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An elliptic problem with a layer (**)

1 - Introduction

Let V be an open set in R N. We denote by S the set VO ]xN40( and we as-
sume Sc¯. Moreover we denote x4 (x 8 , xN )4 (x1 , x2 , R , xN21 , xN ). We con-
sider the problem

�Du Dv m( dx)1�D 8u D 8 v s ( dx)40(1.1)

u�H 1
loc (V) with trace in H 1

loc (S)

(v�H 1
loc (V) with trace in H 1

loc (S), with supp (v)’V

where m denotes the Lebesgue measure on R N and s denotes the Lebesgue mea-
sure on R N21 ; moreover we denote by D the gradient in R N and by D 8 the tan-
gential gradient on R N21

x 8 . If u verifies (1.1) we say that u is a solution of (1.1). If
we replace in (1.1) the equality by the inequality G (F) and we consider only po-
sitive test functions v we say that u is a subsolution (supersolution) of (1.1) in V.

The aim of this paper is to study the local regularity for a solution of
(1.1).

If we consider a ball that does not intersect S the problem of the regularity of
u is reduced to the problem of the regularity of an harmonic function; then in par-

(*) Dipartimento di Matematica «F. Brioschi», Politecnico di Milano, Piazza Leonardo
da Vinci 32, 20133 Milano, Italy. E-mail: marbirHmate.polimi.it

The Author has been partially supported by the MURST Research Project: «Non-Eucli-
dean structures: Dirichlet forms and fractals». The results in the paper have been announ-
ced in the Conference «Dirichlet forms», Oberwolfach 1998.

(**) Received June 24, 1999. AMS classification 35 B 65, 35 J 70, 35 b 45.



2 M. BIROLI [2]

ticular Harnack inequality for nonegative u and Hölder continuity for u hold.
Problems arise in the case of balls having a non empty intersection with S (due to
the different rescaling by the usual dilation of the two terms in (1.1)).

We also observe that the bilinear form in (1.1) defines a strongly local regular
Dirichlet form on L 2 (V , m1d S ), [3], but the measure m1d S does not verify a
doubling property, then the regularity theory in [1] [2] does not apply.

To study the local regularity of u in B(x0 , r) with x0�R N21
x 8 we modify the

definition of a ball defining B(x0 , r)4]x : Nx 82 (x0 )8 N41NxN2 (x0 )N N2Er 4(

and we write S(x0 , r)4B(x0 , r)O ]xN40(. We define a cut-off function bet-

ween B(x0 , tr) and B(x0 , sr), s , t� k 1

2
, 1h sE t, as h(x)4f (d(x2x0 ) ) where

d(x)4 (Nx 8N41xN
2 )

1

4 , f(r)41 for rGsr, f(r)40 for rF tr, 0GfG1 and

Nf 8 NG
C

(t2s) r
. Then

ND 8 hNG
C

(t2s) r
on S(x0 , r) , NDhNG

C

(t2s) r 2
on B(x0 , r) .

With such a modification we obtain:

T h e o r e m 1.1. Let u be a nonegative solution of (1.1) in B(x0 , 4r),
x0�R N21

x 8 ; then

sup
B(x0 , r)

uGC inf
B(x0 , r)

u

where C is a constant depending only on N.

T h e o r e m 1.1. Let u be a solution of (1.1) in V ; then u is locally Hölder
continuous in V.

In Section 2 we prove suitable Poincaré and Sobolev type inequalities, that
play a fundamental role in proving, by a Moser type iteration method, local L Q

estimates for solutions (or subsolutions) of (1.1), as we give in Section 3. In Sec-
tion 4 we prove Theorems 1.1 and 1.2. Theorem 1.2 is an easy consequence of
Theorem 1.1; the proof Theorem 1.1 uses an iteration method introduced by
Moser, [6], that allow us to consider estimates only on concentric balls B(x0 , r);
this last opportunity is usefull on account of the different forms of the balls in the
case x0�S or x0�S.
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2 - Poincaré and Sobolev type inequalities

It is well known that a fundamental role in the local regularity theory of har-
monic functions relative to an uniformly elliptic operator is played by the usual
Poincaré and Sobolev inequalities.

The goal of this section is to prove suitably adapted Poincaré and Sobolev in-
equalities relative to the problem in consideration.

P r o p o s i t i o n 2.1. Let u be a function in H 1 (B(x0 , r) ), x0�R N21
x 8 , with a

trace in H 1 (S(x0 , r) ) and ur be the average of u on S(x0 , r) relative to the mea-
sure s ; then

�–
B(x0 , r)

Nu2urN
2 m( dx)1 �–

S(x0 , r)

Nu2urN
2 s ( dx)

GC yr 4 �–
B(x0 , r)

NDN uN2 m( dx)1r 2 �–
S(x0 , r)

ND 8uN2 s ( dx)z

where �–
B(x0 , r)

m( dx) g �–
S(x0 , r)

s ( dx)h denotes the average on the set B(x0 , r)

(S(x0 , r) ) relative to the measure m (s).

The result in Proposition 2.1 is a consequence of the following Sobolev type
inequality:

P r o p o s i t i o n 2.2. Let u be a function in H 1 (B(x0 , r) ), x0�R N21
x 8 , with a

trace in H 1 (S(x0 , r) ).

(a) Let ND3; there exists qD2 such that

y �–
B(x0 , r)

Nu2urN
q m( dx)1 �–

S(x0 , r)

Nu2urN
q s ( dx) z

2

q

GC yr 4 �–
B(x0 , r)

NDN uN2 m( dx)1r 2 �–
S(x0 , r)

ND 8uN2 s ( dx)z .
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(b) Let N43; for every qD2 we have

y �–
B(x0 , r)

Nu2urN
q m( dx)1 �–

S(x0 , r)

Nu2urN
q s ( dx) z

2

q

GC yr 4 �–
B(x0 , r)

NDN uN2 m( dx)1r 2 �–
S(x0 , r)

ND 8uN2 s ( dx)z .

(c) Let N42; then

osc
B(x0 , r)

uGC yr 4 �–
B(x0 , r)

NDN uN2 m( dx)1r 2 �–
S(x0 , r)

ND 8uN2 s ( dx)z
1

2
.

P r o o f . We prove the result for the case (a); the proof in the cases (b) and (c)
is analogous.

It is enough to prove the result in the case r41 and we write B(x0 , r)4B ,
S(x0 , r)4S.

Let s4
2N22

N23
; we have

k �
S

Nu2u1N
s s ( dx) l

2

s
GC�

S

ND 8uN2 s ( dx) ,

where we denote by C possibly different constants depending only on N.

Let q4
21s

2
4

2N24

N23
; by easy computations we obtain

sup
( (x0 )N21, (x0 )N11)

�
BO ]xN4 t(

Nu2u1N
q s ( dx)

GC yg�
B

NDN uN2 m( dx)h
q

2
1 g�

S

Nu2u1N
s s ( dx)h

q

s z

GC yg�
B

NDN uN2 m( dx)h
q

2
1 g�

S

ND 8uN2 s ( dx)h
q

2 z
and the result follows.
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3 - The local L Q estimate for subsolutions

We prove at first an L Q estimate for nonnegative subsolution of (1.1) and fi-
nally we prove the general L Q estimate for nonnegative solutions of (1.1)

P r o p o s i t i o n 3.1. Let u be a function in H 1 (B(x0 . r) ), x0�R N21
x 8 , with

a trace in H 1 (S(x0 , r) ). Assume that u is a nonnegative subsolution in a

neighbourhood of B(x0 , r); then there exists constants d and C such that for

a� k 1

2
, 1h and pF2 we have

g sup
B(x0 , ar)

uhp
G

C

(12a)d
y �–

B(x0 , r)

u p m( dx)1 �–
S(x0 , r)

u p s ( dx) z
1

p
.

P r o o f . Let bF1 and 0EME1Q; we define

HM (t)4 t b for t� [0 , M]

HM (t)4M b1bM b21 (t2M) for tDM .

The function HM (t) is Lipschitz-continuous for every fixed M.
We assume that u is Lipschitz continuous (if it is not the case we use an ap-

proximation of u in H 1 (B(x0 , r) ) and in H 1 (S(x0 , r) ) by a sequence ]uk( of non-
negative Lipschitz-continuous functions).

For a fixed M we define

f(x)4h(x)2 �
0

u(x)

H 8M (t)2 dt

where h is a Lipschitz continuous function with support in B(x0 , r) to be choosen.
We observe that f are nonegative Lipschitz continuous functions defined in
B(x0 , r) and

Di f4h 2 H 8M (u)2 Di u12hDi h �
0

u(x)

H 8M (t)2 dt(3.1)
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for i41, 2 , R , N. Since u is a subsolution we have

�Du h 2 H 8M (u)2 Du m( dx)1�Du 2h Dh g�
0

uk

H 8M (t)2 dth m( dx)

1�D 8u h 2 H 8M (u)2 D 8u s ( dx)1�D 8u 2hD 8 h u �
0

u

H 8M (t)2 dtv s ( dx)G0 .

(3.2)

We observe that

NDi u 2h Di h u �
0

u

H 8M (t)2 dtvNG
1

2
Di u h 2 H 8M (u)2 Di u

12NDi hN2g 1

H 8M (u)
�

0

u

H 8M (t)2 dth2

G
1

2
Di u h 2 H 8M (u)2 Di u12NDi hN2 (uH 8M (u) )2 .

From (3.2) it follows

1

2
�ND (HM (u) )N2 h 2 m( dx)1

1

2
�ND 8 (HM (u) )N2 h 2 s ( dx)

G2 �NDhN2 (uH 8M (u) )2 m( dx)12 �ND 8 hN2 (uH 8M (u) )2 s ( dx) .
(3.3)

We choose now h as the cut-off function between B(x0 , sr) and B(x0 , tr). From
(3.3) we obtain

�
B(x0 , sr)

ND (HM (u) )N2 m( dx)1 �
S(x0 , sr)

ND 8 (HM (u) )N2 s ( dx)

G
c2

(t2s)2 r 4
�

B(x0 , tr)

(uH 8M (u) )2 m( dx)1
c2

(t2s)2 r 2
�

S(x0 , tr)

(uH 8M (u) )2 s ( dx) .

(3.4)
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Using the Sobolev inequality we obtain

y �–
B(x0 , sr)

NHM (u)2 (HM (u) )sr N
q m( dx)1 �–

S(x0 , sr)

NHM (u)2 (HM (u) )sr N
q s ( dx) z

1

q

Gc3
s

t2s
y �–

B(x0 , tr)

(uH 8M (u) )2 m( dx)1 �–
S(x0 , tr)

(uH 8M (u) )2 s ( dx) z
1

2

where q is as Proposition 2.2 for NF3 and is an arbitrarly fixed real number
greater than 2 if N42.

We use the inequality H(t)G tH 8 (t) and we obtain

y �–
B(x0 , sr)

NHM (u)Nq m( dx)1 �–
S(x0 , sr)

NHM (u)Nq s ( dx) z
1

q

Gc5g s

t2s
11h y �–

B(x0 , tr)

(uH 8M (u) )2 m( dx)1 �–
S(x0 , tr)

(uH 8M (u) )2 s ( dx) z
1

2
.

We observe that g s

t2s
11hG2

s

t2s
. We take into account the definition of HM

and we let MK1Q; then

y �–
B(x0 , sr)

u bq m( dx)1 �–
S(x0 , sr)

u bq s ( dx)h
1

q

Gc6 b
s

t2s
y �–

B(x0 , tr)

u 2b m( dx)1 �–
S(x0 , tr)

u 2b s ( dx) z
1

2
.

We write 2b4n, q42t (tD1) and we obtain

y �–
B(x0 , sr)

u tn m( dx)1 �–
S(x0 , sr)

u tn s ( dx) z
1

tn

G gc6 n
s

t2s
h

2

n y �–
B(x0 , tr)

u n m( dx)1 �–
S(x0 , tr)

u n s ( dx) z
1

n
.

(3.5)
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From (3.5) an iteration method of Moser’s type (see for example [3]) gives the
result.

P r o p o s i t i o n 3.2. Let u be a local nonnegative solution of our problem (1.1)
in B(x0 , 2r), x0�R N21

x 8 . Then there exists constants d, tD1 and C such that for

a� k 1

2
, 1h and every real number p we have

g sup
B(x0 , ar)

uhp
G

C

(12a)d
(11NpN)2tO(t21)y �–

B(x0 , r)

u p m( dx)1 �–
S(x0 , r)

u p s ( dx) z
1

p
.

P r o o f . It is enough to prove the result in the case 2QEpE2 and
uFeD0.

By Proposition 3.1 u is bounded in B(x0 , r); we define f4h 2 u b, with bG1
and we can prove that f is in H 1 (B(x0 , r) ) and its trace is in
H 1 (S(x0 , r) ).

We recall that

Di f4h 2 bu b21 Di u12hDi h u b

Di (u
b11

2 )4
b11

2
u

b21

2 Di u .

Then for bc21 we obtain

N b

b11
N

2 �
B(x0, r)

ND(u
b11

2 )N2h 2m(dx)1N b

b11
N �
S(x0, r)

ND 8(u
b11

2 )N2h 2s (dx))

G �
B(x0, r)

ND(u
b11

2 ) DhNu
b11

2 h m(dx)1 �
S(x0, r)

ND 8(u
b11

2 ) D 8hNu
b11

2 h s (dx) .
(3.6)

From (3.6) we easily obtain for bc0, 21

�
B(x0 , r)

ND(u
b11

2 )N2 h 2 m( dx)1 �
S(x0 , r)

ND 8 (u
b11

2 )N2 h 2 s ( dx)

G g b11

b
h2

N �
B(x0 , r)

NDhN2 u b11 m( dx)1 g b11

b
h2

�
S(x0 , r)

ND 8 hN2 u b11 s ( dx) .

Then, taking again h as the cut-off function between B(x0 , sr) and B(x0 , tr),
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1

2
GsE tE1, we have

�
B(x0 , sr)

ND(u
b11

2 )N2 m( dx)1 �
S(x0 , sr)

ND 8 (u
b11

2 )N2 s ( dx)

Gg b11

b
h2 1

(t2s)2 r 4
�

B(x0 , tr)

u b11 m( dx)1g b11

b
h2 1

(t2s)2 r 2
�

S(x0 , tr)

u b11 s ( dx) .

We use now the Sobolev inequality in Proposition 2.2; then by the same methods
as in Proposition 3.1 we have

y �–
B(x0 , sr)

u
b11

2
q
m( dx)1 �–

S(x0 , sr)

u
b11

2
q
s ( dx) z

1

q

GcN b11

b
Ng s

t2s
11h y �–

B(x0 , tr)

u b11 m( dx)1 �–
S(x0 , tr)

u b11 s ( dx) z
1

2
.

(3.7)

Setting b114n and q42t we have for any 2QEnG2, nc0, 21

y �–
B(x0 , sr)

u tn m( dx)1 �–
S(x0 , sr)

u tn s ( dx) z
1

tNnN

Gc
2

NnN gN n

n21
N s

t2s
11h

2

NnN y �–
B(x0 , tr)

u n m( dx)1 �–
S(x0 , tr)

u n s ( dx) z
1

NnN
.

(3.8)

From (3.8) the result follows by a Moser’s type iteration argument (see for
example [3]).

P r o p o s i t i o n 3.3. Let the assumptions of Proposition 3.2 hold and assume

that uFeD0. For a� k 1

2
, 1h let us define k by

log k4 �–
S(x0 , ar)

log u s ( dx) ,
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x0�S ; then for lD0 we have

m {x�B(x0 , ar); N log g u(x)

k
h NDl}F C

l(12a)
m (B(x0 , ar) )

s {x�S(x0 , ar); N log g u(x)

k
h NDl}F C

l(12a)
s (S(x0 , ar) )

where C is a constant that does not depend on e.

P r o o f . By easy computations we obtain

�ND(log u)N2 h 2 m( dx)1�ND 8 (log u)N2 h 2 s ( dx)

G4 �NDhN2 m( dx)1�ND 8 hN2 s ( dx)

G
c

(12a)2 g m (B(x0 , r) )

r 4
1

s (S(x0 , r) )

r 2 h
where h is the cut-off function between B(x0 , ar) and B(x0 , r). By Proposition 2.1
we obtain

�–
B(x0 , ar)

N log u2 log kN2 m( dx)G
c

(12a)2

m (B(x0 , r) )

r 4
(3.9)

�–
S(x0 , ar)

N log u2 log kN2 s ( dx)G
c

(12a)2

s (S(x0 , r) )

r 2
.(3.10)

From (3.10) and (3.11) the result easily follows.

4 - Proof of Theorems 1.1 and 1.2

We are now in position to prove Theorem 1.1.

L e m m a 4.1. Let m, m, C, u� k 1

2
, 1h be positive constants and let wD0 be
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a function in H 1 (B(x0 , r) ), x0�R N21
x 8 , such that

sup
B(x0 , sr)

w pG
C

(t2s)d

1

m (B(x0 , r) )
�

B(x0 , tr)

w p m( dx)

1
C

(t2s)d

1

s (S(x0 , r) )
�

S(x0 , tr)

w p s ( dx)

(4.1)

for all
1

2
GuGsE tG1, 0EpEm21 . Moreover, let

m (x�B(x0 , r); log wFl )G
Cm

l
m (B(x0 , r) )(4.2)

s (x�S(x0 , r); log wFl )G
Cm

l
s (B(x0 , r) )(4.3)

for all lD0. Then there exists a constant g4g(u , d , C) such that

sup
B(x0 , ur)

uGg m .

P r o o f . We assume, without loss of generality, r41. Replacing w by w m and
l by lm we reduce us to the case m41.

Define

f(s)4 sup
B(x0 , s)

log w , uGsE1 .

We observe that f(s) is a nondecreasing function.
We now prove that the following inequality holds:

f(s)G
3

4
f(t)1

g 1

(t2s)2d
(4.4)

where uGsE tG1 and g 1 is a constant depending on u, d, C.

We decompose B(x0 , t) and S(x0 , t) into the sets where log wD
1

2
f(t) and
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where log wG
1

2
f(t); then taking into account (4.2) and (4.3) we obtain

�
B(x0 , t)

w p m( dx)G ge pf(t) 2C

f(t)
1e p

f(t)

2 h m (B(x0 , 1 ) )

�
S(x0 , t)

w p s ( dx)G ge pf(t) 2C

f(t)
1e p

f(t)

2 h s (S(x0 , 1 ) ) .

Summing up the two inequalities we have

1

m (B(x0 , 1 ) )
�

B(x0 , t)

u p m( dx)1
1

s (S(x0 , 1 ) )
�

S(x0 , t)

u p s ( dx)

G2 ge pf(t) 2C

f(t)
1e

p
f(t)

2 h .

We choose now p such that the two terms in the right-hand side are
equal:

p4
2

f(t)
log g f(t)

2C
h

provided the term in the right-hand side is less than m2141; this last inequality
requires

f(t)Dc1(4.5)

where c1 depends only on C.
In that case we have

1

m (B(x0 , 1 ) )
�

B(x0 , t)

u p m( dx)1
1

s (S(x0 , 1 ) )
�

S(x0 , t)

u p s ( dx)G4e
p

f(t)

2 .

Hence by (4.1) we obtain

f(s)G
1

p
log g 4C

(t2s)d
e p

f(t)

2 h4 1

p
log g 4C

(t2s)d h1 1

2
f(t) .
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Then, taking into account the fixed value of p, the above inequality becomes

f(s)G
1

2
f(t) { log g 4C

(t2s)d h
log g f(t)

2C
h

11} .

If

f(t)F
32C 3

(t2s)2d
(4.6)

we obtain

f(s)G
3

4
f(t)

then (4.4) holds.
If (4.5) or (4.6) does not hold then

f(s)Gf(t)G
g 1

(t2s)2d

uGsE tG1, where g 1 is a constant depending on C , c1 , d , u; so (4.4) holds
again.

We have so proved the inequality (4.4); the result now follows by iteration as
in Lemma 3 in [6].

We are now in position to prove the result of Theorem 1.1. We assume, with-

out loss of generality, uFeD0. We use the result in Proposition 4.1 for
u

k
and

k

u
, where log k4 �–

S(x0 , r)

log us ( dx). The assumptions of proposition 4.1 hold in

B(x0 , 2r) by Proposition 3.2 and 3.3; then

sup
B(x0 , r)

u

k
GC , sup

B(x0 , r)

k

u
GC .

Then the result follows.
Theorem 1.2 follows from Theorem 1.1 by standard methods (see [5]).
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A b s t r a c t

We consider the problem of local regularity for a local solution of an elliptic problem
with a layer. The difficulty comes from the different homogeneity degree between the mea-
sure of a ball and the measure of its intersection with the layer. The main tool is a modi-
fication of the balls centered on the layer.

* * *


