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Gronwall-Bellman type integral inequalities

for multi-distributions (**)

1 - Introduction

The origin of the results obtained in this paper is the Gronwall-Bellman in-
equality which plays an important role in the study of the properties of solutions
of differential and integral equations (see for example [1] and the references cited
therein). Due to various motivations, many linear, nonlinear and discrete general-
izations of Gronwall-Bellman type inequalities have been obtained and applied ex-
tensively (see for example [1]).

The purpose of this paper is to further investigate the Gronwall type inequali-
ties for multi-distributions and to extend some of the results obtained in [6] and
where necessary to obtain improved apriori bounds than those given in [6].

In addition, the results obtained in this paper would enable us to study equa-
tions of the form

Dx4 f (t , x) Du(1)

where Dx and Du denote the derivatives of the functions x and u respectively in
the sense of the distribution.

The results obtained in this paper are in the sense of Lebesgue-Stieltjes inte-
gral for functions of bounded variation. Throughtout this paper, we shall assume
that the functions uj (t) is right continuous at t40, j41, R , m and that BV(I)
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will denote the set of all functions of bounded variation defined on I%D and tak-
ing values in D .

2 - Main results

The following results will be needed in the proof of our main results.

L e m m a 2.1 [5]. Let f and g be two real-valued functions on the real line D

such that both are of bounded variation on every compact subinterval of D. Then
fg defines a distribution, and the derivative of fg in the sense of the distribution
is equal to the locally summable function ( fg)8 given by

f 8 (x) g(x)1 f (x)g 8 (x)

for almost all x. That is

D( fg)4 (Df )g1 f (Dg) ,

where Df and Dg denote the derivatives of the functions f and g respectively in
the sense of the distributions.

P r o o f . See [5], pp. 546-547.

T h e o r e m 2.1. Suppose that for j41, R , m . and t , s� [0 , T],

1. Qj (t , s)F0, y(t)F0 and Qj (t , s), y(t), f (t)�BV [0 , T].

2. uj (t) are nondecreasing in t.

3. Qj (t , s) and its partial derivatives
¯

¯t
Qj (t , s) are continuous and nonde-

creasing in its first variable and that Qj (t , s) and
¯

¯t
Qj (t , s) are nonneg-

ative and integrable with respect to uj (t) and if the following inequality
holds

y(t)G f (t)1 !
j41

m

�
0

t

Qj (t , s) y(s) duj (s) .(2)
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Then

y(t)GAm ( f )1Am (1)�
0

tuQm (s , s) Am ( f )1�
0

s
¯

¯s
Qm (s , t) Am ( f )v

3exp u�
s

t

Qm (s , t) Am (1) dum (t)v dum (s) ,

(3)

for all t , s , t� [0 , T], and where Ak (v) is defined inductively as follows

A1 (v)

Ak11 (v)

4v

4Ak (v)1�
0

tuAk (Qk (s , s) ) Ak (v)1�
0

s
¯

¯s
Ak (Qk (s , t) ) Ak (v) duk (t)v

3exp u�
s

t

Ak (Qk (s , t) ) duk(t)v duk (s) .

(4)

P r o o f . Let

xi (t)4�
0

t

Qi (t , s) y(s) dui (s) , t , s� [0 , T], i41, R , m .(5)

Clearly xi (t) are functions of bounded variation. We also observed that xi (0)40.
Hence, in view of (5), inequality (2) becomes

y(t)G f (t)1 !
j40

m

xj (t) .(6)

Thus

Dxi (t)4Qi (t , t) y(t) Dui (t)1�
0

t
¯

¯t
Qi (t , s) y(s) Dui (s) .(7)
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If we put i41 in (6) and (7), we obtain

Dx1 (t)4Q1 (t , t) y(t) Du1 (t)1�
0

t
¯

¯t
Q1 (t , s) y(s) Du1 (s)

G uQ1 (t , t) kf (t)1 !
j41

m

xj (t)l1�
0

t
¯

¯t
Q1 (t , s) kf (s)1 !

j41

m

xj (s)lv Du1 (t) .

That is

Dx1 (t)2 uQ1 (t , t)x1 (t)1�
0

t
¯

¯t
Q1 (t , s) x1 (s)v Du1 (t)G gQ1 (t , t) kf (t)1 !

j42

m

xj (t)lh
1�

0

t
¯

¯t
gQ1 (t , s) kf (s)1 !

j42

m

xj (s)lh Du1 (t) .

(8)

Multiply both sides of (8) by expu2�
0

t

Q1 (t , s) du1 (s)v we have

yDx1 (t)2 uQ1 (t , t)x1 (t)1�
0

t
¯

¯t
Q1 (t , s) x1 (s)v Du1 (t)z exp u2�

0

t

Q1 (t , s) du1 (s)v

G uQ1 (t , t) kf (t)1 !
j42

m

xj (t)l �
0

t
¯

¯t
Q1 (t , s) kf (s)1 !

j42

m

xj (s)lv

3exp u2�
0

t

Q1 (t , s) du1 (s)v Du1 (t) .

By Lemma 2.1, we have

D ux1 (t) exp u2�
0

t

Q1 (t , s) du1 (s)vvG gQ1 (t , t) kf (t)1 !
j42

m

xj (t)l

1�
0

t
¯

¯t
Q1 (t , s) kf (s) !

j42

m

xj (s)lh exp u2�
0

t

Q1 (t , s) du1 (s)v Du1 (t) .
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Integrate with respect to t from 0 to t, we have

(x1 (t)2x1 (0) ) exp u2�
0

t

Q1 (t , s) du1 (s)vG�
0

tgQ1 (s , s) kf (s)1 !
j42

m

xj (s)l

1�
0

s
¯

¯s
Q1 (s , t) kf (t)1 !

j42

m

xj (t)lh exp u2�
0

s

Q1 (s , t) du1 (t)v du1 (s) .

Since x1 (0)40, we obtain

x1 (t)G�
0

tgQ1 (s , s) kf (s)1 !
j42

m

xj (s)l
1�

0

s
¯

¯s
Q1 (s , t) kf (t)1 !

j42

m

xj (t)lh exp u2�
s

t

Q1 (s , t) du1 (t)v du1 (s) .

(9)

If we put (9) into (6) and using the fact that Xj(t) are nondecreasing, we obtain

y(t)Gf (t)1�
0

tgQ1(s,s) kf (s)1!
j42

m

xj(s)l
1�

0

s
¯

¯s
Q1(s,t) kf (t)1!

j42

m

xj(t)lh exp u2�
s

t

Q1(s,t) du1(t)v du1(s)1!
j42

m

xj(t)

Gf (t)1�
0

tuQ1(s,s) f (s)1�
0

s
¯

¯s
Q1(s,t) f (t)v exp u2�

0

s

Q1(s,t) du1(t)v du1(s)

1!
j42

m y11�
0

tuQ1(s,s)1�
0

s
¯

¯s
Q1(s,t)v exp u2�

s

t

Q1(s,t) du1(t)v du1(s)z xj(t)

4A2( f )1!
j42

m

A2(1) xj(t)

(10)

where A2 ( f ) and A2 (1) are as defined in (3).
When i42, inequalities (7) and (10) gives

Dx2 (t)4Q2 (t , t) y(t) Du2 (t)1�
0

t
¯

¯t
Q2 (t , s) y(s) Du2 (s)

GuQ2(t,t) kA2( f )1!
j42

m

A2(1) xj(t)l1�
0

t
¯

¯t
Q2(t,s) kA2( f )1!

m

j42
A2( f ) xj(s)lvDu2(t) .
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That is

Dx2(t)2uQ2(t, t) A2(1) x2(t)1�
0

t
¯

¯t
Q2(t, s) A2(1) x2(s)vDu2(t)

GuQ2(t, t)kA2( f )1!
j43

m

A2(1) xj(t)l1�
0

t
¯

¯t
Q2(t, s) kA2( f )1!

j43

m

A2(1) xj(s)lvDu2(t) .

(11)

Multiply both sides of (11) by exp u2�
0

t

Q1 (t , s) du1 (s)v we have

yDx2 (t)2 uQ2 (t , t) A2 (1) x2 (t)1�
0

t
¯

¯t
Q2 (t , s) A2 (1) x2 (t)v Du2 (t)z

3 exp u2�
0

t

Q2 (t , s) A2 (1) du2 (s)v

G uQ2 (t , t) kA2 ( f )1 !
j43

m

A2 (1) xj (t)l1�
0

t
¯

¯t
Q2 (t , s) kA2 (1)1 !

j43

t

A2 (1) xj (s)lv

3 exp u2�
0

t

Q2 (t , s) A2 (1) du2 (s)v Du2 (t) .

By Lemma 2.1, we have

D ux2 (t) exp u2�
0

t

Q2 (t , s) A2 (1) du2 (s)vvG gQ2 (t , t) kA2 ( f )1 !
j43

m

A2 (1) xj (t)l

1�
0

t
¯

¯t
Q2 (t , s) kA2 ( f )1 !

j43

m

A2 (1) xj (s)lh exp u2�
0

t

Q2 (t , s) A2 (1) du2 (s)v Du2 (t) .
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Integrate with respect to t from 0 to t and noting that x2 (0)40 we have

x2 (t)G�
0

tuQ2 (s , s) kA2 ( f )1 !
j43

m

A2 (1) xj (s)l1�
0

s
¯

¯s
Q2 (s , t)

3 kA2 ( f )1 !
j43

m

A2 (1) xj (t)lh exp u2�
s

t

Q2 (s , t) A2 (1) du2 (t)v du2 (s) .

(12)

On putting (12) into (10) and using the fact that xj (t) are nondecreasing, we
obtain

y(t)GA2 ( f )1A2 (1)�
0

tgQ2 (s , s) kA2 ( f )1 !
j43

m

A2 (1) xj (s)l
1�

0

s
¯

¯s
Q2 (s , t) kA2 ( f )1 !

j43

m

A2 (1) xj(t)lh
3exp u2�

s

t

Q2 (s , t) A2 (1) du2 (t)v du2 (s)1 !
j43

m

A2 (1) xj (t)

GA2 ( f )1A2 (1)�
0

tuQ2 (s , s) A2 ( f )1�
0

s
¯

¯s
Q2 (s , t) A2 ( f )v

3exp u2�
0

s

Q2 (s , t) A2 (1) du2 (t)v du2 (s)

1 !
j41

m yA2 (1)1A2 (1)�
0

tuQ2 (s , s) A2 (1)1�
0

s
¯

¯s
Q2 (s , t) A2 (1)v

3exp u2�
0

s

Q2 (s , t) A2 (1) du2 (t)v du2 (s)z xj (t)

4A3 ( f )1 !
j43

m

A3 (1) xj (t)

(13)

where A3 ( f ) and A3 (1) are as defined in (4).
If we set i4m21, then we easily obtain

y(t)GAm ( f )1Am (1) xm (t) .(14)
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Next, suppose i4m , then (7) and (12) implies

Dxm (t)4Qm (t , t) y(t) Dum (t)1�
0

t
¯

¯t
Qm (t , s) y(s) Dum (s)

GuQm (t , t) [Am ( f )1Am (1) xm (t) ]1�
0

t
¯

¯t
Qm (t , s)[Am ( f )1Am (1) xm (s) ]v Dum (t) .

Thus

Dxm (t)2 uQm (t , t) Am (1) xm (t)1�
0

t
¯

¯t
Qm (t , s) Am (1) xm (s)v Dum (t)

G uQm (t , t)Am ( f )1�
0

t
¯

¯t
Qm (t , s) Am ( f )v Dum (t) .

(15)

Multiply both sides of (11) by exp u2�
0

t

Qm (t , s) Am (1) dum (s)v and integrate

with respect to t from 0 to t and noting that xm (0)40, we have

xm (t)G�
0

tuQm (s , s) Am ( f )1�
0

s
¯

¯s
Qm (s , t) Am ( f )v

3exp u2�
s

t

Qm (t , t) Am (1) dum (t)v dum (s) .

(16)

Substituting (15) into (14) and noting that xm (t) is nondecreasing, we obtain

y(t)GAm ( f )1Am (1)�
0

tuQm (s , s) Am ( f )1�
0

s
¯

¯s
Qm (s , t) Am ( f )v

3exp u2�
s

t

Qm (t , t) Am (1) dum (t)v dum (s) .

This completes the proof of the theorem.

As an immediate consequence of Theorem 2.1, we have the following result if
we set Qj (t , s)4gj (t)hj (s), j41, 2 , R , m .
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T h e o r e m 2.2. Suppose that for j41, R , m and t , s� [0 , T],

1. gj (t)F0, y(t)F0 and gj (t), y(t), f (t)�BV [0 , T].

2. uj (t) are nondecreasing in t.

3. hj (t) are nonnegative and integrable with respect to uj (t).

If the following inequality

y(t)G f (t)1 !
j41

m

gj (t)�
0

t

hj (s) y(s) duj (s)(17)

holds, then

y(t)GAm( f )1Am(1)�
0

t

gm(s) hm(s) Am( f ) exp u�
s

t

gm(t) hm(t) dum(t)v dum(s) .(18)

P r o o f . This follows directly from the proof of Theorem 2.1 and the details
are omitted.

R e m a r k 2.1. We observed that Theorem 2.2 is not essentially the same as
Theorem 2.1 in [6] in the sense that Theorem 2.2 contains Theorem 2.1 in [6] as
a special case. Indeed Theorem 2.2 is more general than Theorem 2.1 in [6].

If we set m41 in Theorem 2.2 and noting that Am (v)4v, then we have the
following result

T h e o r e m 2.3. Let Q(t , s)4g(t) h(s) for all t , s� [0, T] and assume
that

1. g(t)F0, y(t)F0 and g(t), y(t), f (t)�BV [0 , T].

2. u(t) is nondecreasing in t.

3. h(t) is nonnegative and integrable with respect to u(t).

If the following inequality

y(t)G f (t)1g(t)�
0

t

h(s) y(s) du(s)(19)
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holds, then

y(t)G f (t)1�
0

t

g(s) h(s) f (s) exp u�
s

t

g(t) h(t) du(t)v du(s) .(20)

P r o o f . Follow directly from the proof of Theorem 2.1 and the details are
omitted.

R e m a r k 2.2. In Theorem 2.3, setting g(t)41, then Theorem 2.3 reduces to
Theorem 3.2 of [5] in the sense that Theorem 2.2 contains Theorem 2.1 in [6] as a
special case. Indeed Theorem 2.2 is more general than Theorem 2.1 in [6].

3 - Application

In this section, we shall give one application of our results which is sufficient
to convey the usefulness of our results in the study of differential equations.

Let us consider the differential equation (1) where f : [0 , Q)3DnKDn . Sup-
pose S%Dn is an open set and I%D is an interval with the left endpoint
tF0.

We shall say that the function x(.)4x(. , t0 . x0 ) is a solution of (1) through the
point (t0 , x0 )�I if x(.) is a right continuous function of bounded variation in S
with x(t0 )4x0 and the distributional derivative of x(.) on (t0 , a) for any a�I sat-
isfies (1).

Under the hypothesis that for each x(.)�BV(I , S), f ( t , x(t) ) is integrable in
the sense of the Lebesgue-Stieltjes measure du, then it easily follows that x(.) is a
solution of (1) through the point (t0 , x0 ) on J4 [t0 , t01a] if and only if it satisfies
the integral equation

x(t)4x01�
t0

t

f (s , x(s) ) ds , t�J .(21)

As an application of our results in the study of the uniqueness property of the sol-
ution of differential equations, we shall assume that f is Lipschitz continuous and
that x(t) and y(t) are two possible solutions of (1) through the same point (t0 , x0 ),
i.e. x(t0 )4x04y(t0 ).

If we put z(t)4Nx(t)2y(t)N, then it easily follows that z(t0 )40 and we obtain
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from (21) that z(t)GL�
t0

t

z(s) dn u (s), where n u is the total variation of u and L is

the Lipschitz constant.
The proof is complete if in Theorem 2.3, we set f (t)40, g(t)41 and

h(t)4L.
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A b s t r a c t

The object of this paper is to establish a new Gronwall-Bellman type integral inequa-
lities for multi-distributions. These inequalities generalize some results of Zhihong and
Yongquing obtained in [6].

* * *


