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Electromagnetic waves in stratified media (**)

1 - Introduction

Electromagnetic wave propagation in inhomogeneous media is investigated
both in the frequency domain and in the time domain. Recent approaches to the
time domain involve imbedding, Green’s functions methods and wave splitting
techniques [1]-[4]. The frequency domain is decisively more familiar, especially in
dispersive media [5]. The present investigation is framed within the frequency do-
main and shows that new properties and results can be derived on the basis of an
appropriate decomposition of the matrix governing wave propagation through a
first-order system.

The material properties are modelled by incorporating both instantaneous re-
sponse and memory effects in a linear way. Since we let the pertinent fields be
time-harmonic, the material properties result in complex-valued coefficients be-
tween independent and dependent vector fields. Recent investigations [6]-[7] of
thermodynamic character allow us to specify the sign of the imaginary parts of
the permeability and of the effective permittivity.

The constitutive parameters and functions are taken to depend on Cartesian
coordinates x , y , z and the Maxwell’s equations are ultimately written in the
form

¯z w4Aw
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where w is the set of x- and y-components of the electric and the magnetic field
while A is a 434 matrix operator. This form may be viewed in the spirit of Stroh
formulation [8] and is applied [9] to determine the reflection matrix for stratified
anisotropic media. The system is then shown to decouple in two 232 systems if
the trasverse inhomogeneity occurs through one coordinate only.

Next wave propagation is investigated by letting A depend only on z and the
fields be independent of one coordinate (y). The Fourier transform of the perti-
nent fields with respect to x is considered; the remaining dependence on z is the
subject of our analysis. By a proper choice of the eigenvectors of the (Fourier
transform of the) matrix A, the evolution equation results in a peculiar form. Ap-
plication to the Cauchy problem, relative to a surface z4 constant, shows that fin-
er approximations to the solution are obtained. In general, the standard method
of successive approximations may be applied to determine a single scalar un-
known which in turn produces the solution to the Cauchy problem. Also, the re-
course to the thermodynamic restrictions provides a deeper understanding of the
results in that the solution proves to be given by suitable integrals of wave-like
functions which decay as they propagate. As a check of consistency, Fresnel’s for-
mulae for reflection and transmission are shown to hold in the thin-layer limit for
the slab.

The crucial step in the present approach is that, by means of the Stroh-like
formulation, a proper choice of the unknown vector function and of the eigenvec-
tors results in a peculiar form of the evolution equation. Hence a simpler and
more convenient expression follows of the integral equation for the initial value
problem. Also, the connection with the limit case of thin layers is more immedi-
ate.

2 - Time-harmonic waves

Consider an electromagnetic isotropic solid and let E , D , H , B , J be the elec-
tric field, the electric displacement, the magnetic field, the magnetic induction,
and the electric current density. Hence, in MKSA units, we write Maxwell’s equa-
tions as

˜3E42 B
.

, ˜3H4D
.
1J ,(1)

˜ QB40, ˜ QD4r .(2)
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The free-charge density r and the electric current density J satisfy the continuity
equation

˜ QJ1r
.
40 .

The material is taken to exhibit memory effects. We let B , D , J and H , E be re-
lated by linear memory functionals in the form

B(t)4m 0 H(t)1�
0

Q

m
a
(j) H(t2j) dj , D(t)4e 0 E(t)1�

0

Q

e
a
(j) E(t2j) dj ,

J(t)4s 0 E(t)1�
0

Q

s
a
(j) E(t2j) dj ,

where m 0 , e 0 , s 0 are the positive-valued instantaneous permeability, permittivity
and conductivity. The functions m

a
, e

a
, s

a
on R14 [0 , Q) are required to be inte-

grable so that the response B , D , J to constant histories is bounded.
Consider time-harmonic fields with time-dependence factorized by exp (2ivt).

Hence eqs. (1) become

˜3E4 ivB , ˜3H42 ivD1J .(3)

Taking the divergence and using the continuity equation yields (2). We then re-
strict attention only to eqs (3). Meanwhile, the constitutive equations become

B4mH , D4eE , J4sE

where

m4m 01�
0

Q

m
a
(j) exp (ivj) dj , e4e 01�

0

Q

e
a
(j) exp (ivj) dj ,

s4s 01�
0

Q

s
a
(j) exp (ivj) dj .

Substitution in (3) yields

˜3E4 ivmH , ˜3H42 iveE(4)
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where

e4e1 isOv

is the effective permeability.
Compatibility with the second law of thermodynamics [6] requires that

m
a

s (v)D0, e
a
s (v)1v21 (s 01s

a
c (v) )D0, (v�R11 ,

where the subscripts s and c denote (half-range) sine and cosine transform,
e.g.

m
a

s (v)4�
0

Q

m
a
(j) sin vj dj , s

a

c (v)4�
0

Q

s
a
(j) cos vj dj .

Denote by 4 and D the imaginary and real parts of a complex number. Since
4m4 m

a
s and 4e4 e

a
s (v)1v21 (s 01s

a
c (v) ), the thermodynamic requirements

become

4mD0, 4eD0, (v�R11 .(5)

No thermodynamic restriction is placed upon m
a

c , e
a
c and s

a
s . However, m 0 and e 0

are likely to be larger than the frequency-dependent terms m
a

c and e
a
c1s

a
s /v .

Hence, since m 0 , e 0D0 it is reasonable to assume that

Dm4m 01m
a

cD0, De4e 01e
a
c1s

a
s /vD0 .(6)

Because of the inhomogeneity, the permittivity m , and the effective permeabili-
ty e are C 1 functions of the position x. In Cartesian components, eqs. (4)
read

Hy , z2Hz , y4 iveEx , Hx , z2Hz , x42iveEy , Hx , y2Hy , x4 iveEz ,

Ey , z2Ez , y42ivmHx , Ex , z2Ez , x4 ivmHy , Ex , y2Ey , x42ivmHz

where the subscripts, x, y and z stand for the partial derivatives ¯x4¯/¯x ,
¯y4¯/¯y , and ¯z4¯/¯z . Hence we have

Ez4
i

ve
(Hy , x2Hx , y ), Hz42

i

vm
(Ey , x2Ex , y ) .

Upon evaluation of Ez , x , Ez , y , Hz , x , Hz , y and substitution we obtain a system of
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four equations in the four unknowns Hx , Hy , Ex , Ey in the form

¯zyHx

Hy

Ex

Ey

z4 i y 0

N

M

0
z yHx

Hy

Ex

Ey

z
where 0 denotes the 232 zero matrix while M and N are given by

M4 y (1 /vm), x ¯y1 (1 /vm) ¯xy

ve1(1 /vm), y ¯y1 (1 /vm) ¯yy

ve2(1 /vm), x ¯x2 (1 /vm) ¯xx

2(1 /vm), y ¯x2 (1 /vm) ¯xy

z ,

N4 y 2(1 /ve), x ¯y2 (1 /ve) ¯xy

2vm2 (1 /ve), y ¯y2 (1 /ve) ¯yy

vm1 (1 /ve), x ¯x1 (1 /ve) ¯xx

(1 /ve), y ¯x1 (1 /ve) ¯xy

z .

The entries off the secondary diagonal involve mixed derivatives ¯xy or prod-
ucts such as (1 /vm), x ¯y . Hence, if the transverse dependence is only through one
coordinate, x or y, the off-diagonal entries vanish. The system then decouples in
two 232 systems, one for Hx and Ey , the other for Hy and Ex . If, further, the de-
pendence of the material properties is only through z and Hx , Hy , Ex , Ey are in-
dependent of y we have

¯zyHx

Ey

z42 i y 0

vm

ve1(1 /vm) ¯xx

0
z yHx

Ey

z ,(7)

¯zyHy

Ex

z4 i y 0

vm1 (1 /ve) ¯xx

ve

0
z yHy

Ex

z .(8)

3 - Property of A in the Fourier-transform domain

The form of the systems (7), (8) suggests that we apply the Fourier transform
with respect to x. Letting

f×(kx )4 �
2Q

Q

exp (2ikx x) f (x) dx
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we obtain

w 84Aw

where the prime denotes differentiation with respect to z and

w4 yH×x

E×y

z , A42i y 0

vm

ve2(1 /vm) kx
2

0
z(9)

or

w4 yH×y

E×x

z , A4 i y 0

vm2 (1 /ve) kx
2

ve

0
z .(10)

The eigenvalues l 1 , l 2 of the 232 matrices A in (9) and (10) satisfy

l 1, 2
2 4kx

22v 2 me

42v 2](Dm)(De)2 (4m)(4e)2kx
2 /v 21 i[ (4m)(De)1 (4e)(Dm) ]( .

(11)

It follows from (5) and (6) that

4l 1, 2
2 E0, vD0 .(12)

Also, if kxc0, Dl 1, 2
2 is positive for small values of v and negative for large

values of v , if DmD4m and DeD4e. Let l 1 be the value with the minimal argu-
ment. Irrespective of the value of kx and vD0, it follows from (12) that

4l 1D0, Dl 1E0 ,(13)

namely arg l 1� (p/2 , p).
As a consequence of (11) and (13) we have l 142 l 2c0 and hence the matri-

ces A are simple, which means that the eigenvectors w(1) , w(2) are linearly
independent.

Let Q be the matrix whose columns are the eigenvectors of A. Hence
u4Q 21 w satisfies the differential equation

u 84Lu2Q 21 Q 8u(14)

where L4diag (l 1 , 2l 1 )4Q 21 AQ . An equation of the form (14) for the evolu-
tion with z is considered by Kennett [10] within seismic wave propagation and by
Karlsson [3] in electromagnetic one-dimensional media. The form (14) occurs also
in a paper by Keller & Keller [11] on systems of linear differential equations. In



83ELECTROMAGNETIC WAVES IN STRATIFIED MEDIA[7]

electromagnetism, Q 21 Q 8 can be given a peculiar form - cf. (16) and (17) - which
allows for simpler procedures to obtain the solution to related problems.

Look at the matrix A of (9). To find the expression of Q 21 Q 8 we choose the
eigenvectors w(1 , 2 ) as

w(1)4 yil 1 /vm

1
z , w(2)4 yil 2 /vm

1
z .(15)

On observing that Q4 [w(1) , w(2) ] we obtain

Q 21 Q 84
f 8

2f
J(16)

where

J4 y 1

21

21

1
z

and

f4l 1 /vm .

Also,

w4Qu4 k il 1

vm
(u12u2 ), u11u2lT .

Concerning the matrix A of (10), the eigenvalues turn out to be the same as
for (9) while

w(1)4 y 1

2il 1 /ve
z , w(2)4 y 1

2il 2 /ve
z .

Hence we find that

Q 21 Q 84
c 8

2c
J(17)

where

c4l 1 /ve .

The result that, in both cases, Q 21 Q 8 is a scalar function times the constant
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symmetric matrix J , is crucially related to the choice of the eigenvectors. That is
presumably why, so far, such a property has not been exhibited. By (16) — or
similarly by (17) — we can write

u 84Lu2
f 8

2f
g y 1

21
z(18)

where g4 (Ju)14u12u2 . Upon an integration, u is then determined in terms of
the single scalar variable g4u12u2 . Indeed, summation of the two components
gives

(u11u2 )84l 1 g

and hence u11u2 is determined by g.
A single scalar unknown occurs also in other approaches but then the perti-

nent problem is governed by a second-order differential equation. The next sec-
tion examines how the function g(z), and hence u and w, may be determined by
solving an integral equation.

The peculiar properties of the model under investigation is that a 232 matrix
A occurs with zero diagonal terms, and hence with equal and opposite eigenvalues
l 242 l 1 such that 4l 1, 2

2 E0 as vD0. Moreover, by a choice of the eigenvectors
the pertinent first-order system takes the form (18). The same aspects pertain to
the system for a transmission line where

w4 yV
I
z , A4 i y 0

v(C1 iG/v)

v(L1 iR/v)

0
z ,

where V is the voltage, I is the current and L , R , C , G are the inductance, the re-
sistance, the capacitance and the shunt conductance per unit length.

The same properties pertain also to horizontally-polarized mechanical waves
in isotropic solids where

w4 yuy

ty

z , A4 y 0

mkx
22rv 2

1 /m

0
z ,

where uy is the (horizontal) displacement, ty is the traction and m is the shear ela-
sticity, r is the density. Such different contexts provide a further motivation for
the investigation of the system (18).
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4 - The solution in a layer

We consider the differential equation (18) in C together with the initial condi-
tion on u(0). Here u is a pair of complex quantities while Q 21 Q 84 (f 8 O2f) J .
Since m and e are complex valued, both l 1 and f are complex valued. The depen-
dence of m and e on the space variable z is taken to be of class C 1 and hence so is
f . Also, l 1

2
c0 everywhere in R and so does f . With a view to later use, we let

f 8f0 in (2Q , 0 ]N [d , Q), dD0.
Though the matrix L is dependent on z, the diagonal form allows us to

write

d

dz
exp y �

0

z

L(j) djz4exp y �
0

z

L(j) djz L(z) .

Hence integration of (18) yields

u(z)4exp y �
0

z

L(j) djz u(0)2�
0

z
f 8

2f
(j) exp y �

j

z

L(h) dhz g(j) djy 1

21
z(19)

namely a linear Volterra equation for u.
The occurrence of g in (19) suggests that we look for an equation in the single

unknown g. Let G be the first component of J exp y �
0

z

L(j) djz u(0) namely

G(z)4exp y �
0

z

l 1 (j) djz u1 (0)2exp y2�
0

z

l 1 (j) djz u1 (0) .

Application of J to (19) yields the integral equation

g(z)4G(z)2�
0

z
f 8

2f
(j) yexp u �

j

z

l 1 (h) dhv1exp u2�
j

z

l 1 (h) dhvz g(j) dj .(20)

Differentiation of (20) with respect to z yields

g 8 (z)4G 8 (z)2
f 8

f
(z) g(z)
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2l 1 (z)�
0

z
f 8

2f
(j) yexp u �

j

z

l 1 (h) dhv2exp u2�
j

z

l 1 (h) dhvz g(j) dj .

Multiplication by f(z) and integration result in

(fg)(z)2 (fg)(0)4�
0

z

(fG 8 )(j) dj

2�
0

z

f(j) l 1 (j)�
0

j
f 8

2f
(s) yexp u�

s

j

l 1 (h) dhv2exp u2�
s

j

l 1 (h) dhvz g(s) ds .

(21)

Equation (20) can be given the form

g(z)4G(z)1�
0

z

k(z , j) g(j) dj(22)

where

k(z , j)42
f 8

2f
(j) yexp u�

j

z

l 1 (h) dhv1exp u2�
j

z

l 1 (h) dhvz .

Upon the assumption that k is bounded as j� [0 , d] and z� [0 , d], it follows
that the solution g to (22) exists and is unique in L 2 (0 , d) (cf. [12]). The same
conclusion follows for the unknown fg by merely letting k(z , j)KK(z , j)
4f(z) k(z , j) /f(j); in this regard it is essential that fc0 as a consequence of
(12).

To obtain the solution g to (22) we apply the method of successive approxima-
tions through the integral equation

g(z)4G(z)1 !
m41

n21

�
0

z

km (z , j) G(j) dj1�
0

z

kn (z , j) g(j) dj

where km , m42, 3 , R , is generated by the recursive relation

km11 (z , j)4�
j

z

km (z , h) k(h , j) dh
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and n is chosen such that

(K n g)(z) »4�
0

z

kn (z , j) g(j) dj

is a contraction, i.e. VK n
VE1.

We now make use of a generalization [13] of Gronwall’s lemma which im-
proves a standard inequality (cf. [14]). Let h , p , q be continuous functions on
[0, d] and pqF0. If f has the property that

f (z)Gh(z)1p(z)�
0

z

q(y) f (y) dy , z� [0 , d] ,

then

f (z)Gh(z)1p(z)�
0

z

(qh)(y) exp y �
y

z

(qp)(h) dhz dy , z� [0 , d] .(23)

Application of (23) to

Ng(z)NGNG(z)N1�
0

z

Nk(z , j)N Ng(j)Ndj

and the identifications

f4NgN , h4NGN , p41, q4NkN ,

shows that NgN is bounded on [0, d]. Hence, on the assumption that l 1 , f , f 8 be
bounded it follows from (21) that

(fg)(z)2 (fg)(0)4O(z) .(24)

Accordingly, the function g satisfies

g(z)4
(fg)(0)

f(z)
1O(z) .

The conclusion remains valid as dK0, in which case f 8 may become unbounded,
provided only that Nf 8 Nd is kept bounded. This means that, g(z) is closer and
closer to (fg)(0) /f(z) both when z becomes small while f is kept fixed and when
dK0 while f(0) and f(d) are fixed.
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5 - Wave propagation

With (13) in mind we now investigate the meaning of (21). The last term pro-
vides the higher-order corrections, in the sense of successive approximations, to
the solution determined by the initial value u(0). Examine the first two
terms.

Let u(0)4 [u0
1 , u0

2 ]. Observe that G 8 takes the form

G 8 (z)4l 1 (z) yu0
1 exp u �

0

z

l 1 (j) djv1u0
2 exp u2�

0

z

l 1 (j) djvz ;

the initial values u0
1 , u0

2 enter the solution through G 8 (z).
Replace (fg)(s) with (fg)(0)1O(s). Since the time dependence is through the

factor exp (2ivt), in the space-time variables z, t we obtain from (21) that

(fg)(z , t)2 (fg)(0 , t)

4�
0

z

f(j) l 1 (j) {u0
1 exp u2�

0

j

NDl 1N(h) dhv exp yi u �
0

j

4l 1 (h) dh2vtvz

1u0
2 exp u �

0

j

NDl 1 N(h) dhv exp y2i u �
0

j

4l 1 (h) dh1vtvz} dj

2(fg)(0)�
0

z

f(j) l 1(j)�
0

j
f 8

2f 2
(s) l 1(j) {exp u2�

s

j

NDl 1N(h) dhv exp yi u �
s

j

4l 1(h) dh2vtv z

2exp u �
s

j

NDl 1 N(h) dhv exp y2i u �
s

j

4l 1 (h) dh1vtvz} ds dj2R

the dots indicating the higher-order corrections due to O(s). The result shows
that the wave at a point z consists of a superposition of elementary terms of the
form

exp u2�
0

j

NDl 1 N(h) dhv exp yi u �
0

j

4l 1 (h) dh2vtvz , j� [0 , z] ,(25)
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exp u �
0

j

NDl 1 N(h) dhv exp y2i u �
0

j

4l 1 (h) dh1vtvz, j� [0 , z] .(26)

The function (25) represents a wave propagating in the positive z-direction with

mean wavenumber j21�
0

j

4l 1 (h) dh . The wave decays, as it propagates, through

the factor exp u2�
0

j

NDl 1 N(h) dhv, which means that j21�
0

j

NDl 1 N(h) dh repre-

sents the mean attenuation rate. The function (26) represents a wave propagating
in the negative z-direction. The amplitude decays as j decreases because of the

factor exp u �
0

j

NDl 1 N(h) dhv.

6 - Reflection and transmission from a layer

A layer of thickness d, z� [0 , d], is placed among two homogeneous half
spaces. Let l 0 and l d be the value of the eigenvalue l 1 as z� (2Q , 0 ] and z
� [d , Q). Since 4(me)D0 it follows that

4l 0D0 , Dl 0E0

4l dD0 , Dl dE0

for any values of vc0 and kx . By solving u 84Lu in zG0 and zFd and
letting

u(0)4 yu0
1

u0
2
z , u(d)4 yud

1

ud
2
z ,

we have

u(z)4 yu0
1 exp (2NDl 0 Nz) exp (i4l 0 z)

u0
2 exp (NDl 0 Nz) exp (2i4l 0 z)

z , zG0 ,

u(z)4 yud
1 exp (2NDl d N(z2d) ) exp (i4l d (z2d) )

ud
2 exp (NDl d N(z2d) ) exp (2i4l d (z2d) )

z , zFd .

We may view the terms with u0
1 , ud

2 as incoming waves, those with u0
2 , ud

1 as
outgoing waves.
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A reflection-transmission problem is modelled by considering an incoming
wave and two outgoing waves. Let the incident (incoming) wave come from the
negative side zG0, namely u0

1 exp (2NDl 0 Nz) exp (i4l 0 z). The two outgoing
waves are u0

2 exp (NDl d Nz) exp (2i4l d z) at zG0 and ud
1 exp (2NDl d N

Q (z2d) ) exp (i4l d (z2d) ) at zFd . The position ud
240 means that no wave is

incoming from zFd .
Let uA4Ju4g[1 , 21]T . By (14) and (16) we have

u(d)4exp u�
0

d

L(j) djv u(0)2�
0

d
f 8

2f
(j) exp u�

j

d

L(h) dhv uA(j) dj .

Define the transmission coefficient T and the reflection coefficient R such that
ud

14Tu0
1 , u0

24Ru0
1 . The continuity of u at z4d implies that

yT
0
z4 y exp gs

0

d

l 1 (j) djh
R exp g2s

0

d

l 1 (j) djh
z

1
1

u0
1 y2s

0

d

[f 8 /2f](j) exp gs
j

d

l 1 (h) dhh g(j) dj

s
0

d

[f 8 /2f](j) exp g2s
j

d

l 1 (h) dhh g(j) dj

z .

(27)

Substitution of g, as given by the integral equation (20) or by (21), into (27) yields
the transmission and reflection coefficients T, R.

It is of interest to evaluate T and R in the limit case when the thickness d of
the layer approaches zero while the values f 04f(0) and f d4f(d) are kept
fixed. In this regard it is essential to use the estimate

f(j)
g(j)

u0
1

2f 0g12 u0
2

u0
1 h4O(j)
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which follows from (24). Substitution in (27) yields

yT
0
z4 y exp gs

0

d

l 1 (j) djh
R exp g2s

0

d

l 1 (j) djh
z1

f 0 (12R) y2s
0

d

[f 8 /2f 2 ](j) exp gs
j

d

l 1 (h) dhh [11O(j) ] dj

s
0

d

[f 8 /2f 2 ](j) exp g2s
j

d

l 1 (h) dhh[11O(j) ] dj

z .

(28)

The limit as d approaches zero yields

T411
f 0 (12R)

2
k 1

f d

2
1

f 0
l ,

04R2
f 0 (12R)

2
k 1

f d

2
1

f 0
l .

Hence it follows that

R4
f 02f d

f 01f d

, T4
2f 0

f 01f d

.(29)

Since f4l 1 /vm we have

f4
i(me2kx

2 /v)1/2

m

where the square root is that with minimal argument. In the picture of plane
waves, me2kx

2 /v 2 may be viewed as the complex-valued normal component of the
wave vector. Accordingly the limit relations (29) may be regarded as the genera-
lization of Fresnel’s formulae (cf. [15] and [5], p. 120).
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S u m m a r y

Time-harmonic wave propagation is considered in inhomogeneous, isotropic, electro-
magnetic solids. The particular case is then assumed that the material properties (per-
mittivity and permeability) depend on a Cartesian coordinate only and the problem is
shown to satisfy a system of linear, first-order, ordinary differential equations. A suitable
change of unknown functions is performed by means of the eigenvectors of the coefficient
matrix. The peculiar structure of the system of evolution equations results in a single
equation for a suitable unknown variable thus providing finer approximations to the sol-
ution of a Cauchy problem with data at a surface. The recourse to properties of thermo-
dynamic character allows a deeper understanding of the results. The coefficients of reflec-
tion and transmission are evaluated in closed form. As a check of consistency, in the
thin-layer limit for a stratified slab, Fresnel’s formulae for reflection and transmission
are recovered.

* * *
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