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G. CI M A T T I and I. FR A G A L À (*)

Existence of weak solutions

for the equations of the electrorheological fluids (**)

1 - Introduction

An electrorheological fluid consists of a suspension of fine dielectric particles
in a liquid of low dielectric constant [6], [2]. Its peculiar property is a dramatic in-
creasing of the viscosity in presence of an electric field. Moreover, when the inten-
sity of the applied field exceeds a critical value, the fluid behaves as a rigid body.
The phenomenon is reversible. The transition’s time-scale and the intensity of the
involved electric currents are respectively of a few milliseconds and microam-
pères. These properties make electrorheological fluids of potential use in industry,
especially in the automotive and aerospace sectors.

In this paper we model electrorheological fluids as electrically controlled
Bingham fluids. The Einstein’s convention on repeated indices is adopted, while
an index preceded by a comma denotes the derivative with respect to the corre-
sponding variable. We recall that a Bingham fluid is a visco-plastic material gov-
erned by the constitutive equations (see [4], Chapter VI)
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here D is the tensor of the strain velocity, sD is the deviation of the stress tensor,
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s II »4
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ij s D
ij is the second invariant of sD , and the positive constants m and g

are respectively the viscosity of the Bingham fluid and its threshold of plasticity.
Thus, according to the magnitude of the function s II

1/2 , we may observe either a
classical viscous fluid, or a rigid medium. To take into account of the influence of
the electric field E we define a yield limit g as non-negative, continuous increasing
function of NEN , vanishing when NEN does not exceed a critical value NENc , and
assuming a constant value for NEN large enough (see Figure 1.1 below).

Figure 1.1. The function g4g(NEN).

If NENENENc , then g(NEN)40 and we have a Newtonian fluid (see [3]). If
NENFNENc , the behaviour of the fluid depends on the stress tensor: if the second
invariant s II satisfies s II

1/2Eg(NEN), the system behaves as a rigid medium; if
s II

1/2Fg(NEN), we have a fluid whose viscosity is an increasing function of
NEN.

Thus we have
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(1.1)

where the dynamic viscosity m is also an increasing and continuous function of
NEN , which satisfies

0Em 0Gm(j)Gm 1E1Q , (j�R1 .

We recall that the symmetric tensor D represents the rate of deformation: if u is



129EXISTENCE OF WEAK SOLUTIONS FOR THE EQUATIONS...[3]

the velocity field we have

Dij »4
1

2
(ui , j1u j , i) .

Let DII denote the second invariant of D:

DII »4
1

2
Dij Dij .

It follows from (1.1) that, when s II
1/2Fg(NEN), the second invariants of sD and D

are related by the equation

s II
1/242m(NEN) DII

1/21g(NEN) .

If we decompose the stress tensor into a spherical and a deviatoric part, we
have

s ij42pd ij1s ij
D ,(1.2)

where p is the pressure of the fluid, and by (1.1)

sD4
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´
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(1.3)

Since electric currents are very small, all magnetic effects are neglected and
the electric field derives from a potential F , hence E42˜F. The unknown
functions describing the behaviour of the system are then the electric potential F

and the velocity field u.
We recall that the Poisson equation

2eDF4q(1.4)

relates the potential F to the charge density q , being e the dielectric constant.
Additionally, we assume that the current density is given by

J42k˜q1qu1sE ,(1.5)

where the positive constants k and s are respectively the diffusion coefficient and
the electric conductivity. Thus, taking into account (1.4) and (1.5), the
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conservation of charge

qt1˜ QJ40 ,

yields

DF t2kD 2 F1˜ Q (uDF)1e21˜ Q (s˜F)40 .(1.6)

The fluid is incompressible, therefore

˜ Qu40 .(1.7)

Finally, we assume that only the electric body force f»4qE is acting on the fluid.
Therefore, by the conservation of momentum, the law of motion is

s ij , j1qEi4r
Dui

Dt
,(1.8)

where
Dui

Dt
»4 (ui )t1˜ui Qu.

Goal of the paper is to give a weak formulation and an existence result for the
following initial-boundary value problem.

Problem (P). Let V be a bounded open subset of R2 with smooth boun-
dary ¯V. Find F and u satisfying equations (1.3), (1.6), (1.7), (1.8) on
V T »4V3 (0 , T), and the initial-boundary data

DF(x , 0 )40 , u(x , 0 )4u0 (x) on V ;

F(x , t)4F b (x) , DF(x , t)40 , u(x , t)40 on ¯V3 (0 , T) .

The remaining of the paper is organized as follows. In Section 2 we give a
weak formulation of the initial boundary problem (P) by using Sobolev spaces.
Section 3 contains our main existence result. The proof in divided into four steps:
in subsection 3.1 we define two approximating sequences of problems (Pe ) and
(Pem ); in subsections 3.2 and 3.3 we show respectively the existence of a weak so-
lution to problems (Pem ) and (Pe ); finally, the weak existence theorem for (P) is
proved in subsection 3.4.

2 - Weak formulation of the problem

In this section we present the weak formulation of problem (P) which we
adopt. We shall use as basic tool the Sobolev spaces [1]. We denote by (Q , Q),
( (Q , Q) ), and N QN , V QV respectively the scalar product and the norm in L 2 (V) and in
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H 1
0 (V), as well as in (L 2 (V) )2 »4L 2 (V ; R2 ) and in (H 1

0 (V) )2 »4H 1
0 (V ; R2 ).

We start with the weak formulation of (1.6).To work with homogeneous boun-
dary conditions, we introduce the solution F to the problem

.
/
´

DF40

F4F b

in V

on ¯V ,

where we assume that F b is the trace on ¯V of a function in the Sobolev space
H 2, p (V), pD2. We set W»4F2F. Looking for W with

(2.1) W�L Q(0, T; H 2(V)OH 1
0 (V))OL 2(0, T; H 3(V)) , DW 8�L 2(0, T; H 21(V)) ,

DW40 on ¯V3 (0 , T) , DW(x , 0 )40 on V ,(2.2)

the weak formulation of equation (1.6) reads

(DW 8 , j)2k(DW , Dj)2 (uDW , ˜j)2e21 s(˜W , ˜j)

2e21 s(˜F, ˜j)40 (j�H 1
0 (V)OH 2 (V) .

(2.3)

We turn now to the weak formulation of (1.7) and (1.8).
Let V »4]c� (C Q

0 (V) )2 : ˜ Qc40(, and let H , V be the closures of V in
(L 2 (V) )2 and in (H 1

0 (V) )2. For functions u , v , w defined on V such that the
following integrals exist, we set

b(u , v , w) »4�
V

ui vj , i wj dx ,

a(u , v , E) »4�
V

2m(NEN) Dij (u) Dij (v) dx ,

j(u , E) »4�
V

2g(NEN) (DII (u) )1/2 dx .(2.4)

It follows from the above definitions that, for any u , v , w�V , there holds

b(u , v , w)42 b(u , w , v) ,

a(u , u , E)Fm 0 VuV2 ,

b(u , u , u)40 ,

a(u , v , E)G2m 1 VuV VvV .
(2.5)

Furthermore, we recall the inequality (see [7])

Nb(u , v , w)NGk2NuN1/2
VuV1/2

VvVNwN1/2
VwV

1/2 .(2.6)
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Take now a test vector field v in V, multiply equation (1.8) by ui2vi and integrate
on V. Recalling that s ij4s ji , one gets

�
V

s ij (u) Dij (v2u) dx4�
V

qEi (vi2ui ) dx2�
V

r(ui81ui , j uj )(vi2ui ) dx .(2.7)

We can also multiply by ui , j2vi , j the equation satisfied by s for s II
1/2Dg(NEN)

(see (1.2) and (1.3)). It results, summing over i and j , and using Dii40,

�
V

s ij (u) Dij (v2u) dx4�
V

g(NEN) (DII (u) )21/2 Dij (u) Dij (v) dx

2�
V

g(NEN) (DII (u) )21/2 Dij (u) Dij (u) dx1a(u , v2u , E) .
(2.8)

Recalling (1.7), assume now that u satisfies

u�L Q (0 , T ; H)OL 2 (0 , T ; V) , u8�L 2 (0 , T ; V 8 ) ,(2.9)

u(x , 0 )4u0 (x) on V ;(2.10)

here and in the following, we let u0�H.
If we couple equations (2.7) and (2.8), using the definition of the functional

j(u , E), the Schwarz inequality, and the identity b(u , u , u)40, we get the
following weak formulation for (1.8)

(u8 , v2u)2b(u , v , u)1a(u , v2u , E)1 j(v , E)2 j(u , E)

Fe(DW˜W , v2u)1e(DW˜F, v2u) (v�V ,
(2.11)

where we set r41 for the constant density of the fluid.
Summing up, we can reformulate problem (P), having introduced suitable

non-dimensional constants aj , j41, 2 , 3.

Problem (P), weak formulation. Find W and u , with

(2.12) W�L Q(0, T; H 2(V)OH 1
0 (V))OL 2(0, T; H 3(V)), DW 8�L 2(0, T; H 21(V)) ,

DW40 on ¯V3 (0 , T), DW(x , 0 )40 on V(2.13)

u�L Q (0 , T ; H)OL 2 (0 , T ; V) , u8�L 2 (0 , T ; V 8 ) ,(2.14)

u(x , 0 )4u0 (x) on V ,(2.15)
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satisfying on V T the equation

(DW 8 , j)2a2 (DW , Dj)2 (uDW , ˜j)2a3 (˜W , ˜j)

2a3 (˜F, ˜j)40 (j�H 1
0 (V)OH 2 (V) ,

(2.16)

and the variational inequality

(u8 , v2u)2b(u , v , u)1a(u , v2u , E)1 j(v , E)2 j(u , E)

F (DW˜W , v2u)1 (DW˜F, v2u) (v�V .
(2.17)

3 - Existence of weak solutions

In this section we show that there exists a solution to problem (P). The proof
consists of a double approximation. We construct a sequence of problems (Pe )eD0

in which the inequality (2.17) is replaced by a sequence of equations. Then, we
approximate each problem (Pe ) by a sequence of finite-dimensional problems
(Pem )m�N . Standard results in the linear theory will give the existence of a solu-
tion to (Pem ) for any eD0 and m�N. Then, passing to the limit as mK1Q and
eK01 , we shall find a solution to the limit problem (P).

3.1 - Definition of the approximating problems

We replace the non-differentiable functional j defined in (2.4) and appearing in
(2.17), by a sequence of differentiable functionals je . For every eD0, and for any
function u on V such that the integral makes sense, we set

je (u , E)4
2

11e
�

V

g(NEN) DII (u)11e/2 dx .

The Fréchet differential of je on V exists and is given by

( je8 (u , E), v )4�
V

g(NEN) DII (u)e21/2 Dij (u) Dij (v) dx .(3.1)

We then approximate inequality (2.17) with a sequence of equations, considering
the following problem, where we set Ee42˜(W e1F).
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Problem (Pe ). Find (W e , ue ) solutions to (2.12)-(2.15), and to the following
system of PDE’s

(DW e8 , j)2a2 (DW e , Dj)2 (ue DW e , ˜j)2a3 (˜W e , ˜j)

2a3 (˜F, ˜j)40 (j�H 1
0 (V)OH 2 (V) ,

(3.2)

(ue8 , v)2b(ue , v , ue )1a(ue , v , Ee )1 ( je8 (ue , Ee ), v )

4 (DW e ˜W e , v)1 (DW e ˜F, v) (v�V .
(3.3)

Each problem (Pe ) is approximated by a sequence of finite-dimensional pro-
blems, using the Faedo-Galerkin method. Let ]wi(i�N be the base of V given by
the normalized eigenfunctions of the canonical isomorphism L : VKV 8 , i.e.

(˜wi , ˜v)4l i (wi , v) (v�V , NwiN41 .

We set Vm »4span ]w i , i41, R , m(, m�N.

Problem (Pem ). Find (W em , uem ) solutions to (2.12)-(2.15) and to the
system

(DW em8 , j)2a2 (DW em , Dj)2 (uem DW em , ˜j)2a3 (˜W em , ˜j)

2a3 (˜F, ˜j)40 (j�H 1
0 (V)OH 2 (V) .

(3.4)

(uem8 , wi )2b(uem , wi , uem )1a(uem , wi , Eem )1 ( je8 (uem , Eem ), wi )

4 (DW em ˜W em , wi )1 (DW em ˜F, wi ) (i41, R , m .
(3.5)

3.2 - Existence of a weak solution to (Pem )

For any given function vm�Vm , consider the initial-boundary value problem in
the unknown W given by (2.12), (2.13) and by the equation

(DW 8 , j)2a2 (DW , Dj)2 (vm DW , ˜j)2a3 (˜W , ˜j)

2a3 (˜F, ˜j)40 (j�H 1
0 (V)OH 2 (V) .

(3.6)

Such problem admits a unique solution, which will be denoted by WA(vm ). Indeed,
notice that the parabolic problem

.
/
´

q 82a2 Dq1vm Q˜q2a3 q40 on V T

q40 on ¯V3 (0 , T) , q(x , 0 )40 on V

admits an unique solution q»4 qA(vm )�L Q (0 , T ; L 2 (V) )OL 2 (0 , T ; H 1 (V) ).
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So WA(vm ) will be the unique function W satisfying (2.12), (2.13), and solving
2DW4 qA(vm ) on V T .

Let us now look for a solution (W em , uem ) to (Pem ) with uem�C 1 (0 , T ; Vm ),

that is uem (x , t)4 !
i41

m

g i
em (t) wi (x), with g i

em�C 1 (0 , T ; R) for i41, R , m. This

is equivalent to find uem�C 1 (0 , T ; Vm ) satisfying (2.14), (2.15), and

(uem8 , wi )2b(uem , wi , uem )1a(uem , wi , Eem )1 ( je8 (uem , Eem ), wi )

4 (DW em ˜W em , wi )1 (DW em ˜F, wi ) (i41, R , m ,
(3.7)

where W em and Eem equal respectively WA(uem ) and 2˜[WA(uem )1F].
Then, the existence of a solution uem to (3.7) follows from the observation that,

writing uem as uem (x , t)4 !
i41

m

g i
em (t) wi (x), (3.7) becomes a first order ODE’s

system in the unknown g i
em (t), i41, R , n , while the initial condition (2.15) can be

reformulated as

g i
em (0)4g i

0 , i41, R , m ,(3.8)

being ] g i
0 (i�N a sequence such that lim

mK1QV
!

i41

m

g i
0 wi2u0

V
V
40.

3.3 - Existence of a weak solution to (Pe )

In the following we shall denote for simplicity by (W m , um ) a solution to pro-
blem (Pem ). In the next lemma, we collect some a priori-estimates on
(W m , um ).

L e m m a 3.1. The following sequences are bounded in the corresponding
functional spaces:

um in L Q (0 , T ; H)OL 2 (0 , T ; V) ,(3.9)

um8 in L 2 (0 , T ; V 8 ) ,(3.10)

DW m in L Q (0 , T ; L 2 (V) )OL 2 (0 , T ; H 1
0 (V) ) ,(3.11)

DW m8 in L 2 (0 , T ; H 21 (V) ) ,(3.12)

˜W m in L Q (0 , T ; H 1 (V) ) .(3.13)
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P r o o f . Taking um and W m as test functions in (3.5) and (3.4) respectively,
we get

1

2

d

dt
Num (t)N21a(um , um , Em )1 ( je8 (um , Em ), um )

4 (DW m ˜W m , um )1 (DW m ˜F, um )

(3.14)

and

1

2

d

dt
N˜W m (t)N21a2 NDW m (t)N21 (um DW m , ˜W m )

1a3 (˜W m , ˜W m )1a3 (˜F, ˜W m )40 .

(3.15)

We add now (3.14) and (3.15), taking into account that a(um , um , Em )
Fm 0 Vum (t)V2 by (2.5)1 , and ( je8 (um , Em ), um )F0 by (3.1). Using the
inequality

abG
a 2

2d
1

d

2
b 2 ,(3.16)

to estimate the terms (DW m ˜F, um ) and a3 (˜F, ˜W m ), we get

1

2

d

dt
[Num (t)N21N˜W m (t)N2 ]1m 0 Vum (t)V21a2 NDW m (t)N21a3 N˜W m (t)N2G

gsup
V T

N˜FNh k d

2
NDW m (t)N21

1

2d
Num (t)N2l1a3k d 8

2
N˜W m (t)N21

1

2d 8
N˜FN2l .

If we choose d such that a22
d

2
sup
V T

N˜FNF1, and d 843, we infer

1

2

d

dt
[Num (t)N21N˜W m (t)N2 ]1m 0 Vum (t)V21NDW m (t)N2

GC1 [Num (t)N21N˜W m (t)N21N˜FN2 ] ,

with C1 »4max { 1

2d
sup
V T

N˜FN ,
a3

2
}. By the Gronwall inequality, it follows that

um remains bounded in L Q (0 , T ; H)OL 2 (0 , T ; V), and we have proved (3.9).
Additionally, we have proved that

˜W m remains in a bounded subset of L Q (0 , T ; L 2 (V) ) ,(3.17)
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Let us take j4DW m in (3.4). Noticing that (um DW em , ˜DW em )40, we get

1

2

d

dt
NDW em (t)N21a2 N˜DW em (t)N22a3 (˜(W em1F), ˜DW em )40 .

Using the elementary inequality (3.16), we deduce

1

2

d

dt
NDW em(t)N21N˜DW em(t)N2G

a3

a
k d

2
N˜DW em(t)N21

1

d
(N˜W em(t)N21N˜FN2)l ,

with a»4min ]1, a2(. If we choose dD0 such that 12
a3 d

2a
F

1

2
and we set

C2 »4
2a3

ad
, it follows

d

dt
NDW em (t)N21N˜DW em (t)N2GC2 (N˜W em (t)N21N˜FN2 ) .(3.18)

By (3.17) and (2.12), this implies (3.11) and (3.13).
Let us write (3.4) as DW m8 4˜ QFm , where

Fm4a2 ˜(DW m )2um DW m2a3 ˜(W m1F) .

Then (3.9), (3.11) and (3.13) give (3.12).
It only remains to prove (3.10). To this aim we write (3.5) as

(um8 , v)1 aBm1Am1Km2Hm , vb(V 8 , V)40 , (v�Vm ,(3.19)

where the functionals Bm , Am , Km and Hm are defined on V as follows.
Let Bm4Bm (um (t) ) be the linear functional defined on V by

aBm , vb(V 8 , V)42 b (um (t), v , um (t) ) .

From (2.6), we have

Nb (um (t), v , um (t) )NGk2Vum (t)VNum (t)NVvV ;

since um is bounded in L Q (0 , T ; H)OL 2 (0 , T ; V), Bm is bounded in
L 2 (0 , T ; V 8 ).

Let Am4Am (um (t) ) be the linear functional defined on V by

aAm (t), vb(V 8 , V)4a (um (t), v , Em ) .

From (2.5)2 , we have

Na (um (t), v , Em )NG2m 1 Vum (t)V VvV ;
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then, since um is bounded in L 2 (0 , T ; V), it turns out that the sequence Am

belongs to a bounded subset of L 2 (0 , T ; V 8 ).
Let Hm4Hm (W m (t) ) be the linear functional defined on V by

aHm , vb4 (DW m ˜(W m1F), v ) .

For a suitable positive constant C3 it holds

N (DW m ˜(W m1F), v )NGNDW m ˜(W m1F)NNvNGC3 NDW m ˜(W m1F)NVvV ;

then each Hm is continuous on V. Moreover, by (3.11) and (3.13), DW m and ˜W m

are bounded respectively in L 2 (0 , T ; L p (V) ) and L Q (0 , T ; L p (V) ) for any
pE1Q , hence

DW m ˜W m is bounded in L 2 (0 , T ; L 2 (V) ) ,(3.20)

which proves that Hm is bounded in L 2 (0 , T ; V 8 ).
Finally, let Km be the linear functional defined on V as

aKm , vb(V 8 , V)4 ( je8 (um , Em ), v ) .

Using the Cauchy-Schwarz and the Hölder inequalities, we get, for a positive
constant C4 ,

N ( je8 (um , Em ), v )N4N�
V

g(NEm N)DII (um )e21/2 Dij (um ) Dij (v) dxN

G2 �
V

g(NEm N) DII (um )e/2 DII (v)1/2 dx(3.21)

GC4k�
V

DII (um )e dxl1/2
VvV .

Thus each Km is a continuous functional, and by (3.9) the sequence Km is bounded
in L 2 (0 , T ; V 8 ).

Let p m be the orthogonal projection of V 8 onto V 8m »4span ]Lwi ,
i41, R , m(; we have p m um8 4um8 , so that (3.19) gives um8 4p m(Hm2Km2Am2Bm).
By the choice of the basis ]wi(i�N , it is easy to check that p m is a contraction on
V 8. Thus the boundedness of Hm2Km2Am2Bm in L 2 (0 , T ; V 8 ) yields the
boundedness of um8 in the same space. r
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We are now in a position to prove the existence of a solution to problem
(Pe ).

L e m m a 3.2. For every eD0, there exists a solution to problem (Pe ).

P r o o f . By Lemma 3.1, we can assume that, when mK1Q , possibly
passing to a subsequence, we have

(3.22) umKue weakly star in L Q (0 , T ; H), weakly in L 2 (0 , T ; V) ,

strongly in L 2 (0 , T ; H) and a.e. (by components) on V T,

(3.23) um8 Kue8 weakly in L 2 (0 , T ; V 8 ) ,

(3.24) DW mKDW e weakly star in L Q(0, T; L 2(V)), weakly in L 2(0, T; H 1
0 (V)) ,

strongly in L 2 (0 , T ; L 2 (V) ) and a.e. on V T ,

(3.25) DW m8 KDW e8 weakly in L 2 (0 , T ; H 21 (V) ) ,

(3.26) ˜W mK˜W e weakly star in L Q (0 , T ; H 1 (V) ) ,

strongly in L Q (0 , T ; L 2 (V) ) and a.e. on V T ,

(3.27) DW m˜W mKDW e˜W e weakly in L 2(0,T;L 2(V)) and a.e. on V T ,

Indeed, the weak and weak star convergence in (3.22)-(3.26) is satisfied (possibly
passing to a subsequence) by Lemma 3.1, respectively by the reflexivity of the
corresponding functional spaces, and by the Alaoglu-Bourbaki compactness
theorem. The compact embedding H 1

0 (V) %K %KL 2 (V) (see [1]) then yields the
strong convergence in (3.22), (3.24), and (3.26).

Since the sequence DW m ˜W m is bounded in L 2 (0 , T ; L 2 (V) ) (see (3.20)),
possibly passing to a subsequence we have DW m ˜W mKg weakly in
L 2 (0 , T ; L 2 (V) ); by (3.24) and (3.26), it must be g4DW e ˜W e , and (3.27)
holds.

Finally, the pointwise convergence almost everywhere on V T in (3.22), (3.24),
(3.26), and (3.27), is fulfilled possibly passing to subsequences, because of the
strong convergence of the involved sequences.

We can now pass to the limit, as mK1Q , in (3.5) and (3.4). Using (3.25),
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(3.24), (3.22), and (3.26), if we pass to the limit in (3.4), we obtain

(DW e8 , j)2a2 (DW e , Dj)2 (ue DW e , ˜j)2a3 (˜W e , ˜j)

2a3 (˜F, ˜j)40 (j�H 1
0 (V)OH 2 (V) .

Let us pass to the limit in (3.5). By (3.21) and (3.9), je8 (um , Em ) is bounded in
L 2 (0 , T ; V 8 ), hence we can assume that je8 (um , Em )Kx weakly in L 2 (0 , T ; V 8 ).
Moreover, by (3.23), (3.22), (3.27), and (3.24), for every v�Vm we have

(um8 , v)K (ue8 , v), a(um , v , Em )Ka(ue , v , Ee ) ,

(DW m ˜(W m1F), v )K (DW e ˜(W e1F), v ) ,

and b(um , v , um )Kb(ue , v , ue ). Therefore, by the completeness of the system
]wi(i�N , passing to the limit in (3.5), we obtain

(ue8 , v)2b(ue , v , ue )1a(ue , v , Ee )1 (x , v)

4 (DW e ˜W e , v)1 (DW e ˜F, v) (v�V .
(3.28)

It remains to prove that x4 je8 (ue , Ee ). Let f�L 2 (0 , T ; V), f8�L 2 (0 , T ; V 8 ),
with f (0)4u0 , and set

Xm4�
0

T

[( je8 (um , Em )2 je8 ( f , Em ), um2 f )

1a(um2 f , um2 f , Em )1 (um8 2 f8 , um2 f )] dt .

(3.29)

Notice that XmF0, because je is a convex functional, a(um2 f , um2 f , Em ) is

non-negative by definition, and �
0

T

(um8 2 f8 , um2 f ) dt4
1

2
Num (T)2 f (T)N2.

Let us insert into (3.29) the equation

(um8 , um )1a(um , um , Em )1 ( je8 (um , Em ), um )

4 (DW m ˜W m , um )1 (DW m ˜F, um )

(obtained by taking um as a test function in (3.5)), and pass to the limit as
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mK1Q. We get XmKX , with XF0 given by

X4�
0

T

[(DW e ˜W e , ue )1 (DW e ˜F, ue )2 (x , f )2 ( je8 ( f , Ee ), ue2 f )

2a(ue , f , Ee )2a( f , ue2 f , Ee )2 (ue8 , f )2 ( f8 , ue2 f )] dt

4�
0

T

[(ue82 f8 , ue2 f )1a(ue2 f , ue2 f , Ee )1 (x2 je8 ( f , Ee ), ue2 f)] dt ,

where the last equality has been obtained using (3.28), with v4ue .
Now, choosing f4ue2lc , where l is a positive parameter, and

c�L 2 (0 , T ; V), c8�L 2 (0 , T ; V 8 ) with c(0)40, we get

X4l 2�
0

T

[ (c , c8 )1a(c , c , Ee ) ] dt1l�
0

T

(x2 je8 (ue2lc , Ee ), c ) dt .

Dividing by l , letting l tend to zero, and recalling that X must be non-negative,
we conclude

�
0

T

(x2 je8 (ue , Ee ), c ) dtF0 .

Hence, by the arbitrariness of c , it follows x4 je8 (ue , Ee ). r

3.4 - Existence of a weak solution to (P)

Our main existence result can now be proved using Lemma 3.2, and passing to
the limit as eK01.

T h e o r e m 3.3. The initial-boundary value problem (P) admits a solution.

P r o o f . By Lemma 3.1 and Lemma 3.2, for any eD0 there exists a solution
(W e , ue ) to problem (P e) such that the sequences W e and ue satisfy the estimates
(3.9)-(3.13), with the index m replaced by the index e. In particular, possibly pas-
sing to a subsequence, (3.22)-(3.27) hold (again replacing m by e). Then, passing to
the limit in (3.2) as eK01 , one gets (2.16). The passage to the limit in (3.3) can be
done similarly as in [4]: we set, for a fixed v�L 2 (0 , T ; V),

Ze »4�
0

T

[ (ue8 , v2ue )2b(ue , v2ue , ue )1a(ue , v2ue , Ee )

1je (v , Ee )2 je (ue , Ee )2 (DW e ˜W e , v2ue )2 (DW e ˜F, v2ue ) ] dt .
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By (3.3), we have

Ze4�
0

T

[ je (v , Ee )2 je (ue , Ee )2 ( je8 (ue , Ee ), v2ue )] dtF0 ,

hence

�
0

T

[ (ue8 , v)2b(ue , v , ue )1a(ue , v , Ee )1 je (v , Ee )

2(DW e ˜W e , v2ue )2 (DW e ˜F, v2ue ) ] dt

F
1

2
Nue (T)N22

1

2
Nu0 N21�

0

T

a(ue , ue , Ee ) dt1�
0

T

je (ue , Ee ) dt .

Passing to the liminf as eK01 in the above inequality, we obtain

�
0

T

[ (u8 , v)2b(u , v , u)1a(u , v , E)1 j(v , E)

2(DW˜W , v2u)2 (DW˜F, v2u) ] dtF liminf
eK0

1

2
Nue (T)N22

1

2
Nu0 N2(3.30)

1 liminf
eK0

�
0

T

a(ue , ue , Ee ) dt1 liminf
eK0

�
0

T

je (ue , Ee ) dt .

We claim that

liminf
eK0

1

2
Nue (T)N2FNu(T)N2 ,(3.31)

liminf
eK0

�
0

T

a(ue , ue , Ee ) dtF�
0

T

a(u , u , E) dt ,(3.32)

liminf
eK0

�
0

T

je (ue , Ee ) dtF�
0

T

j(u , E) dt .(3.33)

The inequality (3.31) is a straightforward consequence of the weak convergence of
ue (T) to u(T) in H. In order to prove (3.32), we use the continuity assumption on
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the function m4m(j) on R1 and the lower semicontinuity of the function

vO �
0

T

a(v , v , E) dt on L 2 (0 , T ; V); we get

liminf
eK0

�
0

T

a(ue , ue , Ee ) dtF liminf
eK0

�
0

T

[a(ue , ue , Ee )2a(ue , ue , E) ] dt

1 liminf
eK0

�
0

T

a(ue , ue , E) dtF�
0

T

a(u , u , E) dt .

Similarly, the continuity assumption on the function g4g(j) on R1 gives

liminf
eK0

�
0

T

je (ue , Ee ) dtF liminf
eK0

�
0

T

[ je (ue , Ee )2 je (ue , E) ] dt

1 liminf
eK0

�
0

T

je (ue , E) dtF liminf
eK0

�
0

T

je (ue , E) dt .

By the Hölder inequality, we infer

�
0

T

je (ue , E) dtF
1

(11e)(2g1 NV T N)e
y�
0

T

j(ue , E) dtz11e

.

Then, using the weak lower semicontinuity of the convex functional

vO �
0

T

j(v , E) dt on L 2 (0 , T ; V), we get

liminf
eK0

�
0

T

je (ue , E) dtF liminf
eK0

�
0

T

j(ue , E) dtF�
0

T

j(u , E) dt ,

and (3.33) is proved. From (3.30), (3.31), (3.32) and (3.33), it follows

�
0

T

[ (u8 , v2u)2b(u , v , u)1a(u , v2u , E)1 j(v , E)2 j(u , E)

2(DW˜W , v2u)2 (DW˜F, v2u) ] dtF0 (v�V .
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Choosing

v4vn »4
.
/
´

v

u(t)

if t� kt2 1

n
, t1

1

n
l

otherwise ,

where v is a fixed function of V and t is arbitrary in [0 , T], and passing to the
limit as nKQ we deduce that the integrand function in the above inequality must
be non-negative for a.e. t� [0 , T]. Hence (2.17) holds, and this completes the
proof.
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A b s t r a c t

Electrorheological fluids are characterized by a relevant increasing of the viscosity
under the action of an electric field. We state a constitutive law which consists in viewing
them as Bingham fluids controlled by a yield function depending on the intensity of the
applied electric field. We couple this constitutive equation with the fundamental conser-
vation laws which govern the motion of the fluid, and prove an existence result for a weak
formulation of the corresponding initial-boundary value problem.
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