Riv. Mat. Univ. Parma (6) 2 (1999), 119-125

IsmaiL M. IDRIS (%)

Orderings and preorderings in rings with involution (**)

1 - Introduction, Definitions and Basic facts

The notion of an ordering of a field was studied by Artin and Schreier. This
notion was extended to division rings with involution in [1], [2] and [3]. One can
ask now if this can be generalized to noncommutative rings with involution. In
this paper, the notions of a preordering and an ordering of a ring R with involu-
tion is investigated. An algebraic condition for the existence of an ordering of R is
given. Also, a condition for enlarging an ordering of R to an overring is given. As
for the case of a field, any preordering of R can be extended to some ordering. Fi-
nally, we establish a classification theorem for archimedean ordered rings with in-
volution. We should remark that the orderings as defined in this work can only
exist for rings without zero-divisors.

Now, we state some definitions and basic facts that will be needed in this
work. Hereafter R will be a not necessarily commutative ring with unity with in-
volution * (an anti- automorphism of period 2). By a norm in R we mean an ele-
ment of the form xx* for some xeR. Let S= {seR:s=s%} be the set of all
symmetric elements of R. Let X be the set of all finite products of elements of the
set {x;, 2 /0 # x; € R} in some arbitrary but fixed order, and we write P for the
subset of R consisting of sums of elements of X. P is called the *-core of R. This
generalizes the notion of a *-core given in [1] for the case of a ring with
involution.

Clearly X contains the set of all products of norms of R and P contains the set
of all sums of products of norms, in particular X c P. Also, it is clear that X is *-
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closed, multiplicatively closed and contains 1; and P is *-closed and closed under
sums and products. When * = identity, then R is commutative and P will be the
set of all sums of products of squares of E. Our goal is to show that R has an or-
dering if and only if 0 ¢ P. First, we give the definition of an ordering.

Definition. A *-closed subset M cR is called a preordering of R if:

1) M+McM,

2) M-McM;

3) 0eM,1eM,; and

@) aq, as,y ..., 0, € M; x125, ..., x,€ R implies that any product of the 27+ ¢

elements a;, x;, * in some arbitrary but fixed order belongs to M (where
X; Z 0).

A preordering M is called an ordering of R if:
(5) For 0#s=s*ecR, seMU—-M, ie. S is a totally ordered (additive)
group.

If R is commutative, then condition (4) above is equivalent to the condi-
tion:

aeM, reR = axx*eM .

The above definition of an ordering of R generalizes the notion of a strong order-
ing of a division ring with involution given in [2]. Also, M N S will be a Jordan or-
dering in the sense given in [3] in the case of a division ring with involution. When
*= identity, then R is commutative, and the definition of an ordering reduces to
that of a classical Artin-Schreier ordering.

Proposition 1. Let M be an ordering on R. Then
MN-M=¢,
and R is a domain with characteristic zero.

Proof. If aeMnN —-M, then 0=a+(—a)eM +McM, -contradicting
Property (3) above. Since 1e M, it follows that, for any natural number #,

nl=1+..+1eM.

Therefore, char R = 0. Finally, if , y e R\{0} and xy =0, then 0 = 2 * xyy * e M,
a contradiction. This shows that R is a domain.

Proposition 2. Let M be a preordering, then
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(1) s=s*eM, s invertible = s e M.
(2) seR, s invertible = sMs 'c M.

Proof.

(1) We note that s '=s(s 's eM
() sMs '=sMs (s Vs*)cM (by Property (4)).

If we are given an ordering M of R, then M defines an order relation on R
by:

b=za<b—-—aeMU{0}.
The ring of integers Z, the field of rational numbers @ and the field of real num-
bers R, with their usual orderings and the identity as involution are examples of
ordered commutative rings. The field of complex numbers C with conjugation as
involution, is ordered by the set M = R™ (the positive real numbers).

An example of a non commutative ordered ring is the Weyl algebra generated
over R by x and y with relation xy — yx = 1, i.e.,, R = Rlx, y] /(xy — yx — 1), rela-
tive to the involution making x symmetric and y skew. Elements of R have the
canonical form

r=ry(@)+rm@y+...+r,(x)y",

where each 7;(x) e R[x], r,,(¢) # 0. Let M c R be the set of all non zero elements
re R as above for which r,(x) has a positive leading coefficient. One can show
that M is an ordering of R.

2 - Existence of Orderings

For a preordering M and 0 # s =s* e R, we define M(s) to be the set of all
sums of products of elements of M; elements of {x;, ¥* /0 #x;e R}, and s in
some arbitrary but fixed order. If R is commutative, then clearly M(s) = Ms. For
R =D a division ring, also M(s) = Ms.

Lemma 3. MUMG)UM + M(s) is a preordering iff 0 ¢ M + M(s).

Proof. Let M'=MUM(s)UM + M(s) then clearly M'+ M'cM'. By the
definition of M(s) and Property (4) of a preordering, we have

M'M'=M-M(s) +M(s)- M+ M-M+ M(s)-M(s)
cM(s)+M(s)+ M+ M
cM+M(B)cM'.
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Also M ' satisfies Property (4) and 1 e M. Since 0 ¢ MUM(s), then M’ is a pre-
ordering iff 0 ¢ M + M(s).

Lemma 4. If M is a preordering and 0 #s=s*e R, then
My =MUMS UM +M(s) or My,=MUM(-s)UM + M(-s),
18 a preordering containing M.

Proof. We first note that any element of M(—s) is of the form —x where
xe M(s) and hence every element of M + M(—s) is of the form ¢ — x; where
teM, xeM(s). Assume now that the lemma is false, then by Lemma 3,
0eM+ M(s)and 0e M + M(—s). Hence t; + x; =0 =t; — x5, Where ¢y, toe M ; x4,
XeeM(s), and x; = — ty, x9=1,. Since x;0,e M(s)-M(s)cM and t,t,e M; and
tito = — X125 then 0 = &, x5 + t; £, € M which is a contradiction. Thus M; or M, is a
preordering.

Proposition 5. If M is a maximal preordering with respect to inclusion,
then M 1is an ordering.

Proof. We need to show that ScMU —M. For 0 #s=s*€S,

M, =MUMG)UM+MGs) or My,=MUM(-s)UM + M(-5s),

is a preordering containing M. But M is maximal, then M = M, or M = M, and
hence M contains s or —s as desired.

Theorem 6. Let R be a ring with involution, then R has an ordering if
and only if 0¢P.

Proof. If R has an ordering M, then Pc M and 0 ¢ P. Conversely, if 0 ¢ P,
then P is a preordering. By Zorn’s Lemma, we have a maximal preordering M.
By Proposition 5, M is an ordering of R.

Theorem 7. Any preordering M, of R can be extended to some ordering M.

Proof. By Zorn’s Lemma, the set of all preorderings extending M, contains
some maximal preordering M. By Proposition 5, M is an ordering contains
M,.

We note that, any intersection of orderings of R is a preordering of R. If R is
orderable, i.e., 0 ¢ P, then the *-core P is a preordering with the following fea-
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tures PcM and M-P = P-M = M for each preordering M. Throughout the rest of
this section, we will assume that 0 ¢ P. By Sym (A) we mean the subset of sym-
metric elements of A.

Corollary 8 Sym (P) = Sym (ﬂMi), where the intersection runs over all
orderings M; of R. '

Proof. Clearly Sym (P)c Sym ([1M;). Conversely, we show that s =s*¢ P
implies s ¢ M for some ordering M. Since P is a preordering, then by Lemma 4,
M, = PUP(-s)UP+ P(—s)isa preordering containing P and —s. By Theorem
7, M, can be extended to some ordering M. Since —se M;c M and M is an order-
ing, it follows that s ¢ M.

Corollary 9. Let M, be any preordering. Then Sym (M,) = Sym (NM,),
where the intersection runs over all orderings M; containing M,.

Lemma 10. Let M, and M, be two orderings of R. If M,c M,, then

Sym (M;) = Sym (M) .

Proof. If thereis s =s*eM,— M;, then from s ¢ M, follows —se M;c M,,
so both s and —s are in M, which is nonsense.

Theorem 11. Let RC R’ be rings with involution. Let M be an ordering of
R. Let M’ be the set of all sums of products of 2v +t elements a;, x;, x;* in some
arbitrary but fived order, where a,, as, ..., a,e M and x;, ®3, ..., x,e R — {0}.
If 0¢M', then M can be enlarged to some ordering of R'.

Proof. Since 0¢ M, it follows that 0 ¢ P’ (the *-core of R') and R’ is or-
dered. It is easy to show that M ' is a preordering of R’'. By Theorem 7, M’ can
be enlarged to some ordering M;>M'>M.

It is known that any archimedean ordered ring is commutative. In the rest of
this work, we shall give a classification theorem for archimedean ordered rings
with involution. Let s = s* be a positive element in an ordered ring R with involu-
tion. We say that s is infinitely large if s > » for any integer » = 1, and that s is in-
finitely small if n-s <1 for any integer n = 1.

Lemma 12. For any ordered ring R, the following two properties are
equivalent:
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(1) For any positive elements s=s*, d=d* i R, there exists an integer
n=1 such that n-s>d.
(2) R has neither infinitely large nor infinitely small elements.

Proof. Assume (2) holds and consider s, d > 0. By (2), there exist integers
m, n =1 such that d <n and m-s > 1. Then m-n-s >n > d as desired. Now, as-
sume (1) holds, and s=s*>0. Since 1, s >0, then by (1) there exist integers
m, n =1 such that m =m-1 >s and n-s > 1, so that s is neither infinitely large
nor infinitely small.

An ordered ring with involution is called archimedean if it satisfies any of the
two conditions of Lemma 12. We note that, if R = D is an ordered division ring,
then for s = s* > 0, s is infinitely large if and only if s ! is infinitely small. Thus D
is archimedean if and only if D has no infinitely large elements, if and only if D
has no infinitely small elements.

Theorem 13. Let R be an archimedean ordered ring with involution. Then
all symmetric elements in R mutually commute.

Proof. Let b, d and s be three symmetric elements of R. Let k be the skew
symmetric element [b, d] =bd —db and form the symmetric element [k, s]
=[[b, d], s]. From (s—k)*(s—k)=0 and (s—k)(s — k)*=0 one can get the ine-
quality 0 < |[k, s]| = s2 — k2 where |[k, s]| means the absolute value symbol in
its usual sense. We assume that s >0 (if s <0 we replace s by —s). Since R is
archimedean, then for each n=1 there exists an integer m such that 1 >ns—m=0
so that (ns —m)?<1. Now, replace s by ns —m in the above inequality we
get 0<n|lk,s]|s1- k% m=1,2,...; which implies [k, s]=0 (since both
|[k, s]| and 1 — k? are positive symmetric elements), i.e. k= [b, d] commutes
with s for all symmetrics b, d, and s. This says that all commutators [b, d]; b,
deS; commutes with all symmetric elements. From the identity

2b[b, d] =[b?, d1+[b,[b, d1] =[b?, dI,

2b[b, d] also commutes with all symmetric elements, for b, deS. Thus both
[b, d] and 20[b, d] commute with all symmetric elements. As R is a domain,
b must commute with all symmetric elements. Hence all symmetric elements
mutually commute.

Corollary 14. Let R be an archimedean ordered ring with involution
where the set of symmetric elements S generates R. Then R is a commutative
domain.
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In the case of a division ring R with involution, it is known that S generates R,
unless R is of dimension 4 over its centre. Hence

Corollary 15. If R is an archimedean ordered division ring with involu-
tion, then R is commutative or of dimension 4 over its centre.
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Abstract

The notion of an ordering of a field was studied by Artin and Schreler. One can ask
now if this can be generalized to noncommutative rings with involution. In this paper,
the notions of a preordering and an ordering of a ring R with involution is investigated.
An algebraic condition for the existence of an ordering of R is given. Also, a condition for
enlarging an ordering of R to an overring is given. As for the case of a field, any pre-
ordering of R can be extended to some ordering. Finally, we establish a classification the-
orem for archimedean ordeved rings with involution. We should remark that the order-
mgs as defined in this work can only exist for rings without zero-divisors.



