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PAOLO DE BA R T O L O M E I S (*)

Complex Casson invariants (**)

1 - Introduction

The methods and the techniques of gauge theory are widely recognized as one
of the main achievements in the theory of 4-manifolds over the last two decades,
yielding a vast range of fundamental results, which have shed a new light on
topology and geometry in dimension 3 and 4: just recall Donaldson theory (see
e.g. [8]) and Seiberg-Witten theory (see [9] for an excellent overview).

The extension to higher dimension appears as a quite demanding challenge
running through the research by many mathematicians in the quest for new
invariants.

The goal of the present paper is to echo, discuss, and explain some of the at-
tempts to define, via gauge theory, a Casson-like invariant for complex manifolds
(see [12], [6], [11]).

One of the basic settings is the description of moduli spaces of bundle complex
structures stemming from [5].

Note that we dare to insist (cf. [4]) with an «irregular» terminology: «com-
plex» instead «almost-complex», «holomorphic» instead of «complex», «Hermi-
tian» instead of «almost-Hermitian» etc...

2 - Real Casson invariants

We begin by quickly reviewing the geometric construction of Casson Invari-
ants (see [2], [1]).

(*) Dip. di Matem. Appl. «G. Sansone», Università, Via Santa Marta 3, 50139 Firenze,
Italy.

(**) Received August 25, 1999. AMS classification 58 D 27, 81 T 13, 53 C 56.
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Let M be a compact oriented 3-manifold; it is well known that M is paralleliz-
able and so, for any Riemannian metric g on M , the principal SO(3)-bundle of ori-
ented orthonormal frames on M , SOg (M), is trivial and so we can work with its
SU(2)-covering P.

To simplify the situation, assume M has the homology of S 3. Roughly speak-
ing, the Casson invariant counts the conjugacy classes of irreducible representa-
tions of p 1 (M) into SU(2).

Let f�C Q (M , [0 , 3 ] ) be a self-indexing Morse-Smale function; consider the
corresponding Heegaard splitting:

M2 »4 f 21gk0,
3

2
lh , M1 »4 f 21gk 3

2
, 3lh , S»4 f 21g 3

2
h

therefore, S is a genus g surface and M2BM1 is a standard g-handlebody;
set:

M1 »4 f 21gk0,
7

4
lh , M2 »4 f 21gk 5

4
, 3lh , M0 »4M1OM24S3 k 5

4
,

7

4
l

for k40, 1 , 2 , let:

Yk »4]conjugacy classes of repr . of p 1 (Mk ) into SU(2)(

4Hom (p 1 (Mk ), SU(2) )OAd (SU(2) )

Y
A

k »4]f�YkNf is irreducible(

now:

1) p 1 (M1 )4p 1 (M2 ) is a free group with g generators; therefore

Y14Y24»
g

SU(2)OAd (SU(2) )

2) p 1 (M0 )4p 1 (S)4][a1 , b1 , R , ag , bg ]Na1 b1 a1
21 b1

21 Q Q Qag bg ag
21 bg

2141(
and so:

Y04u21 (1)OAd (SU(2) )

with

u : »
2g

SU(2)KSU(2), u(a1 , b1 , R , ag , bg )4a1 b1 a1
21 b1

21 Q Q Qag bg ag
21 bg

21
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consider on the Y
A

k’s the induced structure; we have:

dimRY
A

14dimRY
A

243g23 , dimRY
A

046g26

for k41, 2 , the inclusion jk : M0KMk induces an embedding jk*: YAkKY
A

0 ; the
Y
A

k’s are all equipped with an orientation; in fact:

a) given an orientation on S , H 1 (S , R) has an intrinsic symplectic structure:
if [a], [b]�H 1 (S , R), then:

h( [a], [b] ) »4�
S

aRb

is a symplectic form (1 is the middle dimension and h( [a], [* a] )D0!), so an orien-
tation is induced on H 1 (S , R);

b) since, for k41, 2 , Mk is an handlebody, we have:

0KH 1 (Mk , R)K
jk*

H 1 (S , R)

from Stokes’ theorem it follows that: jk*(H 1 (Mk , R) ) is a Lagrangian subspace of
H 1 (S , R) and

a[a], [b]b »4�
S

jk*(a)R jk*(b)

is a duality between H 1 (M1 , R) and H 1 (M2 , R); therefore, the choice of an orien-
tation on H 1 (M1 , R) produces an orientation on H 2 (M1 , R), giving back the ori-
entation on H 1 (S , R);

c) a choice of a basis for H 1 (M1 , R) (consistent with the chosen orientation)
identifies Hom (p 1 (M1 ), SU(2) ) with »

g
SU(2); this fact and a fixed orientation

on SU(2) determine an orientation on Y
A

1 (and on Y
A

2);

d) let S 0 »4S2pt ; a choice of a basis for H 1 (S , R) identifies

Hom (p 1 (S 0 ), SU(2) ) with »
2g

SU(2): this orients Y
A

0 .

Set:

k»4 j1*(Y1 )O j2*(Y2 )BHom (p 1 (M), SU(2) )OAd (SU(2) )
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and

kA »4 j1*(YA1 )O j2*(YA2 )(1)

finally define:

l(M) »4
1

2
!
p� kA

(21)index p

according with a choice of orientation as in a5d.

We have:

T h e o r e m 2.1. l(M) (which is called the Casson invariant of M) depends
only on M and its orientation.

We can immediately establish a bridge with the holonomy theory of connec-
tions.

Let F×(S) be the moduli space of simple flat connections on PNS (see next sec-
tion); therefore F×(S) is a finite dimensional manifold with an intrinsic symplectic
structure:

h(a , b) »4�
S

tr (aRb)

set:

L 6 »4][v]� F×(S)Nv extends as flat connection on M6(

then L 6 are Lagrangian submanifolds of F×(S),

L 1OL 2B kA(2)

is the moduli space of simple flat connections on M and l(M) is the intersection
index of L1 and L2 .

Recall that, for a general principal G-bundle p : PKM , if MA denotes the uni-
versal covering of M , we have:

]r : p 1 (M)KGNP4MA3r G( D ] flat connections on P(

in fact:

K: just extend to P the natural flat connection on MA
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J: the parallel displacement gives a representation r : p 1 (M)KG whose im-
age is the holonomy group of P and P4MA3r G.

In our special case, the assumption P4MA3r SU(2) is automatically satis-
fied.

As we shall see in the next section, the relations between Casson invariants
and gauge theory are much deeper.

3 - Moduli spaces of connections

We briefly recall some general facts (see [3] for more).
Let p : PKM be a principal G-bundle over a compact Riemannian manifold

(M , g) and let g be a Riemannian structure on its adjoint bundle A »4P3ad S ; let
G(P) »4]f�Diff (P)Np i f4f , f is G-equivariant( be the gauge group of P ;
let V be an R-vector space and let s : GKAut (V) be any representation: recall
that

T p (P , V , s) »4]a�Rp (P , V)Na is G-equivariant and horizontal(

let Fp (P , V , s) be the bundle whose sections are the elements of T p (P , V , s);
C (P) denotes the space of connection forms on P : it is an infinite dimensional
affine space having T 1 (P , S , ad) as space of translations.

We recall also that the Yang-Mills functional

YM : C (P)KR1

is defined as:

YM(v) »4
1

2
�

M

NV vN
2 dm( g)

we have that:

YM 8 [v](a)4�
M

aDv a , V v b dm( g)

and so the Euler-Lagrange equation associated to YM is Dv* V v40 and its
solutions are called YM-connections. In the case dimR44 there are special YM-
connections: the so called istantons, i.e. the elements v� C (P) satisfying
V v46 * V v ; they represent absolute minima for YM ;
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set:

Gs (P) »4L 2
s -completion of G(P)

T s
p (P , S) »4L 2

s -completion of T p (P , S , ad)( with respect to g7g) ;

fixing v 0� C (P), define

Cs (P) »4v 01T 1
s (P , S)

therefore, if V is the curvature map, we have:

V : Cs (P)K Ts21 (P , S) and V*[v] : aODv a

Gs11 acts smoothly on the right on Cs (P); this action is not effective, in
fact:

f : vOv for every v� Cs (P) ` f�C(G)% Gs11 (P)

(C(G) being the center of G); therefore, if we set G*s11 (P) »4 Gs11 (P)OC(G), then
G*s11 (P) acts effectively on Cs (P); we have:

P r o p o s i t i o n 3.1. Let v� Cs (P) then the following facts are equivalent:

a) Dv : T s11
0 (P , S)K T s

1 (P , S) has a non trivial kernel;

b) v is a fixed point for some f� Gs11* (P).

D e f i n i t i o n 3.2. v� Cs (P) is said to be simple if a (or b) of previous propo-
sition does not hold.

Set

C×s (P) »4]v� Cs (P)Nv is simple(

thus G*s11 (P) acts freely on C×s (P); note that, for any v� C×s (P), we have:

Tv ( Gs11* (P)v )4Dv T 0
s11 (P , S) .

We have the following

P r o p o s i t i o n 3.3 (slice theorem). Let v 0� C×s (P); then, there exists a nbd
V of v 0 in v 01Ker Dv 0

* such that U»4 Gs11* (P) V is a nbd of v 0 in C×s (P) dif-
feomorphic to V3Gs11* (P); more precisely, there exists a smooth map
s : UK Gs11* (P) such that:
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a) for every v�U , s(v)v�V ;

b) S : UKV3Gs11* (P) given by

S(v) »4 (s (v) v , s(v) )

is a Gs11* (P)-equivariant diffeomorphism (where Gs11* (P) acts on the right on
V3Gs11* (P) as g(v , f ) »4 (v , g 21 f ) ).

Therefore, we have:

T h e o r e m 3.4.

8
A

s (P) »4 C×s (P)OGs11* (P)

is a Hilbert manifold and C×s (P)K8
A

s (P) is a principal Gs11* (P)-bundle; if
v� C×s (P), then T[v]8

A
s (P) can be identified with ]a� T s

1 (P , S)NDv* a40(.

From now on, to simplify our notations, we shall drop the subscript s.
Coming back to the 3-dimensional case, consider the Chern-Simons functional

CS : C (P)KROZ

CS(v) »4 �
s(M)

tr gvRV v2
1

6
vR [v , v]h

(where s is any section of P4SOg (M)); we have: CS : 8
A

(P)KROZ i.e. it is de-
fined on a Z-covering of 8

A
(P); moreover:

CS 8 [v](a)4�
M

tr (aRV v )

clearly CS 8 defines a closed 1-form g on 8(P) and the zeroes of g correspond to
the equivalence classes of flat connections on P.

Now

CS 8 [v](a)4�
M

aa , * V v b dm( g)

and * V v descends to a vector field j on 8
A

(P).
j can be thought as the gradient vector field of CS.
We are now in position to mimic the finite dimensional theory; Recall that, if N

is a compact differentiable manifold and j is a vector field, then we can assume
that, possibly after a perturbation, j has non degenerate zeroes, i.e., as section of
TN , it intersects the zero section transversally; the zero section defines horizontal
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subspaces along itself and thus a covariant differentiation ˜ ; we have:

x(N)4 !
j(p)40

sign det (˜j)(p) .

For every v� C× (P) define:

l L[v]�EndS (Tv C× (P) ) as L[v](a) »4 * Dv a

l (˜j)[v]�EndS (T[v]8
A

(P) ) as (˜j)[v](a) »4 * Dv a2Dv t(a) where
t(a)� T 0 (P , ac (2), ad ) satisfies D v t(a)4 * (V vRa).

We have the following

T h e o r e m 3.5. Let v� C× (P) be a smooth, simple connection; then (˜j)[v]
defines a closed, essentially selfadjoint Fredholm operator; its eigenvectors form
a complete orthonormal basis of T[v]8

A
(P) and the eigenvalues form a discrete

subset of the real line, with no accumulation points and unbounded in both di-
rections; each eigenvalue has finite multiplicity, and so, in particular,
Ker (˜j)[v] is finite dimensional.

D e f i n i t i o n 3.6. A nondegenerate zero of j is an equivalence class of flat
connections [v] such that 0�sp ((˜j)[v] ).

We have:

L e m m a 3.7. A nondegenerate zero of j is isolated

and

T h e o r e m 3.8 (C. H. Taubes [10]).

x(j) »4
1

2
!

j( [v] )40
sign (det (˜j)[v] )

is well defined and depends only on M; x(j) can be thought as the Euler charac-
teristic of 8

A
(P), thus call it x (8

A
(P) ). Moreover we have:

x (8
A

(P) )4l(M) .

The proof of thm. (3.8) evokes the so called «standard elliptic theory» and it is
based on the key point that the complexes which are involved are elliptic and on
the possibility to build up an efficient deformation/perturbation procedure.

Recall that the integral curves of the gradient vector field j of CS connecting
different critical points give a chain complex: the famous Floer’s complex (see [7]).
The resulting homology groups are independent of the metric g on M and are for-
mally the homology groups of 8

A
(P) in «semi-infinite dimensions».
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Consider a curve v : S 1K C (P) and setting PA »4p1*(P), where p1 : M3S 1

KM is the natural projection, interpret v as vA� C (PA) simply defining vA[ (u , t) ]
»4v(t)[u]; consider in M3S 1 the product metric g1dt7dt and the Hodge op-
erator *

A; then we have:

V vA4V v1
d

dt
v(t) dt

and so

V vA46 *
AV vA `

d

dt
v(t)46 * V v(t)

i.e. the gradient flow equation for CS coincides with the YM-instanton equation in
M3S 1.

4 - Moduli spaces of bundle complex structures

The first step in order to extend the previous constructions to the complex
case is to study the moduli space of bundle complex structures; the theory of sta-
bility as developed in [5] enables us to describe it as a suitable moduli space of
connections, making therefore the tools of gauge theory fully available.

Let (M , JM ) be a n-dimensional complex manifold.

D e f i n i t i o n 4.1. A complex vector bundle (E , J×) of (complex) rank r over M
is a real vector bundle E of rank 2r over M equipped with a section J× of End (E)
such that J×242 idE .

Given a complex vector bundle E of rank r , we can consider the principal
GL(r , C)-bundle C(E) of complex linear frames on E ; thus:

E4C(E)3GL(r , C) R2r

where GL(r , C) acts on R2r via r : GL(r , C)KGL(2r , R), the standard real
representation.

D e f i n i t i o n 4.2. Let (E , J×) be a complex vector bundle of rank r over the
complex manifold (M , JM );

1) a bundle complex structure (bucs) on C(E) is a complex structure J on
C(E) such that:

(a) the bundle projection p : C(E)KM is (J , JM )-holomorphic;
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(b) J induces the standard integrable complex structure JS on the fi-
bres;

(c) GL(r , C) acts J-holomorphically on C(E).
B (C(E) ) will denote the set of bucs on C(E);

2) let J� B (C(E) ); then J is said to be simple if any J-holomorphic endo-
morphism of E is of the form lidE , with l�C Q (M), satisfying ¯M l40.

B× (C(E) ) will denote the set of simple bucs on C(E).

G (C(E) ) acts in a natural way on the right on B (C(E) ) and B× (C(E) ): given
g� G (C(E) ) and J� B (C(E) ), we define

g & (J) »4g*
21

i J i g*.

The object we are interested in is therefore:

K
A

(E) »4 B× (C(E) )OG*(C(E) ) .

Again, we have to make a massive use of connections (see [5] for details and
proofs).

L e m m a 4.3. Let J� B (C(E) ) and let v� C (C(E) ); then

v (0 , 1 )� T 0, 1 (C(E), SX (r , C), ad)

and consequently:

v (1 , 0 )� C (C(E) ) .

P r o p o s i t i o n 4.4. Given v� C (C(E) ), there exists a unique J� B (C(E) )
for which v is of type (1 , 0 ); this J is given by the formula:

J[u](X)4 ((p21 )* i JM i p*)[u](X (h) )1JS [u](X (v) )

i.e. J is obtained considering the standard structure on the fibre (vertical compo-
nent) and JM on the v-horizontal component.

Therefore, we have just constructed a surjective map x : C(C(E))KB(C(E));
it is easy to check that x is G (C(E) )-equivariant.

D e f i n i t i o n 4.5. Given J� B (C(E) ), we set:

C J
1, 0 (C(E) ) »4x21 (J)
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i.e. C J
1, 0 (C(E) ) is the set of all connection 1-forms in C(E) that are of type (1 , 0 )

with respect to J.

We have now the following

P r o p o s i t i o n 4.6. Let J� B (C(E) ) and let v� C J
1, 0 (C(E) ); then:

(Dv )0, 14 ¯J

and consequently

Dv : T 0 (C(E) )K T 1 (C(E) )

splits as

Dv4¯v1¯J

where ¯v »4 (Dv )1, 0 ; more in general, we have that

Dv : T p , q (C(E) )K T p1q11 (C(E) )

decomposes as

Dv4AJ1¯v1¯J1AJ .

P r o p o s i t i o n 4.7. Let J� B (C(E) ) and let v� C J
1, 0 (C(E) ); then:

NJ4l v i NJM
i p*14(V v

0, 2 )*

(where l v is the horizontal lift with respect to v).

Let J� B (C(E) ), assume a Hermitian structure h is assigned on E and let
Uh (E) be the principal U(r)-bundle of h-unitary frames on E ; we have the follow-
ing basic result:

P r o p o s i t i o n 4.8. There exists a unique connection v h� C (Uh (E) ) such
that its extension to C (C(E) ) is of type (1 , 0 ) (in other words C 1, 0

J (C(E) )
OC (Uh (E) ) consists of a single element); we have:

v h4 h×21 ¯J h×
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where h×: C(E)KGL(r , C) is defined as

h×(u) »4 r21 (u *(h) )

v h is called the canonical Hermitian connection.

Note that the uniqueness stems from the relation c(r)O ic(r)40; we have
also that the projections

p1 : T (Uh (E), c(r), ad)K T 1, 0 (C(E), SX(r , C), ad)

and

p2 : T (Uh (E), c(r), ad)K T 0, 1 (C(E), SX(r , C), ad)

are both injective and, given a� T (Uh (E), c(r), ad ), we have:

a4
1

2
(a 1, 02 (a 1, 0 )J )4

1

2
(a 0, 12 (a 0, 1 )J )

where, J : T 0 (C(E), SX(r , C), ad)K T 0 (C(E), SX(r , C), ad) is defined by the
relation

s J (u) »4 h×21 (u) t s(u) h×(u)

and extends naturally to positive degree forms.
Therefore we have:

C o r o l l a r y 4.9. There is a one-to-one correspondence between the set
B (C(E) ) of bucs on C(E) and the affine space C (Uh (E) ) of connections on
Uh (E).

The one-to-one correspondence between B (C(E) ) and C (Uh (E) ) induces a
right action of G (C(E) ) on C (Uh (E) ); more precisely, we have the follow-
ing

P r o p o s i t i o n 4.10. G (C(E) ) acts on the right on C (Uh (E) ) in the follow-
ing way: for g� G (C(E) ) such that g(u)4up(u) and v� C (Uh (E) ), we
have:

g & (v) »4v1p J ¯v (p J )211p 21¯v p(3)

this action corresponds to the natural action of B (C(E) ) on B (C(E) ) via the bi-
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jection B (C(E) ) D C (Uh (E) ); moreover, if g� G (Uh (E) ) then

g &4g*

and so (3) extends the standard action of G (Uh (E) ) and G (C(E) ) can be viewed
as the complexification of G (Uh (E) ).

R e m a r k 4.11. a) The action of G (C(E) ) on C (Uh (E) ) can be described
also in the following way: let g� G (C(E) ) such that g(u)4up(u) and let k such
that k×4 h×(pp J )21 ; therefore

g : Uh (E)KUk (E)

let v� C (Uh (E) ) and let J»4x(v) be the corresponding bucs (and so v

4 h×21 ¯J h×); let v k4 k×21 ¯J k×; therefore we have:

g & (v)4g*(v k )

b) it is easy to check that B× (C(E) ) corresponds to C× (Uh (E) ) and so:

K×(E)4 C× (Uh (E) )OG*(C(E) )

this, of course, is not a moduli space of connections, so we need further
investigations.

From now on, let (M , JM , g) be a compact n-dimensional Hermitian manifold
with Kähler form k normalized in such a way that dk n2140;
given v� C (Uh (E) ), set:

Kv
1, 1 »4L k V v

1, 1 (contraction with k)
s v »4 tr Kv

1, 1

deg (E) »4�
M

c1 (E)Rk n214
1

2pn
�

M

s v k n

Hv »4Kv
1, 12

2p ideg (E)

rn! Volg (M)
I .

If dk n2240, we have:

YM(v)42
n(n21)

12
Ch2 (E) Q [k n22 ]1

r

2
(c1 (E) Q [k n21 ] )2

12 �
M

NV v
0, 2N2 k n1

1

2
�

M

NHvN
2 k n .

(4)

First of all, we have a standard Hermitian structure on T h
1 »4T 1(Uh(E), c(r), ad);
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in fact: let a , b�T h
1 , a4p*(m)7a , b4p*(n)7b , for m , n�R1 (M), a , b�T 0

h ; set:

aa , bb »42
1

2
g(m , n) tr ab

and

(a , b) »4
1

n!
�

M

aa , bb k n

moreover, set:

J a»4p*(JM m)7a

therefore:

aJ a , bb42 aa , J bb

and, consequently:

(J a , b)42 (a , J b)

clearly ( ,) and J extend to T h
1 and so ( T h

1 , J, (, ) ) is a Hermitian vector space; note
that, if a� T h

1 , then

J a4 ia 1, 02 ia 0, 1 and J a[u](X)4a[u](Y)

where p*[u](Y)4JM p*[u](X); moreover

Q(a , b) »4 (J a , b)4�
M

tr (aRb)Rk n21 .

Clearly, J and Q extend to the Sobolev Ls
2-complection V»4 T s

1 (Uh (E), c(r), ad )
of T h

1 and, in particular, Q represents a symplectic form on V.

Let ]v t(2eG tGe be a curve in C (Uh (E) ) such that v 04v and g d

dt
v th

Nt404a ; therefore

g d

dt
Hv th

Nt40

4 i(¯v*2¯v*) a42 (Dv* i J) a .

Consider the map:

m : vOHv
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we have: for any X� T h
0 , v� C (Uh (E) ), a�Tv C (Uh (E) ):

(X , dm[v](a) )4 (X , 2D *v J a)4 (J Dv X , a)4Q (X *(v), a )

i.e. m is a momentum map; of course m induces a momentum map on
C× (Uh (E) ).

Let

E× (Uh (E) ) »4]v� C× (Uh (E) )NHv40(

we have the following:

P r o p o s i t i o n 4.12.

E
A

(E) »4 E× (Uh (E) )OG*(Uh (E) )

is an infinite dimensional symplectic manifold; in particular, given [v]
� E

A
(Uh (E) ) we have:

T[v] E
A

(Uh (E) )4Ker Dv*OJ Ker Dv*4]a� T h
1 N¯v* a 0, 140(

and thus T[v] E
A

(Uh (E) ) is J-invariant and so (E
A

(E), J) is an infinite dimension-
al complex manifold.

Now

P r o p o s i t i o n 4.13. The natural map

j : E
A

(E)K K
A

(E)

is an embedding.

P r o o f . Let v� E× (Uh (E) ) and g� G*(C(E) ) such that g &� E× (Uh (E) ); thus,
if g(u)4up(u) and k× »4 h×(pp J )21 , then h and k are Hermite-Einstein structures
with respect to v; by uniqueness, h4k and so g� G*(Uh (E) ). r

Recall now the following

T h e o r e m 4.14 (PdB-G. Tian [5]). Let (M , J , g) be a compact n-dimension-
al Hermitian manifold whose Kähler form h satisfies ¯M¯M h n2140; let (E , J×)
be a complex vector bundle of rank r over M and let J� B (C(E) ) such that E is
J-stable; then there exists a unique (up to homotheties) Hermitian structure h
on E satisfying the Hermite-Einstein condition Hv h

40.
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Recall also that stability is a generic condition; therefore we have:

P r o p o s i t i o n 4.15. The image of j is dense in K
A

(E).

P r o o f . As a consequence of (4.14), we have that G*(C(E) ) E× (Uh (E) ) dense
in C×(Uh (E); moreover:

G*(C(E) ) E× (Uh (E) )OG*(C(E) )4 E× (Uh (E) )OG*(Uh (E) ) r

we can set the following

D e f i n i t i o n 4.16. It is natural to call E
A

(E) the sound moduli space of bucs
on E ; an element [v]� E

A
(E) is called an (equivalence class of ) E-holomorphic

connection(s) if it satisfies V v
0, 240;

set:

W (E) »4][v]� E
A

(E)NV v
0, 240( .

It is clear that, if JM is integrable, then E-holomorphic connections correspond to
integrable bucs.

The complex counterpart of the topological triviality of the tangent bundle of
oriented 3-manifolds is represented by Calabi-Yau manifolds, i.e. Kähler n-mani-
folds (M , k) equipped with a holomorphic (n , 0 )-form e, satisfying eRe

4
k n

n!
.

In any CY n-manifold (M , k , e), we can define

*e : R0, pKR0, n2p

by means of the relation aR *e a4NaN2 e and so *e a4 * (aRe); note that

( *e a , b)4 (a , *e b)

if n44 , then a�R2 (M) is said to be complex asd (resp. sd) w. r. to e if *e a4

2a (resp. *e a4a); set

R0, 2
6 (e) »4]a�R0, 2 (M)N *e a46a(

since the condition eRe4
k 4

4 !
defines e up to l�U(1), complex asd and complex

sd interchange simply passing from e to 2e: the special elements in C (Uh (E) )
are therefore the eigenvectors of *e : given such a connection, e can be always nor-
malized in such a way the corresponding eigenvalue is 1.
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Consider a Calabi-Yau 3-fold (M , k , e) and set, with some abuse of nota-
tion:

CCS( [v] ) »4�
M

tr gV vRv2
1

6
vR [v , v]hRe

this is a multivalued function defined on a covering space of E
A

(E) with covering
group at most H 3 (M , Z); we have

¯J CCS40

and

¯J CCSevf(a)4�
M

tr (V v
0, 2Ra 0, 1 )Re

4�
M

tr (a 0, 1R * ( * (V v
0, 2Re) ))4�

M

aa 0, 1 , *e V v
0, 2 b dm( g) .

(5)

The complex gradient vector field of CCS at [v] is given by *e V v
0, 2 and the ze-

roes of *e Vv 0, 2 (i.e. the elements of W(E)) are the equivalence classes of holo-
morphic bundles of a fixed topological type over M and «counting» them will con-
jecturally yield an invariant which represents the complex counterpart of the Cas-
son invariant; the ellipticity still holds as in the real case, but, in order to produce
a rigorous definition, we must handle with some care the perturbation/deforma-
tion theory and this is not yet entirely available.

If [v]� E
A

(E) satisfies V v
0, 240 then

VV vV
242Ch2 (E) Q [k]n221

r

2
(c1 (E) Q [k]n21 )2

(cf. also in the following) and this ensures the compactness of the moduli
space.

Consider now a map v : T2K E× (Uh (E) ); again setting PA »4p1*(P), where
p1 : M3T2KM is the natural projection, interpret v as vA� C (PA) simply defining
vA[ (u , z) ] »4v(z)[u]; consider, in M3T2 , eA 4eRdz ; we have:

V vA4V v1
¯v

¯z
dz1

¯v

¯z
dz
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and so

g ¯v

¯z
h0, 1

46 *e V v
0, 2 `

.
/
´

V vA
0, 246 *

A
eA V vA

0, 2 .

HvA40 .
(6)

These equations make sense in any CY 4-fold and they are called SU(4)-istanton
equations.

We have:

SU(4)BSpin (6) %KSpin (7)

and the Spin (7)-representation splits as

R2 (M)4A5B

restricting to SU(4) we have:

B4Rk5R1
0, 2 (e)

and so the SU(4)-instanton equations correspond to the vanishing of the B-com-
ponent for Spin (7)-connections and so they make sense for any Spin (7)-struc-
ture, i.e. for any Riemannian 8-manifold with holonomy %Spin (7).

SU(4)-istantons fit, as a special case, in a much more general theory: h-anti-
selfduality (h-asd) ([11]), which will be the object of next section.

We want to show first two things:

a) we have the following picture:

1) In the Real Case: Geometric Definition of Casson invariant D Definition
via Gauge Theory

2) In the Complex Case: Definition via Gauge Theory K Conjectural Geomet-
ric Definition ([6]).

Let us explain a little bit more about the last arrow; a possible way to recon-
struct, in the complex case, the Heegaard splitting situation is the following: let S

be a Calabi-Yau surface; let M 6 be two Calabi-Yau 3-folds such that S is embed-
ded in M 6 as the zero set of a section of the anticanonical bundle K 21

M6 ; consider
M04M 1NS M 2 ; then we can find (mod obstructions) a deformation ]Mt( of M0

with Mt smooth for tc0; more precisely, locally around S , we can perform the
following construction (and then extend): let n 6 be the normal bundle of S%M 6 ;
consider p4n 15n 2KS ; then p *(n 6 ) has a tautological section s 6 ; for any
holomorphic section e of n 15n 2 , the equation s 1 s 24e cuts out a 3-dimension-
al subvariety Ve of n 15n 2 (and, of course M0BV0); if e has transverse zeroes
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giving a smooth curve Z in S , then Ve is smooth: for such an e we can set
Mt »4Vte .

Now, a holomorphic bundle over M0 is given by a pair of bundles E 6 over M 6

which are isomorphic over S ; let u S�R2, 0 (S) be a never vanishing holomorphic
(2 , 0 )-form; let EKS be a complex vector bundle and extend it to M 6 ; WS (E) is
a complex symplectic manifold:

qevf(a , b) »4�
S

aRbRu S .

Set:

L 6 (E) »4][v]� WS (E)N[v]� WM6 (E)(

then:

WM0
(E)4]( [v 1 ], [v 2 ] )� WM1 (E)3WM2 (E)N[v 1 ]4 [v 2 ] on S(

therefore (cf. (1) and (2)):

WM0
(E)BL 1 (E)OL 2 (E) .

We have the following ansatz

L 1 (E)OL 2 (E)4 lim
tK0

WMt
(E)

i.e. the intersections points L 1 (E)OL 2 (E) appears as the limit of the W(E) on
the Calabi-Yau manifold Mt as the complex structure degenerates.

b) We want to show that, in some sense, the previous version of Casson In-
variant Theory cannot be further extended; in fact, assume M is a real n-dimen-
sional manifold and let h�Rn23 (M), dh40 and let (E , h)KM be a rank r , Her-
mitian bundle; consider:

GCS( [v] ) »4�
M

tr gV vRv2
1

6
vR [v , v]hRh

defined on a suitable covering of 8
A

(C(E) ); then:

GCS 8 evf(a)4�
M

tr (V vRa)Rh
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the induced linearized complex is essentially

R0K
d
R1 (M)K

hRd
Rn21 (M)K

d
Rn (M)(7)

equivalently, considering a curve v : S 1K8
A

(C(E) ), in the same notations as be-
fore, we have:

V vA42 *
A(V

*
ARh)

=

.
/
´

dv

dt
Rh42 * V v

dv

dt
42 * (V vRh)

(8)

the system (8) reduces to a single equation if and only if the map aO * (aRh) is
invertible (and this is also equivalent to the ellipticity of (7)); it is well known that
this corresponds to the fact that * h induces a non degenerate cross-product
Rn3RnKRn and this is possible if and only if n43, 7.
n43, h41 is the standard case, n47 corresponds to Spin (7)-manifolds, with
G2-manifolds as a special case.

5 - h-antiselfduality

Let p :(E , h)K (M , g) be a unitary bundle of complex rank r over a compact
Riemannian manifold of dimension n and let h�Rn24 (M) with dh40. We have
first the following

L e m m a 5.1 ([11]). Let v� C (Uh (E) ) such that:

tr V v is a harmonic 2-form(9)

hRgV v2
1

r
(tr V v ) Ih42 * gV v2

1

r
(tr V v ) Ih(10)

then v is a YM-connection and

1

4p 2 u �
M

NV vN
2 dm(g)2

1

r
�

M

Ntr V vN
2 dm(g)v4g2Ch2(E)1

1

r
(c1(E))2h Q [h](11)
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P r o o f . From

V v4
1

r
(tr V v ) I1 * khRgV v2

1

r
(tr V v ) Ihl

it follows:

D *v V v4
1

r
D *v (tr V v ) I1 * DvkhRgV v2

1

r
(tr V v ) Ihl4

1

r
d*(tr V v ) I1 * k(21)n24 hRgDv V v2

1

r
d(tr V v ) Ihl40

(12)

to get (11) simply multiply (10) by V v2
1

r
(tr V v ) I and integrate. r

D e f i n i t i o n 5.2. A solution of (9) and (10) is called an h-asd connection (or
h-asd istanton).

Fundamental Examples (see [11]).

a) Let (M , JM , g) be a compact Kähler manifold of complex dimension m with
Kähler form k or, more in general, let (M , k) be a 2m-dimensional compact sym-
plectic manifold equipped with a k-calibrated complex structure JM :
set

h»4
k m22

(m22) !

we have the following algebraic facts:

l a�R2, 0 (M)5R0, 2 (M) ¨ hRa4 * a

l a�R1, 1 (M), hRa42 * a ¨ L k a40 therefore

hRgV v2
1

r
(tr V v ) Ih42 * gV v2

1

r
(tr V v ) Ih

=

.
/
´

V 0, 2
v 4

1

r
(tr V 0, 2

v ) I

Hv40

(13)

assume now c1 (E) is of type (1 , 1 ); therefore, if v is h-asd (and so it satisfies (13)
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and tr V v is harmonic), we have:

tr V v4a 1, 11db

and, by Hodge decomposition, db40 and thus tr V 0, 2
v 40 and h-antiselfduality

reduces to

.
/
´

V v
0, 240

Hv40
(14)

note that v� C (Uh (E) ) satisfiying (14) is h-asd because, by the curvature identi-
ty (4), it is an absolute minimum of YM and so, in particular D *v V v40 and thus
tr V v is harmonic.

b) Let (M , k , e) be a CY 4-fold;
set

h44 De e1
1

2
k 2

it is easy to check that v� C (Uh (E) ) satisfies (10) if and only if

.
/
´

V 0, 2
v 2

1

r
(tr V 0, 2

v ) I42 *egV 0, 2
v 2

1

r
(tr V 0, 2

v ) Ih
d(tr V v

0, 2 )42 d( *e tr V v
0, 2 )

Hv40 .

(15)

If (c1 (E) )0, 2 is complex antiselfdual, then tr V v
0, 24 *e tr V v

0, 2 and so (15) re-
duces to the istanton equations (6); note that, for any

a� T 0, 2 (C(E), SX(r , C), ad ) ,

from

a42 *e a1 (a1 *e a)42 * (aRe)1 (a1 * (aRe) )
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we obtain:

VaV24�
M

tr (aR * a)42�
M

tr (aRa)Re1�
M

tr (aR * (a1 * (aRe) ))

42�
M

tr (aRa)Re1
1

2
�

M

tr ((a1 * (aRe) )R * (a1 * (aRe) ))

1
1

2
�

M

tr ((a2 * (aRe) )R * (a1 * (aRe) ))

42�
M

tr (aRa)Re1
1

2
Va1 *e aV21

1

2
(a , *e a)2

1

2
( *e a , a)

(16)

consequently, if we normalize e in such a way that

�
M

tr (aRa)Re�R

we have (a , *e a)�R and so:

VaV242�
M

tr (aRa)Re1
1

2
Va1 *e aV2

in particular, for a4V v
0, 2 , choosing e in such a way that 2Ch2 (E) Q [e]F0, we

obtain:

VV v
0, 2

V

242Ch2 (E) Q [e]1�
M

N(11 *e ) V v
0, 2 N2 k n

and so

l Ch2 (E) Q [e]c0 ¨ av� C (Uh (E) ) with V v
0, 240

l Ch2 (E) Q [e]40 ¨ (11 *e ) V v
0, 240 if and only if V v

0, 240.

Note also that (4) can be rewritten as:

YM(v)42Ch2 (E) Q ( [k]21 [e] )1
r

2
(c1 (E) Q [k 3 ] )2

12 �
M

N(11 *e ) V v
0, 2N2 k n1

1

2
�

M

NHvN
2 k n
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and so SU(4)-istantons are absolute minima for YM and thus they are h-
asd.

For example, let (M , k , e) be a CY 3-fold and let (E , h)KM be a Hermitian
bundle of rank r; consider MA »4M3T2 , eA »4eRdz, kA »4k1dzRdz (dz , dz be-
ing the standard forms on T2 ) and let EA »4p *(E) with the induced structure;
then:

vA� C (Uh (EA) ) is T2 -invariant

=

vA4v1 f dz2 f J dz

for v� C (Uh (E) ), f� T 0 (C(E), SX(r , C), ad) (see Appendix (B)) and so:

V vA4V v1Dv fRdz2Dv f JRdz2[ f , f J ] dzRdz

now:

vA is a SU(4) -istanton

=

.
/
´

V v
0, 24 ¯v* q

Hv k 34 [q , q J ]
(17)

where q»4 f Je; but Ch2 (EA) Q [e]40 and so V v
0, 240 and ¯v f J40.

Completely similar results can be obtained for Spin (7)- and G2-manifolds (see
again [11]).

6 - A more abstract setting

We want to summarise and put everything on a more abstract set-
ting; Let (M , g) be an n-dimensional Riemannian manifold and let (E , h)
be a rank r Hermitian bundle on it; let L be a section of
HomR(Fp (Uh (E), c(r), ad), Fn2p (Uh (E), c(r), ad)) such that:

1) for every a , b�Fp (Uh (E), c(r), ad), tr (aRL(b) )4 tr (L(a)Rb )
2) L4L11L2 in such a way that:

(a) for every v� C (Uh (E) ), L1 i Dv4Dv i L1
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(b) there exists c�R , 0EcE1, such that, for every a

�F2 (Uh (E), c(r), ad), 2tr (aRL2 (a) )GcNaN2 dm( g)

(in the previous section we confined ourself to the case L : aOaRh with h�
Rn22p (M), dh40, p42);
let f be the section of EndR (F2 (Uh (E), c(r), ad) ) defined as f(a) »42*(L(a) );
then:

aa, f(b)b dm(g)42tr(aRL(b))42 tr(L(a)Rb)4a2L(a), *bb4af(a), bb dm(g)

and so f is pointwise symmetric; assume: for every x�M , 1Fmaxsp(f[x] )
(sp(f[x] ) being the spectrum of f[x]); then, writing a� T 2 (Uh (E), c(r), ad ) as a

4f(a)1 (a2f(a) ), we obtain:

VaV24�
M

tr (aR* a)42�
M

tr (aRL(a) )1�
M

tr (aR*(a2f(a) ))

42�
M

tr (aRL(a) )1
1

2
�

M

tr ((a2f(a) )R*(a2f(a) ))

1
1

2
�

M

tr ((a1f(a) )R*(a2f(a) ))

42�
M

tr (aRL(a) )1
1

2
Va2f(a)V21

1

2
VaV22

1

2
Vf(a)V2

(18)

by the assumption on the spectrum of f we have:

Va2f(a)V21VaV22Vf(a)V2F0

with equality if and only if f(a)4a ;
in the special case a4V v for v� C (Uh (E) ), we have:

2�
M

tr (V vRL(V v ) )42�
M

tr (V vRL1 (V v ) )2�
M

tr (V vRL2 (V v ) )

G2�
M

tr (V vRL1 (V v ) )1c�
M

NV vN
2 dm( g)

(19)

now 2�
M

tr (V vRL1 (V v ) ) is independent of v : call it cL1
(E); consequently:

l if f(V v )4V v , then

(12c)VV vV
2GcL (E)
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l if L4L1 then

VV vV
24cL (E)1

1

2
VV v2f(V v )V21

1

2
VV v V

22
1

2
Vf(V v )V2FcL (E)

with equality if and only if f(V v )4V v .

Finally, let

M
A

L (E) »4]v� C× (Uh (E) )Nf(V v )4V v(OG*(Uh (E) )

then set

T 2
1 (Uh (E), c(r), ad) »4 (I2f) T 2 (Uh (E), c(r), ad)

and let

Sv : T 1 (Uh (E), c(r), ad)K T 0 (Uh (E), c(r), ad)5T 2
1 (Uh (E), c(r), ad )

be defined as

Sv (a) »4 (D *v a , Dv a2f(Dv a) )

then

T[v] M
A

L4Ker Sv

and the ellipticity condition (cf. (7)) is given by the following: for every x�M ,

f[x] has 1 as eigenvalue of multiplicity
(n21)(n22)

2
.

Appendix A. Regular manifolds

Let (M , JM , g) be a compact Hermitian manifold of complex dimension n with
Kähler form k and let p : (E , h)K (M , g) be a Hermitian bundle of rank r.

In order to guarantee that the map

Ch2 : C (C(E) )KC

vO2
n(n21)

12
�

M

tr (VRV)Rk n22

is constant, we need dk n2240 and this condition sounds somehow too restrictive;
we set:
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D e f i n i t i o n A.1. An n-dimensional Hermitian manifold (M , JM , g) with
Kähler form k is said to be regular if

1) dk n2140
2) dk n224 ( dk n22 )n , n231 ( dk n22 )n23, n.

R e m a r k A.2. It is easy to check that:

a) if n43, then (2) ¨ (1)
b) (S 6 , Cay , std) is regular.

In general, given v , vA� C (Uh (E) ), vA4v1a , we have:

tr (V vARV vA)2tr (V vRV v)4d ktr (aRV vA)1tr (aRV v)2
1

6
tr (aR[a, a])l

therefore if V vA
0, 24V v

0, 240 and (M , JM , g) is compact and regular, then:

Ch2 (vA)2Ch2 (v)42
1

6
�

M

tr (aR [a , a] )Rdk n22

4
1

6
�

M

[tr (A(a 1, 0 )R [a , a]2, 0 )1tr (A(a 0, 1 )R [a , a]0, 2 )]Rk n22

therefore, if [v], [vA]� W(E), then we have:

YM(vA)4Ch2 (vA)1
r

2
(c1 (E) Q [k n21 ] )2

4Ch2 (v)1 (Ch2 (vA)2Ch2 (v) )1
r

2
(c1 (E) Q [k n21 ] )24C1l(a)

where l is of order zero; this provides a local L 2-bound for the curvature of ele-
ments of W(E).

A similar setting arises if we perform the construction of the example at the
end of Section 5, starting from a symplectic 6-fold (M , k) with a k-calibrated com-

plex structure J for which there exists e�R3, 0
J (M) such that eRe4

k 3

6 !
and

dDe e40.
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Appendix B. Some constructions involving invariant connections

Let p : PKM be be a principal G-bundle and let p : MAKM be a principal K-
bundle over the differentiable manifold M , where G and K are Lie groups with
Lie algebras S and W respectively.

Consider:

PA »4p *(P)4](xA, u)�MA3PNp(xA)4p(u)(

K acts on the right on PA and so PA is

1) a principal G-bundle over MA

2) a principal K-bundle over P with bundle projection r ;
when considered as in 2), call it P×; vA� C (PA) is K-invariant if and only if

vA4r *(v)1 (q i r)(o)

where

l v� C (P)
l o� C (P×)
l q� T (P , S , ad)7 W*

for a K-invariant vA� C (PA), setting q× »4 (q i r)(o), we have:

V vA4r *(V v )1Dv q×1
1

2
[q×, q×] .

Consider, as a special case, MA4M3K : let ]z 1* , R , z d*( be a basis of W*, and
identify every z j* with the corresponding invariant section of T * K ; vA� C (PA) is K-
invariant if and only if

vA4v1 !
h41

d

qh z h*

with v� C (P), q1 , R , qd� T 0 (P , S , ad);
for a K-invariant vA� C (PA) , we have:

V vA4V v1 !
h41

d

Dv qhRz h*1 !
rEs

[qr , qs ] z r*Rz s*.

For example, if K4T2 , G4U(r), then vA� C (PA) is T2-invariant if and only if

vA4v1adx1bdy
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with v� C (P) and a , b� T 0 (P , c(r) ad ); now setting f»4a2 ib and so f
� T 0 (P , SX(r , C), ad ), we obtain:

vA4v1 f dz2 f J dz

and

V vA4V v1Dv fRdz2Dv f J dz2[ f , f J ] dzRdz .
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A b s t r a c t

The aim of this paper is to echo, discuss and explain some of the attemps to define, by
gauge theory, a Casson-like invariant for complex manifolds. One of the basic settings is
the description of moduli spaces of bundle complex structures stemming from [5].
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