomorphism on
R . Similarly, the characteristic subgroup g n (R) is invariant under every ring au-
tomorphism on R.

The next result is implicit in some earlier papers, e.g., [34], but seems to have
been first explicitly stated in [22]. The proof is immediate.

L e m m a 2.2. Every subring (respectively: one-sided ideal, two-sided ideal)
of R is a subsemigroup (respectively: subgroup, normal subgroup) of (R , i).

Observe that if I is an ideal of R , then the natural ring homomorphism,
h : RKR/I , is also a group homomorphism of (R , i) onto (R/I , i), and further
more (R , i) /I4 (R/I , i).

Subrings of radicals need not be subgroups of the adjoint group. For example,

the subring S4]2x : x�Z( of the radical ring R4 m 2x

2y11
: x , y�Zn is not a

subgroup of (R , i) since the quasi-inverse of 6 is
6

5
. (Note that in [22, p. 12]), it is
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claimed that subrings of radical rings are subgroups, even though the counter
example just given is discussed on the same page).

The next two results give conditions for a subring to be a subgroup of the ad-
joint group. Here for x�R , we use x [n] for the n-th power of x in (R , i). Observe

that for nD0, x [n]4 !
j41

n gn
j
h (21) jx j.

P r o p o s i t i o n 2.3. Let S be a subring of R.
If any one of the following hold, then S is a subgroup of (R , i):

(i) S 8S’S ;
(ii) SS 8’S ;
(iii) S is nil;
(iv) every element in S has finite order in (R , i).

P r o o f . Let s�S . In light of Lemma 2.2 (i), we need only show that s 8�S .
Since ss 84s1s 84s 8 s , observe that s 8�S if and only if either ss 8�S or
s 8 s�S . Then (i) and (ii) follow immediately. If s n40, for nD1, then s 842 (s
1s 21R1s n21 )�S. Finally, if s has order mD1 in (R , i), then s 84s [m21]

4 !
j41

m21 gm21

j
h (21) js j�S .

C o r o l l a r y 2.4. If either of the following hold, then every subring of R is a
subgroup of (R , i):

(i) R is nil;
(ii) (R , i) is torsion.

3 - Implications of ring conditions for the adjoint group

An obvious relation between ring T and its adjoint semigroup (T , i) is that the
centers, Z(T), of the two systems coincide and that for s , t�T , then s and t com-
mute in the ring if and only if they commute in the adjoint in the semigroup. In
1965 Watters observed a more subtle relation: if R n40, then (R , i) is nilpotent
of class at most n21; see [3]. (Recall here R is always a Jacobson radical ring).
Having a nilpotent adjoint group does not imply the ring is nilpotent, as was ob-
served by Watters [34]. The following example is a generalization of the example
given by Watters.

E x a m p l e 3.1. Let D be an integral domain (commutative ring with unity
and no divisors of zero) and let S be a nonzero subring of D with 1�S. Let
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W4 m x

11y
: x , y�In, a subring of the ring of quotients for D . Then

x

11y
has

quasi-inverse
2x

y2x11
, and hence W4J(W). This yields a ring without zero di-

visors with an abelian (and hence nilpotent) adjoint group.
We next give an extension of Watters result on nilpotency of the adjoint

group, as well as an analogous result on solvability.

P r o p o s i t i o n 3.2. (i) If R n’Z(R), for some n�N , then (R , i) is nilpotent
of class n.

(ii) If R 2n
is commutative, for some n�N , then (R , i) is solvable of length

n11.

P r o o f . (i) The case n41 is trivial, so consider nD1. Since g n21 (R)’R n

and (R n , i) is in the center of (R , i), we have g n (R)40.
(ii) The hypothesis and Lemma 2.1 (iv) yield (R (n) , i) is abelian, and hence

R (n11)40.
As an immediate corollary of Proposition 3.2 (i), we obtain a result originally

due to Ault and Watters, [3]: if R is nilpotent of index n , then (R , i) is nilpotent
of class n21. Proposition 3.2 (ii) was first noted in [10, Theorem 4], albeit in a dif-
ferent form.

The next result extends Proposition 3.2 (i).

C o r o l l a r y 3.3. Let I be an ideal of R with I’Z(R). If (R/I)n’Z(R/I), for
some n�N , then (R , i) is nilpotent of class n11.

P r o o f . Observe that gn(R/I)40; so gn(R)’I’Z(R), and hence gn11 (R)40.
More success can be had extending Proposition 3.2(ii), the reason being that a

solvable-by-solvable extension yields a solvable group, which has no direct nilpo-
tent analog. (However, some results can be obtained using Hall’s theorem as will
be shown in a subsequent paper). First some terminology is given.

A ring T is said to satisfy a permutation identity (or be a permutation iden-
tity ring) if there is a non-identity permutation p on n symbols, nD1, such that
t1 Q Q Q tn4 tp 1

Q Q Q tp n
, for each t1 , Q Q Qtn�T . Basic properties of permutation identity

rings and numerous examples of such rings can be found in [4], [5]. Crucial for
our purposes is that if T is a permutation identity ring, then aT , Tb is nilpotent, [5].

P r o p o s i t i o n 3.4. If I is an ideal of R such that I n and (R/I)m are permuta-
tion identity rings, for some n , m�N , then (R , i) is solvable.



60 HENRY E. HEATHERLY [6]

P r o o f . Observe that (R/aR , Rb, i) is always abelian. First consider the case
where R is a permutation identity ring. Then aR , Rb is a nilpotent ring and hence
(aR , Rb, i) is a nilpotent group. Consequently, (R , i) is solvable. Next, take I n

and (R/I)m to be permutation identity rings. Use R4R/I . Since R m and I n are
also Jacobson radical rings, we have that (R m , i) and (I n , i) are solvable. Each
of the rings I/I n and R/R m are nilpotent; so (I/I n , i) and (R/R m , i) are nilpotent
groups. Thus (I , i) and (R , i) are solvable, and consequently (R , i) is solv-
able.

We next give as a corollary several interesting consequences of the previous
proposition and its proof.

C o r o l l a r y 3.5. If any one of the following hold, then (R , i) is solv-
able:

(i) R is a permutation identity ring;
(ii) aR , Rb is nilpotent;
(iii) (aR , Rb)n satisfies a permutation identity, for some n�N .

By sharpening the hypotheses in Corollary 3.5 (i) and (iii) some precise bounds
on the solvable length are obtained. A ring T is left (right) permutable if
abc4bac , (abc4acb), for each a , b , c�T . If T is both left and right permutable,
then T is said to be permutable. (See [4]).

P r o p o s i t i o n 3.6. (i) If R is left (right) permutable, then (R , i) is
metabelian.

(ii) If R is permutable, then (R , i) is nilpotent of class two.
(iii) If (aR , Rb)k is commutative, for some k42n21 , n�N , then (R , i) is solv-

able of length at most n11.

P r o o f . Parts (i) and (ii) are proved in [10, Theorem 7]. To establish part (iii),
use Lemma 2.1 (iii) to obtain R (1)’ aR , Rb. Then R (2)’ aR , Rb, aR , Rb]
’ (aR , Rb)2. Repeat the process to obtain R (n)’ (aR , Rb)k, where k42n21, for
nF1. So if (aR , Rb)k is commutative, then R (n11)40.

A brief excursion into transfinite versions of some of the previous results
of this section are given next. Let a be an arbitrary infinite ordinal. Define
T a4 1

bEa
T b, if a is a limit ordinal, and T a4T a21 QT otherwise. For a group G,

define G (a)4 1
bEa

G (b) and g a (G)4 1
bEa

g b (G), if a is a limit ordinal, and

G (a)4 (G (a21) )8, g a (G)4 [g a21 (G), G], if a is not a limit ordinal. This defines
the generalized lower central series, g a (G), and the generalized derived series,
G (a), [29, pp. 175, 215]. It is known that g w (G)41 if and only if G is residually
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nilpotent [29, p. 183]. In this case G is isomorphic to a subdirect product of nilpo-
tent groups.

P r o p o s i t i o n 3.7. (i) If R w40, then g w (R)40 and (R , i) is a subdirect
product of nilpotent groups.

(ii) If R w’Z(R), then g w11 (R)40.
(iii) If R w is a permutation identity ring, then R (w1n)40, for some n�N ,

and (R , i) is hyperabelian. In particular, if R w is commutative, then R (w11)40.

P r o o f . Observe that g w (R , i)41
1

Q

g n (R)’1
1

Q

R n4R w. If R w40, then

(R , i) is residually nilpotent. If R w’Z(R), then g w (R , i) is in the center of (R , i)
and hence g w11 (R , i)40.

Similarly, R (w)41
1

Q

R (n)’1
1

n

R 2n4R w. If R w is a permutation identity ring,

then (R w , i) is solvable. Consequently, R (w1n)40, for some n�N .
In contrast to the situation for finite exponents, T w40 does not imply that

J(T)4T . For example, if E is the ring of even integers, then E w40.

C o r o l l a r y 3.8. Let I be an ideal of R.

(i) If (R/I)w40 and I’Z(R), then g w11 (R)40.
(ii) If (R/I)w’Z(R/I) and I’Z(R), then g w12 (R)40.
(iii) Let (R/I)w and I n , for some n�N , be permutation identity rings. Then

(R , i) is hyperabelian of length less than 2w.
(iv) If (aR , Rb)w satisfies a permutation identity, then (R , i) is hyperabelian

of length less than 2w.

P r o o f . (i) Use Proposition 3.7 (i) to obtain g w (R/I)40. So g w (R)’I’Z(R),
and hence g w11 (R)40.

(ii) Proceed similarly using Proposition 3.7 (ii).
(iii) Use Proposition 3.7 (iii) to obtain (R/I)(w1k)40, for some k�N . Then

R (w1k)’I . By Corollary 3.5 (i), there exists m�N such that I (m)40. Then
R (w1k1m)40.

(iv) Let L4 aR , Rb. Use Proposition 3.7 (iii) to obtain L (w1n)40, for some
n�N. Since (R/L , i) is abelian, we have R 8’L , and hence R ( j)’L ( j11), for each
j�N . So R (w)’L (w), yielding R (w1n)40.

A more extensive development of generalized series for adjoint groups will be
given in a subsequent paper. For allied results see [2].

Relationships between commutativity with respect to the circle operation and
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commutativity with respect to the Lie commutator operation in a ring have been
investigated by Laue [23], Du [8], and Catino [6]. We adopt the notation used in
those papers. Recursively define the sequences Zn4Zn (R), Yn4Yn (R), and
Cn4Cn (R) as follows:

(i) Z040, Zn114]a�R : ax2xa�Zn , for each x�R(.
(ii) Y040, Yn114]a�R : [a , x]�Yn , for each x�R(.
(iii) C040, Cn114]a�R : x 8i a i 2a�Cn , for each x�R(.

It is immediate that Z1 (R)4Y1 (R)4C1 (R)4Z(R). Du [8] showed that
Zn (R)4Yn (R), for each n�N , and Catino [6] established that Cn (R)4Zn (R),
for each n�N .

Earlier, Jennings [18] proved that the associated Lie ring of a radical ring is
nilpotent if and only if the adjoint group is nilpotent. It is safe to say that the full
relevance of the Du-Catino identities for adjoint groups is yet to be fully realized.
Recently, Riley and Tasic investigated relationships between Lie identities in a nil
ring and commutator properties in the adjoint group, [26].

4 - Connections between the additive group and the adjoint group

In general there is no close connection between the order of elements in
(R , i) and the order of elements in (R , 1). However, for nil rings satisfactory re-
lations have been established by Amberg and Dickenscheid, [1, Lemma 2.4], and
in a somewhat different form and proof scheme by Shan [30, Chapter 3]. We
adopt the notation t(G) for the set of all elements of finite order in a group G , and
R 1

p and R7p for the sets of all elements a power of a prime p in (R , 1) and (R , i),
respetively.

It is well-known (Shoda’s Theorem) that in any ring T , then t (T , 1) is the
ring direct sum of all the T 1

p . Since any ring direct sum of ideals yields a corre-
sponding direct product of normal subgroups in the adjoint group, we have
t (R , i) is the direct product of all the R7p . However, the group decomposition need
not be the analogous one of the torsion subgroup into Sylow p-subgroups, since
t (R , 1) need not be t (R , i) and the R 1

p need not be the R7p , as the following ex-
amples illustrate.

E x a m p l e 4.1. In Example 3.1 let D4Z2 [x] and let S be the ideal generat-

ed by x . So W4 { xf (x)

11xg(x)
: f (x), g(x)�Z2 [x]}. Observe that while x has order

two in (W , 1), it does not have finite order in (W , i).
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E x a m p l e 4.2. In Example 3.1 let D4Z and let S42Z . Then

W4 m x

11y
: x , y�Sn. A routine calculation shows that t (W , i)4]0, 22(. Of

course, t (W , 1)40. Shan has shown that W satisfies the maximum condition on
ideals, [30, pp. 10-11].

These examples make the results for nil rings all the more interesting. The
next proposition serves as a synopsis of the results on the order of elements in
(R , 1) and (R , i) for nil rings that are given in [11] and [30].

P r o p o s i t i o n 4.3. Let R be nil. Then:

(i) t (R , 1)4t (R , i), and the latter is a fully invariant subgroup of
(R , i);

(ii) for each prime p�N , R 1
p 4R7p , and each R7p is a fully invariant sub-

group of (R , i);
(iii) t (R , i) is the internal direct product of the R7p , where p ranges over all

primes in N;
(iv) (R , 1) is torsion (torsion-free) if and only if (R , i) is torsion (torsion-

free).

Recall that a ring T has bounded index of nilpotence if there exists n�N such
that whenever t�T and t is nilpotent, then t n40. Nilpotent rings have bounded
index of nilpotence, but so do many nil rings that are not nilpotent.

C o r o l l a r y 4.4. Let R be a nil ring of bounded index of nilpotence. If
(R , 1) has bounded order, then (R , i) has bounded order (finite exponent).

Some interesting results have been obtained relating chain conditions (finite-
ness conditions) in (R , 1) with chain conditions in (R , i). The first such results
were given by Watters.

P r o p o s i t i o n 4.5 ([34]). The following are equivalent:

(i) (R , i) satisfies the maximum condition on subgroups;
(ii) (R , i) satisfies the maximum condition on abelian subgroups;
(iii) (R , i) is a finitely generated nilpotent group;
(iv) (R , 1) is finitely generated.

This proposition and Example 4.2 illustrate the dramatic difference in the
maximum condition on subgroups of (R , i) and the maximum condition on ideals
(or one-sided ideals) in R. It is worth noting that if (R , i) satisifes the maximum
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condition on subgroups (normal subgroups), then R satisfies the maximum condi-
tion on one-sided ideals (ideals) in R. A strictly analogous result holds for miminal
conditions. Since a Jacobson radical ring with minimum condition on left (right)
ideals must be nilpotent, [17, p. 38], if (R , i) satisifes the minimum condition on
subgroups, then R is nilpotent.

Amberg and Dickenscheid have dramatically extended Watter’s results
(Proposition 4.5, above). We next give the relevant parts of their development. A
group G is called a minimax group if G has a subnormal series of finite length
each of whose factors satisfies either the maximum condition or the minimum con-
dition on subgroups.

P r o p o s i t i o n 4.6 ([1]). The adjoint group (R , i) is a minimax group if and
only if (R , 1) is a minimax group. In this case R is nilpotent.

(Note: Amberg and Dickenscheid state and prove a more general result than
this in their Theorem A).

We conclude this section with some results due to Dickenscheid [7]. Let G be a
group. Then:

(i) G has finite torsion-free rank if G has a subnormal series of finite length
whose factors are either abelian or periodic; the number of such factors is an in-
variant of G and is denoted by r0 (G);

(ii) G has finite Prüfer rank, r4r (G), if every finitely generated subgroup of
G can be generated by r elements, but not by less than r elements;

(iii) G has finite abelian subgroup rank if each abelian subgroup of G has fi-
nite torsion-free rank and each abelian p-subgroup of G has finite Prüfer rank, for
every prime p . (For details on these rank concepts see [27, Chapter 4]).

P r o p o s i t i o n 4.7 ([7, Theorem A]). Let R be a nil ring. Then:

(i) if (R , 1) has torsion-free rank nEQ , then r0 (R , i)4n ;
(ii) if (R , 1) has finite abelian subgroup rank, then so does (R , i);
(iii) if (R , 1) has finite Prüfer rank, then so does (R , i), and r (R , i)

G3r (R , 1); if (R , 1) also contains no elements of order two, then r (R , i)
G2r(R , 1).

P r o p o s i t i o n 4.8 ([7], Theorem B). Let (R , 1) be periodic (torsion).
Then:

(i) if (R , 1) has finite abelian subgroup rank, then so does (R , i);
(ii) if (R , 1) has finite Prüfer rank, then so does (R , i), and r(R , i)G3r(R , 1);

if (R , 1) also contains no elements of order two, then r (R , i)G2r (R , 1).
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5 - Further examples and constructions

Let J be the class of all Jacobson radical rings. It is well-known that J is
closed under homomorphic images, direct sums, and direct products. However, J

is not closed under subdirect products, as illustrated by the ring E of all even in-

tegers. Then 1
1

Q

En40, where En4EOE n, n42, 3 , R , and each En is nilpotent.

So E is a subdirect product of nilpotent rings, while J(E)40.
Let L be an arbitrary nonempty index set and let Rl� J, l�L . We use !5Rl

and » Rl for the direct sum and direct product of the Rl , l�L , respectively. Fol-
lowing Robinson [27, pp. 21-22], for a set of groups, Gl , l�L , we use Dr

l
Gl and

Cr
l

Gl for the restricted and unrestricted direct products of the Gl , respectively. It

is routine to establish that g!
l
5Rl , ihBDr

l
(Rl , i) and »

l
(Rl , i)BCr

l
(Rl , i).

E x a m p l e 5.1. Let (L ,G) be a directed partially ordered set and let Rl� J,
for l�L . Assume (Rl , f m

l , L) is a direct family in the category of rings and form
the direct limit of this family, lim

K
Rl . Observe that each ring homomorphism

f m
l : RlKRm , gives rise to a group homomorphism f m

l :(Rl , i)K (Rm , i).
This yields the direct family ((Rl , i), f m

l , L ) in the category of groups, and
the corresponding direct limit, lim

K
(Rl , i). Shan has shown that glim

K
Rl , i h is iso-

morphic to (Rl , i), [30, pp. 34-35].

E x a m p l e 5.2 (Shan, [30, pp. 53-54]). There is a natural extension of
Example 3.1 to a noncommutative setting. Let T be a ring with unity and let I be
a proper nonzero ideal of R. Define S4]11x : x�I (. Then S will be a left de-
nominator set for T , yielding the ring of fractions S21 I , and J(S21 I)4S21 I.

The next example arises in applied analysis.

E x a m p l e 5.3. Let M be the linear space of all complex-valued functions on
the interval [0 , Q), together with the Duhamel convolution operation: ( f * g)(t)

4�
0

t

f (t2x) g(x) dx . With this multiplication M is a commutative associative al-

gebra over the complex number field, and M has no nonzero divisors of zero.
Huffman has shown that M 4J(M), [15]. (A strictly analogous result holds for
continuous real valued functions). Many natural subsets of M are ideals in the al-
gebra, and hence are themselves Jacobson radical rings. (See [15]).

It is of interest that using J(M)4 M, novel new proofs were obtained for exis-
tence and uniqueness theorems for certain integral and integro-differential equa-
tions, [11], [15].
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For more examples of exotic radical rings and adjoint groups, see [12].

6 - Other lines of investigation

In this section brief mention is made of some other approaches to investigat-
ing adjoint groups of radical rings. The question of which groups are isomorphic
to adjoint groups has been addressed by Kaloujnine [19], Ault and Watters [3],
Hales and Possi [9], Tahara and Hosomi [32], Amberg, Dickenscheid, and Sysak
[2], and Shan [30]. In [3], [9], [19], [24], [28], [31], [32] various conditions are given
which guarantee that a group is isomorphic to the adjoint group of a ring. Exam-
plary of some recent developments along these lines is the following.

P r o p o s i t i o n 6.1 ([30], [31]). Let G be a nilpotent class two group. If any
one of the following hold, then G is isomorphic to the adjoint group of a nilpo-
tent ring:

(i) Z(G) is uniquely 2-radicable;
(ii) Z(G) is a p-group, for some odd prime p;
(iii) G/G 8 is uniquely 2-radicable and G 8 has no elements of order two;
(iv) G/Z(G) is finitely generated;
(v) G satisfies the maximal condition on subgroups.

(Recall that a group G is uniquely 2-radicable if for each g�G there exists a
unique b�G such that g4b 2, [33]).

In [2] conditions were given which must be satisfied by every adjoint group.
(However, see [12], [30] for comments on these conditions). The consequences of
(R , i) being solvable or nilpotent have been investigated by Kruse [21], [22]. Re-
cently, [13], conditions on the adjoint semigroup of a ring T which force (T , i) to
be a group have been developed. To conclude the paper some of these results are
given.

P r o p o s i t i o n 6.1 ([13, Proposition 2.3]). Let (T , i) be simple. If any one of
the following hold, then (T , i) is a group:

(i) T has no non-zero nilpotent elements;
(ii) T has finite right (left) uniform dimension;
(iii) T satisfies the maximum condition on right (left) ideals;
(iv) T satisfies the minimal conditions on right (left) ideals.
(Note: Under condition (iv) the ring T is nilpotent).

P r o p o s i t i o n 6.2 ([13, Proposition 4.3]). Let T have no zero divisors but not
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be a division ring. If (T , i) is von Neumann regular, then (T , i) is a
group.
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S u m m a r y

Let R be a Jacobson radical ring. This paper discusses the connections between a ring
R and its adjoint group (R , i), where a i b4a1b2ab . Both an exposition of the deve-
lopment of the theory and some new results are given. Conditions on R which guarantee
that (R , i) is solvable, nilpotent, or generalized solvable are considered. A new set of con-
ditions for a group to be isomorphic to an adjoint group is given. Several diverse exam-
ples of Jacobson radical rings are exhibited.

* * *


