Ismail M. Idris (*)

Orderings and preorderings in rings with involution (**)

1 - Introduction, Definitions and Basic facts

The notion of an ordering of a field was studied by Artin and Schreier. This notion was extended to division rings with involution in [1], [2] and [3]. One can ask now if this can be generalized to noncommutative rings with involution. In this paper, the notions of a preordering and an ordering of a ring R with involution is investigated. An algebraic condition for the existence of an ordering of R is given. Also, a condition for enlarging an ordering of R to an overring is given. As for the case of a field, any preordering of R can be extended to some ordering. Finally, we establish a classification theorem for archimedean ordered rings with involution. We should remark that the orderings as defined in this work can only exist for rings without zero-divisors.

Now, we state some definitions and basic facts that will be needed in this work. Hereafter R will be a not necessarily commutative ring with unity with involution * (an anti- automorphism of period 2). By a norm in R we mean an element of the form $x x^{*}$ for some $x \in R$. Let $S=\left\{s \in R: s=s^{*}\right\}$ be the set of all symmetric elements of R. Let X be the set of all finite products of elements of the set $\left\{x_{i}, x_{i}^{*} / 0 \neq x_{i} \in R\right\}$ in some arbitrary but fixed order, and we write P for the subset of R consisting of sums of elements of X. P is called the *-core of R. This generalizes the notion of a *-core given in [1] for the case of a ring with involution.

Clearly X contains the set of all products of norms of R and P contains the set of all sums of products of norms, in particular $X \subset P$. Also, it is clear that X is *-
(*) Math. Dept., Faculty of Science, Ain-Shams University, Cairo, Egypt.
(**) Received March 15, 1999 and in revised form on June 24, 1999. AMS classification $16 \mathrm{~K} 40,16 \mathrm{~W} 10$.
closed, multiplicatively closed and contains 1 ; and P is *-closed and closed under sums and products. When $*=$ identity, then R is commutative and P will be the set of all sums of products of squares of R. Our goal is to show that R has an ordering if and only if $0 \notin P$. First, we give the definition of an ordering.

Definition. A *-closed subset $M \subset R$ is called a preordering of R if:
(1) $M+M \subseteq M$;
(2) $M \cdot M \subseteq M$;
(3) $0 \notin M, 1 \in M$; and
(4) $a_{1}, a_{2}, \ldots, a_{t} \in M ; x_{1} x_{2}, \ldots, x_{r} \in R$ implies that any product of the $2 r+t$ elements a_{j}, x_{i}, x_{i}^{*} in some arbitrary but fixed order belongs to M (where $x_{i} \neq 0$).

A preordering M is called an ordering of R if:
(5) For $0 \neq s=s^{*} \in R, s \in M \cup-M$, i.e. S is a totally ordered (additive) group.

If R is commutative, then condition (4) above is equivalent to the condition:

$$
a \in M, \quad x \in R \Rightarrow a x x^{*} \in M .
$$

The above definition of an ordering of R generalizes the notion of a strong ordering of a division ring with involution given in [2]. Also, $M \cap S$ will be a Jordan ordering in the sense given in [3] in the case of a division ring with involution. When * = identity, then R is commutative, and the definition of an ordering reduces to that of a classical Artin-Schreier ordering.

Proposition 1. Let M be an ordering on R. Then

$$
M \cap-M=\phi,
$$

and R is a domain with characteristic zero.
Proof. If $a \in M \cap-M$, then $0=a+(-a) \in M+M \subseteq M$, contradicting Property (3) above. Since $1 \in M$, it follows that, for any natural number n,

$$
n \cdot 1=1+\ldots+1 \in M
$$

Therefore, char $R=0$. Finally, if $x, y \in R \backslash\{0\}$ and $x y=0$, then $0=x^{*} x y y * \in M$, a contradiction. This shows that R is a domain.

Proposition 2. Let M be a preordering, then
(1) $s=s^{*} \in M, s$ invertible $\Rightarrow s^{-1} \in M$.
(2) $s \in R, s$ invertible $\Rightarrow s M s^{-1} \subset M$.

Proof.
(1) We note that $s^{-1}=s\left(s^{-1} s^{-1^{*}}\right) \in M$
(2) $s M s^{-1}=s M s^{-1}\left(s^{-1^{*}} s^{*}\right) \subset M$ (by Property (4)).

If we are given an ordering M of R, then M defines an order relation on R by:

$$
b \geqslant a \Leftrightarrow b-a \in M \cup\{0\} .
$$

The ring of integers Z, the field of rational numbers Q and the field of real numbers R, with their usual orderings and the identity as involution are examples of ordered commutative rings. The field of complex numbers C with conjugation as involution, is ordered by the set $M=\mathbf{R}^{+}$(the positive real numbers).

An example of a non commutative ordered ring is the Weyl algebra generated over R by x and y with relation $x y-y x=1$, i.e., $R=\mathbf{R}[x, y] /(x y-y x-1)$, relative to the involution making x symmetric and y skew. Elements of R have the canonical form

$$
r=r_{0}(x)+r_{1}(x) y+\ldots+r_{n}(x) y^{n},
$$

where each $r_{i}(x) \in \mathbf{R}[x], r_{n}(x) \neq 0$. Let $M \subset R$ be the set of all non zero elements $r \in R$ as above for which $r_{n}(x)$ has a positive leading coefficient. One can show that M is an ordering of R.

2-Existence of Orderings

For a preordering M and $0 \neq s=s^{*} \in R$, we define $M(s)$ to be the set of all sums of products of elements of M; elements of $\left\{x_{i}, x_{i}^{*} / 0 \neq x_{i} \in R\right\}$, and s in some arbitrary but fixed order. If R is commutative, then clearly $M(s)=M s$. For $R=D$ a division ring, also $M(s)=M s$.

Lemma 3. $M \bigcup M(s) \bigcup M+M(s)$ is a preordering iff $0 \notin M+M(s)$.
Proof. Let $M^{\prime}=M \bigcup M(s) \bigcup M+M(s)$ then clearly $M^{\prime}+M^{\prime} \subset M^{\prime}$. By the definition of $M(s)$ and Property (4) of a preordering, we have

$$
\begin{aligned}
M^{\prime} \cdot M^{\prime} & =M \cdot M(s)+M(s) \cdot M+M \cdot M+M(s) \cdot M(s) \\
& \subset M(s)+M(s)+M+M \\
& \subset M+M(s) \subset M^{\prime} .
\end{aligned}
$$

Also M^{\prime} satisfies Property (4) and $1 \in M^{\prime}$. Since $0 \notin M \bigcup M(s)$, then M^{\prime} is a preordering iff $0 \notin M+M(s)$.

Lemma 4. If M is a preordering and $0 \neq s=s^{*} \in R$, then

$$
M_{1}=M \cup M(s) \bigcup M+M(s) \quad \text { or } \quad M_{2}=M \bigcup M(-s) \bigcup M+M(-s),
$$

is a preordering containing M.
Proof. We first note that any element of $M(-s)$ is of the form $-x$ where $x \in M(s)$ and hence every element of $M+M(-s)$ is of the form $t-x$; where $t \in M, x \in M(s)$. Assume now that the lemma is false, then by Lemma 3, $0 \in M+M(s)$ and $0 \in M+M(-s)$. Hence $t_{1}+x_{1}=0=t_{2}-x_{2}$ where $t_{1}, t_{2} \in M ; x_{1}$, $x_{2} \in M(s)$, and $x_{1}=-t_{1}, x_{2}=t_{2}$. Since $x_{1} x_{2} \in M(s) \cdot M(s) \subset M$ and $t_{1} t_{2} \in M$; and $t_{1} t_{2}=-x_{1} x_{2}$ then $0=x_{1} x_{2}+t_{1} t_{2} \in M$ which is a contradiction. Thus M_{1} or M_{2} is a preordering.

Proposition 5. If M is a maximal preordering with respect to inclusion, then M is an ordering.

Proof. We need to show that $S \subset M \bigcup-M$. For $0 \neq s=s^{*} \in S$,

$$
M_{1}=M \bigcup M(s) \bigcup M+M(s) \quad \text { or } \quad M_{2}=M \bigcup M(-s) \bigcup M+M(-s),
$$

is a preordering containing M. But M is maximal, then $M=M_{1}$ or $M=M_{2}$ and hence M contains s or $-s$ as desired.

Theorem 6. Let R be a ring with involution, then R has an ordering if and only if $0 \notin P$.

Proof. If R has an ordering M, then $P \subset M$ and $0 \notin P$. Conversely, if $0 \notin P$, then P is a preordering. By Zorn's Lemma, we have a maximal preordering M. By Proposition $5, M$ is an ordering of R.

Theorem 7. Any preordering M_{0} of R can be extended to some ordering M.
Proof. By Zorn's Lemma, the set of all preorderings extending M_{0} contains some maximal preordering M. By Proposition $5, M$ is an ordering contains M_{0}.

We note that, any intersection of orderings of R is a preordering of R. If R is orderable, i.e., $0 \notin P$, then the *-core P is a preordering with the following fea-
tures $P \subset M$ and $M \cdot P=P \cdot M=M$ for each preordering M. Throughout the rest of this section, we will assume that $0 \notin P$. By Sym (A) we mean the subset of symmetric elements of A.

Corollary 8. $\operatorname{Sym}(P)=\operatorname{Sym}\left(\bigcap_{i} M_{i}\right)$, where the intersection runs over all orderings M_{i} of R.

Proof. Clearly $\operatorname{Sym}(P) \subseteq \operatorname{Sym}\left(\bigcap M_{i}\right)$. Conversely, we show that $s=s^{*} \notin P$ implies $s \notin M$ for some ordering M. Since P is a preordering, then by Lemma 4, $M_{1}=P \bigcup P(-s) \bigcup P+P(-s)$ is a preordering containing P and $-s$. By Theorem $7, M_{1}$ can be extended to some ordering M. Since $-s \in M_{1} \subset M$ and M is an ordering, it follows that $s \notin M$.

Corollary 9. Let M_{0} be any preordering. Then $\operatorname{Sym}\left(M_{0}\right)=\operatorname{Sym}\left(\bigcap_{i} M_{i}\right)$, where the intersection runs over all orderings M_{i} containing M_{0}.

Lemma 10. Let M_{1} and M_{2} be two orderings of R. If $M_{1} \subset M_{2}$, then

$$
\operatorname{Sym}\left(M_{1}\right)=\operatorname{Sym}\left(M_{2}\right) .
$$

Proof. If there is $s=s^{*} \in M_{2}-M_{1}$, then from $s \notin M_{1}$ follows $-s \in M_{1} \subset M_{2}$, so both s and $-s$ are in M_{2} which is nonsense.

Theorem 11. Let $R \subseteq R^{\prime}$ be rings with involution. Let M be an ordering of R. Let M^{\prime} be the set of all sums of products of $2 r+t$ elements a_{j}, x_{i}, x_{i}^{*} in some arbitrary but fixed order, where $a_{1}, a_{2}, \ldots, a_{t} \in M$ and $x_{1}, x_{2}, \ldots, x_{r} \in R^{\prime}-\{0\}$. If $0 \notin M^{\prime}$, then M can be enlarged to some ordering of R^{\prime}.

Proof. Since $0 \notin M^{\prime}$, it follows that $0 \notin P^{\prime}$ (the *-core of R^{\prime}) and R^{\prime} is ordered. It is easy to show that M^{\prime} is a preordering of R^{\prime}. By Theorem 7, M^{\prime} can be enlarged to some ordering $M_{1} \supset M^{\prime} \supset M$.

It is known that any archimedean ordered ring is commutative. In the rest of this work, we shall give a classification theorem for archimedean ordered rings with involution. Let $s=s^{*}$ be a positive element in an ordered ring R with involution. We say that s is infinitely large if $s>n$ for any integer $n \geqslant 1$, and that s is infinitely small if $n \cdot s<1$ for any integer $n \geqslant 1$.

Lemma 12. For any ordered ring R, the following two properties are equivalent:
(1) For any positive elements $s=s^{*}, d=d^{*}$ in R, there exists an integer $n \geqslant 1$ such that $n \cdot s>d$.
(2) R has neither infinitely large nor infinitely small elements.

Proof. Assume (2) holds and consider $s, d>0$. By (2), there exist integers $m, n \geqslant 1$ such that $d<n$ and $m \cdot s>1$. Then $m \cdot n \cdot s>n>d$ as desired. Now, assume (1) holds, and $s=s^{*}>0$. Since $1, s>0$, then by (1) there exist integers $m, n \geqslant 1$ such that $m=m \cdot 1>s$ and $n \cdot s>1$, so that s is neither infinitely large nor infinitely small.

An ordered ring with involution is called archimedean if it satisfies any of the two conditions of Lemma 12 . We note that, if $R=D$ is an ordered division ring, then for $s=s^{*}>0, s$ is infinitely large if and only if s^{-1} is infinitely small. Thus D is archimedean if and only if D has no infinitely large elements, if and only if D has no infinitely small elements.

Theorem 13. Let R be an archimedean ordered ring with involution. Then all symmetric elements in R mutually commute.

Proof. Let b, d and s be three symmetric elements of R. Let k be the skew symmetric element $[b, d]=b d-d b$ and form the symmetric element $[k, s]$ $=[[b, d], s]$. From $(s-k)^{*}(s-k) \geqslant 0$ and $(s-k)(s-k)^{*} \geqslant 0$ one can get the inequality $0 \leqslant|[k, s]| \leqslant s^{2}-k^{2}$ where $|[k, s]|$ means the absolute value symbol in its usual sense. We assume that $s>0$ (if $s<0$ we replace s by $-s$). Since R is archimedean, then for each $n \geqslant 1$ there exists an integer m such that $1>n s-m \geqslant 0$ so that $(n s-m)^{2}<1$. Now, replace s by $n s-m$ in the above inequality we get $0 \leqslant n|[k, s]| \leqslant 1-k^{2}, n=1,2, \ldots$; which implies $[k, s]=0$ (since both $|[k, s]|$ and $1-k^{2}$ are positive symmetric elements), i.e. $k=[b, d]$ commutes with s for all symmetrics b, d, and s. This says that all commutators $[b, d] ; b$, $d \in S$; commutes with all symmetric elements. From the identity

$$
2 b[b, d]=\left[b^{2}, d\right]+[b,[b, d]]=\left[b^{2}, d\right]
$$

$2 b[b, d]$ also commutes with all symmetric elements, for $b, d \in S$. Thus both [$b, d]$ and $2 b[b, d]$ commute with all symmetric elements. As R is a domain, b must commute with all symmetric elements. Hence all symmetric elements mutually commute.

Corollary 14. Let R be an archimedean ordered ring with involution where the set of symmetric elements S generates R. Then R is a commutative domain.

In the case of a division ring R with involution, it is known that S generates R, unless R is of dimension 4 over its centre. Hence

Corollary 15. If R is an archimedean ordered division ring with involution, then R is commutative or of dimension 4 over its centre.

References

[1] M. Chacron, C-orderable division rings with involution, J. Algebra 75 (1982), 495-521.
[2] S. S. Holland, Strong ordering of *-fields, J. Algebra 101 (1986), 16-46.
[3] Ismail M. Idris, Jordan ordering of a division ring with involution, Arabian J. Sci. Engrg. 14 (1989), 527-535.
[4] T. Y. Lam, A first course in noncommutative rings, Springer-Verlag, Berlin-Hei-delberg-New York 1991.

Abstract

The notion of an ordering of a field was studied by Artin and Schreler. One can ask now if this can be generalized to noncommutative rings with involution. In this paper, the notions of a preordering and an ordering of a ring R with involution is investigated. An algebraic condition for the existence of an ordering of R is given. Also, a condition for enlarging an ordering of R to an overring is given. As for the case of a field, any preordering of R can be extended to some ordering. Finally, we establish a classification theorem for archimedean ordered rings with involution. We should remark that the orderings as defined in this work can only exist for rings without zero-divisors.

