LásZLó Tóth (*)

Asymptotic formulae concerning arithmetical functions

 defined by cross-convolutions, VIII.On the product and the quotient of $\sigma_{A, s}$ and $\phi_{A, s}\left({ }^{* *}\right)$

1-Introduction

Let \mathbb{N} denote the set of positive integers and let $A(n)$ be a subset of the positive divisors of n for each $n \in \mathbb{N}$. The A-convolution of the arithmetical functions f and g is given by

$$
\begin{equation*}
\left(f *_{A} g\right)(n)=\sum_{d \in A(n)} f(d) g(n / d) \tag{1}
\end{equation*}
$$

W. Narkiewicz [5] defined the A-convolution (1) to be regular if
(a) the set of arithmetical functions is a commutative ring with unity with respect to ordinary addition and the A-convolution,
(b) the A-convolution of multiplicative functions is multiplicative,
(c) the function I, defined by $I(n)=1$ for all $n \in \mathbb{N}$, has an inverse μ_{A} with respect to the A-convolution and $\mu_{A}\left(p^{a}\right) \in\{-1,0\}$ for every prime power p^{a}.

For example, the Dirichlet convolution D, where $D(n)=\{d \in \mathbb{N}: d \mid n\}$, and the unitary convolution U, where $U(n)=\{d \in \mathbb{N}: d \mid n,(d, n / d)=1\}$, are regular.

It can be proved, see [5], that an A-convolution is regular if and only if

[^0](i) $A(m n)=\{d e: d \in A(m), e \in A(n)\}$ for every $m, n \in \mathbb{N},(m, n)=1$,
(ii) for every prime power p^{a} there exists a divisor $t=t_{A}\left(p^{a}\right)$ of a, called the type of p^{a} with respect to A, such that $A\left(p^{i t}\right)=\left\{1, p^{t}, p^{2 t}, \ldots, p^{i t}\right\}$ for every $i \in\{0,1, \ldots, a / t\}$.

The elements of the set $A(n)$ are called the A-divisors of n.
Let $\sigma_{A, s}(n)=\sum_{d \in A(n)} d^{s}$ denote the sum of s-th powers of the A-divisors of n and let $\phi_{A, s}(n)=\sum_{d \in A(n)} d^{s} \mu_{A}(n / d)$ be the generalized Euler function. Note that for $s=k \in \mathbb{N}, \phi_{A, k}(n)$ represents the number of integers $x\left(\bmod n^{k}\right)$ such that $\left(x, n^{k}\right)_{A, k}=1$, where $(a, b)_{A, k}$ stands for the greatest k-th power divisor of a which belongs to $A(b)$.

For $A=D, \sigma_{D, s}(n) \equiv \sigma_{s}(n)$ and $\phi_{D, s}(n) \equiv \phi_{s}(n)$ are the usual divisor-sum and Euler-type functions. For $A=U, \sigma_{U, s}(n) \equiv \sigma_{s}^{*}(n)$ and $\phi_{U, s}(n) \equiv \phi_{s}^{*}(n)$ are the unitary analogues of these functions, investigated by E. Cohen [1], K. Nageswara Rao [4] and others.

For other properties of regular convolutions see also P. J. McCarthy [3] and V. Sita Ramaiah [6].

In [8] we introduced the notion of cross-convolution of arithmetical functions as a special case of Narkiewicz's regular convolution as follows. We say that the regular convolution A is a cross-convolution if for every prime p we have either $t_{A}\left(p^{a}\right)=1$, i.e. $A\left(p^{a}\right)=\left\{1, p, p^{2}, \ldots, p^{a}\right\} \equiv D\left(p^{a}\right)$ for every $a \in \mathbb{N}$ or $t_{A}\left(p^{a}\right)=a$, i.e. $A\left(p^{a}\right)=\left\{1, p^{a}\right\} \equiv U\left(p^{a}\right)$ for every $a \in \mathbb{N}$. Let $P_{A}=P$ and $Q_{A}=Q$ be the sets of the primes of the first and second kind of above, respectively, where $P \cup Q=\mathbb{P}$ is the set of all primes. For $P=\mathbb{P}$ and $Q=\emptyset$ we have the Dirichlet convolution D and for $P=\emptyset$ and $Q=\mathrm{P}$ we obtain the unitary convolution U.

Furthermore, let (P) and (Q) denote the multiplicative semigroups generated by $\{1\} \cup P$ and $\{1\} \cup Q$, respectively. Every $n \in \mathbb{N}$ can be written uniquely in the form $n=n_{P} n_{Q}$, where $n_{P} \in(P), n_{Q} \in(Q)$.

If A is a cross-convolution, then

$$
\begin{equation*}
A(n)=\{d \in \mathbb{N}: d \mid n,(d, n / d) \in(P)\} \tag{2}
\end{equation*}
$$

and (1) can be written in the form

$$
\begin{equation*}
\left(f_{A}^{*} g\right)(n)=\sum_{\substack{d \mid n \\(d, n / d) \in(P)}} f(d) g(n / d) . \tag{3}
\end{equation*}
$$

In [8] we gave asymptotic formulae for $\sum_{n \leqslant x} \sigma_{A, s}(n)$ and $\sum_{n \leqslant x} \phi_{A, k}(n)$, where $s>0$ and $k \in \mathbb{N}$, assuming that A is a cross-convolution.

In [9] we established asymptotics for $\sum_{n \leqslant x} \sigma_{s}(n) \phi_{s}(n), \sum_{n \leqslant x} \sigma_{s}(n) / \phi_{s}(n)$ in case $s>0$ and for $\sum_{n \leqslant x} \phi_{s}(n) / \sigma_{s}(n)$ in case $s \geqslant 1$.

The aim of this paper is to extend the results of [9] for $\sigma_{A, s}$ and $\phi_{A, s}$ instead of σ_{s} and ϕ_{s}, in case of cross-convolutions. We obtain, as a particular case, the corresponding results for σ_{s}^{*} and ϕ_{s}^{*} which are also believed to be new.

2-On the product $\sigma_{A, s}(n) \phi_{A, s}(n)$

If A is a regular convolution and $s>1 / 2$, then inequalities

$$
\frac{n^{2 s}}{\zeta(2 s)}<\sigma_{A, s}(n) \phi_{A, s}(n) \leqslant n^{2 s}
$$

hold for every $n \in \mathbb{N}$, where ζ is the Riemann zeta function, cf. [2]. Hence we expect that the average order of $\sigma_{A, s}(n) \phi_{A, s}(n)$ is $B_{A, s} n^{2 s}$, where $1 / \zeta(2 s) \leqslant B_{A, s} \leqslant 1$. Let

$$
\zeta_{P}(z)=\prod_{p \in P}\left(1-\frac{1}{p^{z}}\right)^{-1}, \quad \zeta_{Q}(z)=\prod_{p \in Q}\left(1-\frac{1}{p^{z}}\right)^{-1} .
$$

Theorem 1. If A is a cross-convolution and $s>0$, then

$$
\begin{equation*}
\sum_{n \leqslant x} \sigma_{A, s}(n) \phi_{A, s}(n)=\frac{B_{A, s}}{2 s+1} x^{2 s+1}+O\left(R_{s}(x, Q)\right) \tag{4}
\end{equation*}
$$

where
$B_{A, s}=\zeta_{P}(s+1) \zeta_{Q}(2 s+1) \prod_{p \in P}\left(1-\frac{1}{p^{s+1}}-\frac{1}{p^{2 s+1}}+\frac{1}{p^{2 s+2}}\right) \prod_{p \in Q}\left(1-\frac{2}{p^{2 s+1}}+\frac{1}{p^{2 s+2}}\right)$
and $R_{s}(x, Q)=x^{2 s}(s>1), x^{2} \log ^{2} x\left(s=1\right.$ and Q infinite set), $x^{2} \log x(s=1$ and Q finite set), $x^{s+1}(s<1)$.

Proof. Let $f_{A, s}$ be the arithmetical function defined by

$$
\sigma_{A, s}(n) \phi_{A, s}(n)=\sum_{d \in A(n)} d^{2 s} f_{A, s}(n / d)
$$

for every $n \in \mathbb{N}$.

It is easy to check that $f_{A, s}$ is multiplicative and

$$
f_{A, s}\left(p^{a}\right)= \begin{cases}-1, \quad \text { if } p \in P, a=1 \text { or } p \in Q, a \in \mathbb{N} \\ \phi_{s}\left(p^{a}\right)=p^{a s}\left(1-\frac{1}{p^{s}}\right), \quad \text { if } p \in P, a \geqslant 2\end{cases}
$$

for every prime power p^{a}, where s is a fixed real number, cf. [9], Lemma 1. Therefore

$$
S_{1}(x) \equiv \sum_{n \leqslant x} \sigma_{A, s}(n) \phi_{A, s}(n)=\sum_{d \leqslant x} f_{A, s}(d) \sum_{\substack{e \leqslant x / d \\(e, d) \in(P)}} e^{2 s} .
$$

Now using the estimate

$$
\begin{equation*}
\sum_{\substack{n \leqslant x \\(n, a) \in(P)}} n^{r}=\frac{\phi\left(a_{Q}\right) x^{r+1}}{a_{Q}(r+1)}+O\left(x^{r+\varepsilon} \eta_{Q}(a)\right) \tag{5}
\end{equation*}
$$

valid for every $r \geqslant 0, a \in \mathbb{N}$ and for every ε with $0 \leqslant \varepsilon<1$, where $\phi \equiv \phi_{1}$ is the Euler function, $\eta_{Q}(a)=1$ (Q finite set), $\sigma_{-\varepsilon}(a)(Q$ infinite set), cf. [8], Lemma 7 and [7], Lemma 2.1, we get

$$
\begin{aligned}
S_{1}(x) & =\sum_{d \leqslant x} f_{A, s}(d)\left(\frac{\phi\left(d_{Q}\right)}{d_{Q}(2 s+1)}(x / d)^{2 s+1}+O\left(\eta_{Q}(d)(x / d)^{2 s+\varepsilon}\right)\right) \\
& =\frac{x^{2 s+1}}{2 s+1} \sum_{d \leqslant x} \frac{f_{A, s}(d) \phi\left(d_{Q}\right)}{d^{2 s+1} d_{Q}}+O\left(x^{2 s+\varepsilon} \sum_{d \leqslant x} \frac{\left|f_{A, s}(d)\right| \eta_{Q}(d)}{d^{2 s+\varepsilon}}\right) \\
& =\frac{x^{2 s+1}}{2 s+1} \sum_{d=1}^{\infty} \frac{f_{A, s}(d) \phi\left(d_{Q}\right)}{d^{2 s+1} d_{Q}}+O\left(x^{2 s+1} \sum_{d>x} \frac{1}{d^{s+1}}\right)+O\left(x^{2 s+\varepsilon} \sum_{d \leqslant x} \frac{\eta_{Q}(d)}{d^{s+\varepsilon}}\right),
\end{aligned}
$$

taking into account that $\left|f_{A, s}(n)\right| \leqslant n^{s}$ for every $n \in \mathbb{N}$. It also yields that the series appearing here is absolutely convergent and its sum is $B_{A, s}$, by Euler's product formula. The first O-term is $O\left(x^{2 s+1} / x^{s}\right)=O\left(x^{s+1}\right)$ and the second O term is $O\left(x^{2 s}\right)$ if $s>1$, choosing $\varepsilon=0$; it is $O\left(x^{2} \log x\right)$ for $s=1$ and Q finite; $O\left(x^{2} \log ^{2} x\right)$ for $s=1$ and Q infinite, in both cases with $\varepsilon=0$; finally it is $O\left(x^{2 s+\varepsilon} x^{1-s-\varepsilon}\right)=O\left(x^{s+1}\right)$ if $0<s<1$ and $\varepsilon<1-s$, see [7], Lemma 2.2.

Corollary 1. For $s>0$ the average order of the product $\sigma_{A, s}(n) \phi_{A, s}(n)$ is $B_{A, s} n^{2 s}$.

Corollary $2(A=U)$. If $s>0$, then

$$
\sum_{n \leqslant x} \sigma_{s}^{*}(n) \phi_{s}^{*}(n)=\frac{B_{s}^{*} x^{2 s+1}}{2 s+1}+O\left(R_{s}^{*}(x)\right),
$$

where

$$
B_{s}^{*}=\zeta(2 s+1) \prod_{p}\left(1-\frac{2}{p^{2 s+1}}+\frac{1}{p^{2 s+2}}\right)
$$

and $R_{s}^{*}(x)=x^{2 s}(s>1), x^{2} \log ^{2} x(s=1), x^{s+1}(s<1)$.

3-On the quotient $\sigma_{A, s}(n) / \phi_{A, s}(n)$.
Theorem 2. If A is a cross-convolution and $s>0$, then

$$
\begin{equation*}
\sum_{n \leqslant x} \frac{\sigma_{A, s}(n)}{\phi_{A, s}(n)}=C_{A, s} x+O\left(S_{s}(x)\right), \tag{6}
\end{equation*}
$$

where

$$
C_{A, s}=\zeta_{P}(s+1) \prod_{p \in P}\left(1+\frac{p^{s+1}+p-1}{p^{s+2}\left(p^{s}-1\right)}\right) \prod_{p \in Q}\left(1+2\left(1-\frac{1}{p}\right) \sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j s}-1\right)}\right)
$$

and $S_{s}(x)=1(s>1), x^{1-s+\varepsilon}(0<s \leqslant 1)$ for every $\varepsilon>0$.
Proof. Let $g_{A, s}$ be the arithmetical function given by

$$
\frac{\sigma_{A, s}(n)}{\phi_{A, s}(n)}=\sum_{d \in A(n)} g_{A, s}(d)
$$

for every $n \in \mathbb{N}$. We obtain that $g_{A, s}$ is multiplicative and

$$
g_{A, s}\left(p^{a}\right)=\left\{\begin{array}{l}
\frac{2}{p^{a s}-1}, \quad \text { if } p \in P, a=1 \text { or } p \in Q, a \in \mathbb{N}, \\
1 / \phi_{s}\left(p^{a}\right)=\frac{1}{p^{a s}}\left(1-\frac{1}{p^{s}}\right)^{-1}, \quad \text { if } p \in P, a \geqslant 2,
\end{array}\right.
$$

for every prime power p^{a}, where s is real and $s \neq 0$. Consequently, applying (5) for $r=0$ and $\varepsilon=0$ we have

$$
\begin{aligned}
\sum_{n \leqslant x} \frac{\sigma_{A, s}(n)}{\phi_{A, s}(n)} & =\sum_{d \leqslant x} g_{A, s}(d) \sum_{\substack{e \leqslant x / d \\
(e, d) \in(P)}} 1=\sum_{d \leqslant x} g_{A, s}(d)\left(\frac{\phi\left(d_{Q}\right) x}{d_{Q} d}+O\left(\eta_{Q}(d)\right)\right) \\
& =x \sum_{d \leqslant x} \frac{g_{A, s}(d) \phi\left(d_{Q}\right)}{d d_{Q}}+O\left(\sum_{d \leqslant x} g_{A, s}(d) \eta_{Q}(d)\right) \\
& =x \sum_{d=1}^{\infty} \frac{g_{A, s}(d) \phi\left(d_{Q}\right)}{d d_{Q}}+O\left(x \sum_{d>x} \frac{g_{A, s}(d)}{d}\right)+O\left(\sum_{d \leqslant x} g_{A, s}(d) \eta_{Q}(d)\right)
\end{aligned}
$$

Here for $s>0, g_{A, s}(n) \leqslant 2^{\omega(n)} / \phi_{s}(n)=O\left(n^{\varepsilon-s}\right)$ for every $\varepsilon>0$, cf. [9], Lemma 6, where $\omega(n)$ stands for the number of distinct prime factors of n. Therefore the above series is absolutely convergent and its sum is $C_{A, s}$, using the Euler product formula. The first O-term is $O\left(x \sum_{d>x} 1 / d^{1+s-\varepsilon}\right)=O\left(x^{1-s+\varepsilon}\right)$ for every $s>0$ and the second O-term is, by $\tau(n)=O\left(n^{\varepsilon / 2}\right), O\left(\sum_{d \leqslant x} \tau(d) / d^{s-\varepsilon / 2}\right)=O\left(\sum_{d \leqslant x} 1 / d^{s-\varepsilon}\right)=O$ (1) for $s>1$ (choosing $\varepsilon<s-1$) and it is $O\left(x^{1-s+\varepsilon}\right)$, with $\varepsilon<s$, for $s \leqslant 1$ and the proof of (6) is complete.

Corollary 3. For $s>0$ the mean value of $\sigma_{A, s}(n) / \phi_{A, s}(n)$ is $C_{A, s}$.

Corollary $4(A=U)$. If $s>0$, then

$$
\sum_{n \leqslant x} \frac{\sigma_{s}^{*}(n)}{\phi_{s}^{*}(n)}=C_{s}^{*} x+O\left(S_{s}(x)\right)
$$

where

$$
C_{s}^{*}=\prod_{p}\left(1+2\left(1-\frac{1}{p}\right) \sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j s}-1\right)}\right)
$$

and $S_{s}(x)$ is defined in Theorem 2.

4-On the quotient $\phi_{A, s}(n) / \sigma_{A, s}(n)$.

Theorem 3. If A is a cross-convolution and $s \geqslant 1$, then

$$
\begin{equation*}
\sum_{n \leqslant x} \frac{\phi_{A, s}(n)}{\sigma_{A, s}(n)}=D_{A, s} x+O\left(S_{s}(x)\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{A, s}=\prod_{p \in P}(1 & \left.-\frac{2}{p\left(p^{s}+1\right)}-\frac{\left(p^{s}-1\right)^{3}}{p^{2 s}} \sum_{j=2}^{\infty} \frac{p^{j(s-1)}}{\left(p^{j s}-1\right)\left(p^{(j+1) s}-1\right)}\right) \\
& \times \prod_{p \in Q}\left(1-2\left(1-\frac{1}{p}\right) \sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j s}+1\right)}\right)
\end{aligned}
$$

and $S_{s}(x)$ is given in Theorem 2.

Proof. Define the function $h_{A, s}$ by

$$
\frac{\phi_{A, s}(n)}{\sigma_{A, s}(n)}=\sum_{d \in A(n)} h_{A, s}(d)
$$

for every $n \in \mathbb{N}$. We obtain that $h_{A, s}$ is multiplicative,

$$
h_{A, s}\left(p^{a}\right)=\left\{\begin{array}{l}
-\frac{p^{(a-2) s}\left(p^{s}-1\right)^{3}}{\left(p^{(a+1) s}-1\right)\left(p^{a s}-1\right)}, \quad \text { if } p \in P, a \geqslant 2, \\
-\frac{2}{p^{a s}+1}, \quad \text { if } p \in P, a=1 \quad \text { or } p \in Q, a \in \mathbb{N},
\end{array}\right.
$$

for every prime power p^{a} and the proof is like that of Theorem 2, see also [9], Theorem 3.

Corollary 5. For $s \geqslant 1$ the mean value of $\phi_{A, s}(n) / \sigma_{A, s}(n)$ is $D_{A, s}$.

Corollary $6(A=U)$. If $s \geqslant 1$, then

$$
\sum_{n \leqslant x} \frac{\phi_{s}^{*}(n)}{\sigma_{s}^{*}(n)}=D_{s}^{*} x+O\left(S_{s}(x)\right),
$$

where

$$
D_{s}^{*}=\prod_{p}\left(1-2\left(1-\frac{1}{p}\right) \sum_{j=1}^{\infty} \frac{1}{p^{j}\left(p^{j s}+1\right)}\right)
$$

and $S_{s}(x)$ is given in Theorem 2.

References

[1] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66-80.
[2] P. Haukkanen, On an inequality for $\sigma(n) \phi(n)$, Octogon Math. Mag. 4 (1996), 3-5.
[3] P. J. McCarthy, Introduction to arithmetical functions, Springer Verlag, New York-Berlin-Heidelberg-Tokyo 1986.
[4] K. Nageswara Rao, On the unitary analogues of certain totients, Monatsh. Math. 70 (1966), 149-154.
[5] W. Narkiewicz, On a class of arithmetical convolutions, Colloq. Math. 10 (1963), 81-94.
[6] V. Sita Ramaiah, Arithmetical sums in regular convolutions, J. Reine Angew. Math. 303/304(1978), 265-283.
[7] L. То́тн, The unitary analogue of Pillai's arithmetical function, Collect. Math. 40 (1989), 19-30.
[8] L. TóTH, Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, I. Divisor-sum functions and Euler-type functions, Publ. Math. Debrecen 50 (1997), 159-176.
[9] L. Tótн, Asymptotic formulae concerning the product and the quotient of the arithmetical functions σ_{s} and ϕ_{s}, Tatra Mountains Math. Publ. 11 (1997), 167-175.

Abstract

Let A be a regular convolution of Narkiewicz type, $\sigma_{A, s}(n)$ denote the sum of s-th powers of A-divisors of n and let $\phi_{A, s}(n)=\sum_{d \in A(n)} d^{s} \mu_{A}(n / d)$ be the generalized Euler function. In this paper we establish asymptotic formulae for $\sum_{n \leqslant x} \sigma_{A, s}(n) \phi_{A, s}(n)$, $\sum_{n \leqslant x} \sigma_{A, s}(n) / \phi_{A, s}(n)$ in case $s>0$ and for $\sum_{n \leqslant x} \phi_{A, s}(n) / \sigma_{A, s}(n)$ in case $s \geqslant 1$, assuming that A is a cross-convolution, investigated in our previous papers.

[^0]: (*) Faculty of Mathematics and Computer Science, Babes-Bolyai University, Str. M. Kogălniceanu 1, RO-3400 Cluj-Napoca, Romania. Department of Mathematics, Janus Pannonius University, Ifjúság u. 6, H-7624 Pécs, Hungary, e-mail: ltoth@math.jpte.hu
 (**) Received February 18, 1999. AMS classification 11 A 25,11 N 37.

