Vincenzo De Filippis (*)

Derivations on k-th commutators in semiprime rings (**)

Several authors have studied commutativity in prime and semiprime rings admitting derivations which have zero or invertible values on appropriate subsets of a prime rings. In [3] Bergen, Herstein and Lanski proved that if R is a ring with 1 of characteristic not $2, d$ a non-zero derivation of R such that $d(x)$ is zero or invertible in R, for any $x \in R$, then there exists a division ring D such that either $R=D$ or $R=M_{2}(D)$, the ring of 2×2 matrices over D, or $R=D \oplus D$. In [2] Bergen and Carini generalized this result to the case of a Lie ideal for semiprime rings. Later in [10] Lee showed that the same conclusions can be obtained if R is a semiprime ring and $f\left(x_{1}, \ldots, x_{n}\right)$ a monic non-central multilinear polynomial in n non-commuting variables such that $d\left(f\left(r_{1}, \ldots, r_{n}\right)\right)$ is zero or invertible in R, for any $r_{1}, \ldots, r_{n} \in R$. Recently in [5] we studied the case when the commutator $\left[d\left(f\left(x_{1}, \ldots, x_{n}\right)\right), f\left(x_{1}, \ldots, x_{n}\right)\right]$ has zero or invertible values in R. In the present paper we shall consider the case when the multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is replaced by the k-th commutator [$\left.\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}$, which is not multilinear. More precisely we will prove the following:

Theorem 1.1. Let R be a 2-torsion free semiprime ring, d a non-zero derivation of R, U the left Utumi quotient ring of R. If $\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right)\right.$, $\left.\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0$, for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$, then there exists a central idempotent element e of U such that in the sum decomposition $U=e U \oplus(1-e) U$, the derivation d vanishes identically on $e U$ and $(1-e) U$ is commutative.
(*) Dipartimento di Matematica, Universitá di Messina, Contrada Papardo, Salita Sperone 31, 98166 Messina, Italy. E-mail: enzo@dipmat.unime.it
(**) Received January 18, 1999. AMS classification 16 N 60, 16 W 25.

Theorem 2.1. Let R a 2-torsion free semiprime ring, d a non-zero derivation of R and $a, b, c, d \in R$ such that $\left[d\left([[a, b],[c, d]]_{k}\right),[[a, b],[c, d]]_{k}\right] \neq 0$. If $\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]$ is zero or invertible in R, for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$, then R is a division ring.

As a consequence we will study the relationship between the structure of a prime ring of characteristic different from 2 and the behaviour of $\left[d\left(\left[x_{1}, x_{2}\right]_{k}\right)\right.$, $\left.\left[x_{1}, x_{2}\right]_{k}\right]$ in a non-central Lie ideal.

1-Commutators zero-valued

In all that follows we will denote R a 2-torsion free semiprime ring, d a nonzero derivation of R, Q the Martindale quotient ring of $R, C=Z(Q)$ the extended centroid of $R, S=R C$ the central closure of R. Moreover we will introduce the left Utumi quotient ring U of R. Its axiomatic formulation, definition and main properties can be found in [1], [6] and [9].

In order to prove the main result of this section we will make use of the following facts:

Claim 1 [12]. If R is a semiprime ring and I_{R} a dense sub-module of U then I_{R}, Q and U satisfy the same differential identities.
(Notice that in the case R is prime, any two-sided ideal I of R is a dense submodule of U).

Claim 2 [8]. Let R be a prime ring and $g\left(x_{1}, \ldots, x_{n}, d\left(x_{1}\right), \ldots, d\left(x_{n}\right)\right)$ a differential identity of R. One of the following holds:

1) either d is an inner derivation in Q, in the sense that there exists $c \in Q$ such that $d=a d(c)$ and $d(x)=a d(c)(x)=[c, x]=c x-x c$, for all $x \in R$ and R satisfies the generalized polynomial identity

$$
g\left(x_{1}, \ldots, x_{n},\left[c, x_{1}\right], \ldots,\left[c, x_{n}\right]\right)
$$

2) or R satisfies the generalized polynomial identity $g\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

We begin by analysing the case when R is a prime ring. Hence we will extend the result to semiprime case, by using the theory of orthogonal completion (see [1], Chapter 3).

Lemma 1.1. Let R be a prime ring of characteristic different from 2, I a non-zero two-sided ideal of R, d a non-zero derivation of R. If $\left[d\left(\left[\left[r_{1}, r_{2}\right]\right.\right.\right.$, $\left.\left.\left.\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0$, for any $r_{1}, r_{2}, r_{3}, r_{4} \in I$, then R is commutative.

Proof. Denote the differential polynomial

$$
\left[d\left(\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right),\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right]=g\left(x_{1}, \ldots, x_{4}, d\left(x_{1}\right), \ldots d\left(x_{4}\right)\right) .
$$

Since I and R satisfy the same differential identities (see Claim 1), then

$$
\begin{aligned}
g\left(x_{1}, \ldots, x_{4}, d\right. & \left.d\left(x_{1}\right), \ldots, d\left(x_{4}\right)\right)=\left[d\left(\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right),\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right] \\
= & {\left[d\left(\sum_{h}(-1)^{h}\binom{k}{h}\left[x_{3}, x_{4}\right]^{h}\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right]^{k-h}\right)\right.} \\
& \left.\left(\sum_{h}(-1)^{h}\binom{k}{h}\left[x_{3}, x_{4}\right]^{h}\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right]^{k-h}\right)\right]
\end{aligned}
$$

is a differential identity on R.
By using Claim 2, one of the following holds:

1) either d is an inner derivation in Q, induced by $c \in Q$ and R satisfies the generalized polynomial identity

$$
g\left(x_{1}, \ldots x_{4},\left[c, x_{1}\right], \ldots,\left[c, x_{4}\right]\right)
$$

2) or R satisfies the generalized polynomial identity $g\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$. In this last case in particular R satisfies the identity

$$
g\left(x_{1}, . x_{2}, x_{3}, x_{4}, 0, y_{2}, 0,0\right)=\left[\left[\left[x_{1}, y_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k},\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right]
$$

that is for any $r_{1}, r_{2}, r_{3}, r_{4}, r_{5} \in R$

$$
\left[\left[\left[r_{1}, r_{5}\right],\left[r_{3}, r_{4}\right]\right]_{k},\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0
$$

Since R is a P.I. ring then there exists a field F such that R and $M_{t}(F)$, the ring of $t \times t$ matrices over F, satisfy the same polynomial identities.

Suppose $t \geqslant 2$ and choose $r_{1}=e_{22}, r_{2}=e_{21}, r_{3}=e_{21}, r_{4}=e_{12}, r_{5}=e_{12}$. Then we obtain the following contradiction

$$
\begin{gathered}
0=\left[\left[-e_{12}, e_{22}-e_{11}\right]_{k},\left[e_{21}, e_{22}-e_{11}\right]_{k}\right]=\left[-\left(2^{k}\right) e_{12},(-2)^{k} e_{21}\right] \\
=(-1)^{k+1} 2^{2 k}\left(e_{11}-e_{22}\right) \neq 0
\end{gathered}
$$

Therefore must be $t=1$ and so R is commutative.

Now let d be the inner derivation induced by an element $c \in Q$. Thus

$$
0=\left[\left[c,\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right],\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=\left[\left[c,\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]_{2},\right.
$$

for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$, i.e. R satisfies a non-trivial generalized polynomial identitiy. By [13] it follows that $S=R C$ is a primitive ring with $\operatorname{soc}(R)=H \neq 0$ and $e H e$ is a simple central algebra finite dimensional over C, for any minimal idempotent element $e \in S$. Moreover we may assume H non-commutative, otherwise also R must be commutative. Notice that H satisfies $\left[\left[c,\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right],\left[\left[x_{1}, x_{2}\right]\right.\right.$, $\left.\left[x_{3}, x_{4}\right]\right]_{k}$] (see for example [10, proof of Theorem 1]).

Since H is a simple ring then one of the following holds: either H does not contain any non-trivial idempotent element or H is generated by its idempotents.

In this last case, suppose that H contains three minimal orthogonal idempotent elements e, f, g. Thus $e H, f H, g H$ are isomorphic H-modules and there are

$$
\begin{gathered}
f b g, g a f \in H \text { such that } f b g a f=f, \quad g a f b g=g \\
e p g, g d e \in H \text { such that } g d e p g=g, \text { epgde }=e .
\end{gathered}
$$

Let

$$
\begin{gathered}
{\left[r_{1}, r_{2}\right]=[f b g, g]=f b g\left[r_{3}, r_{4}\right]=[g d e, e p g]=g-e} \\
{\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}=[f b g, g-e]_{k}=f b g .}
\end{gathered}
$$

By the hypotesis $[c, f b g]_{2}=0$, that is $(-2) f b g c f b g=0$. Right multiplying by $a f$ and left multiplying by $g a$ we have $g c f=0$.

This implies that, for any orthogonal idempotent element of rank $1, g$ and f, $g c f=0$. Hence $[c, g]=0$, for any idempotent of rank 1 , and $[c, H]=0$, since H is generated by these idempotent elements. This argument gives the contradiction that $c \in C$ and $d=0$.

Therefore H cannot contain three minimal orthogonal idempotent elements and so $H=M_{2}(D)$, for a suitable division ring D finite dimensional over its center. This implies that $Q=H$ and $c \in H$. By [15, Theorem 2.3.29, p. 131] (see also [10, Lemma 2]), there exists a field F such that $H \subseteq M_{n}(F)$ and $M_{n}(F)$ satisfies $\left[c,[[x, y],[z, t]]_{k}\right]_{2}=0$, for F a field. As we have just seen, if $n \geqslant 3$ then $c \in C$ and $d=0$. If $n=1$ then $R \subseteq F$ and we are also done, thus we say $H \subseteq M_{2}(F)$. We want to prove that, in this case, we have a contradiction.

Since for any $u \in[H, H], u^{2} \in F$, then

$$
[c, u]_{2}=c u^{2}+u^{2} c-2 u c u=2\left(u^{2} c-u c u\right)
$$

Fix i, j and denote $e_{i j}$ the matrix unit with 1 in (i, j)-entry and zero elsewhere.

Let $u=\left[[[x, y],[z, t]]_{k-1},[z, t]\right]=[[x, y],[z, t]]_{k} \in[H, H]$, and choose $x=e_{i i}$, $y=e_{i j}, z=e_{i j}, t=e_{j i}$. Thus $u=(-2)^{k} e_{i j}$. Moreover consider $c=\sum c_{r s} e_{r s}$, with $c_{r s}$ $\in F$. Since $[c, u]_{2}=0$,

$$
0=\left[c,(-2)^{k} e_{i j}\right]_{2}=(-2)^{2 k} e_{i j} c e_{i j}
$$

thus $c_{j i}=0$, for $i \neq j$, that is c is a diagonal matrix in $M_{2}(F)$. Now choose

$$
\begin{gathered}
{[x, y]=\left[e_{22}, e_{21}+e_{12}\right]=e_{21}-e_{12}} \\
{[z, t]=\left[e_{12}, e_{21}\right]=e_{11}-e_{22}}
\end{gathered}
$$

If k is even then $[[x, y],[z, t]]_{k}=2^{k}\left(e_{21}-e_{12}\right)$ and so, since the characteristic of R is different from 2,

$$
0=\left[c, e_{21}-e_{12}\right]_{2}=\left(-2 c_{11}+2 c_{22}\right) e_{11}+\left(2 c_{11}-2 c_{22}\right) e_{22}
$$

This means $c_{11}=c_{22}$ and so $c \in F$ and $d=0$, which is a contradiction.
If k is odd then $[[x, y],[z, t]]_{k}=2^{k}\left(e_{21}+e_{12}\right)$ and

$$
0=\left[c, e_{21}+e_{12}\right]_{2}=2 c-2 c_{22} e_{11}-2 c_{11} e_{22}
$$

Also in this case we have the contradiction $c_{11}=c_{22}, c \in F$ and $d=0$.
On the other hand, if H does not contain any non-trivial idempotent element, then H is a finite dimensional division algebra over C and $c \in H=R C=Q$. If C is finite then H is a finite division ring, that is H is a commutative field and so R is commutative too.

If C is infinite then $H \otimes_{C} F \cong M_{r}(F)$, where F is a splitting field of H. In this case, a Vandermonde determinant argument shows that in $M_{r}(F)$ $\left[c,\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right]_{2}=0$ is still an identiy. As above one can see that if $r \geqslant 3$ then c commutes with any idempotent element in $M_{r}(F)$ and also if $r=2$ then $c \in F$. In any case we have the contradiction $d=0$.

Now we extend the previous result to semiprime rings.
Theorem 1.1. Let R be a semiprime 2-torsion free ring, d a non-zero derivation of R. If $\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0$, for any
$r_{1}, r_{2}, r_{3}, r_{4} \in R$, then there exists a central idempotent element e of U such that in the sum decomposition $U=e U \oplus(1-e) U$, the derivation d vanishes identically in $e U$ and $(1-e) U$ is commutative.

Proof. It is well known that the derivation d can be uniquely extended to U and all the derivations in R will be implicitily defined on the whole U (see Lemma 2 in [12]). Moreover R and U satisfy the same differential identities (see Claim 1), thus

$$
\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0, \quad \forall r_{1}, r_{2}, r_{3}, r_{4} \in U
$$

Let M be any maximal ideal of B, the boolean algebra of idempotents in C. We know that $M U$ is a prime ideal of U and $\cap_{M} M U=0$. Let \bar{d} be the derivation induced by d in $\bar{U}=U / M U$, which is a prime ring of characteristic different from 2 . Notice that \bar{d} satisfies in \bar{U} the same property of d in U.

Hence $\left[\bar{d}\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0$, for any $r_{1}, r_{2}, r_{3}, r_{4} \in \bar{U}$.
Since \bar{U} is prime and by previous lemma, either $\bar{d}=0$ or \bar{U} is commutative.
This implies that, for any M maximal ideal of B, either $d(U) \subseteq M U$ or $[U, U] \subseteq M U$.

In any case $d(U) U[U, U] \subseteq \bigcap_{M} M U=0$. As a consequence of the theory of orthogonal completion for semiprime rings, there exists a central idempotent element e of U such that $d(e U)=0$ and $(1-e) U$ is commutative (for more details see chapter 3 in [1]). If pose $U_{1}=e U, U_{2}=(1-e) U$, then $U=U_{1} \oplus U_{2}$ as required.

Corollary 1.1. Let R be a prime ring of characteristic different from $2, d$ a non-zero derivation of R, L a Lie ideal of R. If $\left.\left.\left[d([u, v]]_{k}\right),[u, v]\right]_{k}\right]=0$, for any $u, v \in L$, then L is central.

Proof. Suppose L is not central. Since R has characteristic different from 2 then, by a classical result of Herstein in [7], there exists a non-zero two-sided ideal I of R such that $[I, I] \subseteq L$.

Therefore $\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0$, for any $r_{1}, r_{2}, r_{3}, r_{4}$ $\in I$ and Lemma 1.1 we obtain the contradiction that R is commutative.

2-Commutators with invertible values

In this section we study the following situation: R is a 2-torsion free semiprime
ring such that

$$
\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right] \quad \text { is zero or invertible }
$$

for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$. By the results in previous section, we may assume that there exist $a, b, c, d \in R$ such that

$$
\left[d\left([[a, b],[c, d]]_{k}\right),[[a, b],[c, d]]_{k}\right] \neq 0 .
$$

At first we observe that the only case is the one in which R is a simple ring, as the following lemma states:

Lemma 2.1. R is simple.

Proof. Suppose that there exists a two-sided ideal $0 \neq I \neq R$ of R. Since I does not contain any invertible element of R then

$$
\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]=0
$$

for any $r_{1}, r_{2}, r_{3}, r_{4} \in I$. In this case, by [12], one has that

$$
\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right] s=0,
$$

for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$ and $s \in I$. In particular

$$
\left[d\left([[a, b],[c, d]]_{k}\right),[[a, b],[c, d]]_{k}\right] s=0
$$

i.e. $s=0$, since $\left[d\left([[a, b],[c, d]]_{k}\right),[[a, b],[c, d]]_{k}\right]$ is invertible. By the arbitrariety of $s \in I$ we have $I=0$, which contradicts our assumption.

In all that follows R will be a simple ring with 1 .
Lemma 2.2. Let $R=M_{n}(D)$, for D a division ring. If $d \neq 0$ then $n=1$.
Proof. Since $R=M_{n}(D)$, by [14] there exists a derivation $\delta: D \rightarrow D$ and a matrix $A \in M_{n}(D)$ such that $d=d_{A}+\bar{\delta}$, where d_{A} is the inner derivation induced by A, that is $d_{A}(x)=A x-x A$, for all $x \in M_{n}(D)$, and $\bar{\delta}: M_{n}(D) \rightarrow M_{n}(D)$ is the derivation induced by δ, that is $\bar{\delta}\left(\sum_{i, j} r_{i j} e_{i j}\right)=\sum_{i, j} \delta\left(r_{i j}\right) e_{i j}$. As in Lemma 1.1, here $e_{i j}$ are the matrices unit, with 1 in (i, j)-entry and 0 elsewhere. Assume $n \geqslant 2$.

Now fix $i \neq j$ and choose $\left[\left[u_{1}, u_{2}\right],\left[u_{3}, u_{4}\right]\right]_{k}=\left[\left[e_{i j}, e_{j j}\right],\left[e_{i j}, e_{j i}\right]\right]_{k}=(-2)^{k} e_{i j}$.

Hence by our assumption

$$
\left[d\left(\left[\left[u_{1}, u_{2}\right],\left[u_{3}, u_{4}\right]\right]_{k}\right),\left[\left[u_{1}, u_{2}\right],\left[u_{3}, u_{4}\right]\right]_{k}\right]=(-2)^{k}\left[d\left(e_{i j}\right), e_{i j}\right]
$$

is zero or invertible.
Since the set $\left\{\left[\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right]\right]_{k} / x_{i} \in M_{n}(D)\right\}$ is invariant under the action of all $\mathrm{Z}(\mathrm{D})$-automorphisms of $M_{n}(D)$, then for all $s \neq t$ there exist $v_{1}, v_{2}, v_{3}, v_{4} \in R$ such that $\left[\left[v_{1}, v_{2}\right],\left[v_{3}, v_{4}\right]\right]=e_{s t} \neq 0$. Now we have

$$
\begin{aligned}
& {\left[d\left(e_{s t}\right), e_{s t}\right]=\left[A e_{s t}-e_{s t} A, e_{s t}\right] } \\
= & -e_{s t} A e_{s t}-e_{s t} A e_{s t}=-2 e_{s t} A e_{s t}
\end{aligned}
$$

which is a matrix of rank $\leqslant 1$, and so it is not invertible in $M_{n}(D)$. Then, by our hypotesis, $-2 e_{s t} A e_{s t}=0$, and so $e_{s t} A e_{s t}=0$.

This means that, for all $s, t=1, \ldots, n, s \neq t$, the (s, t)-entry of the matrix A is zero. Hence $A=\sum_{i} \alpha_{i} e_{i i}$, where $\alpha_{i} \in D$, that is A is a diagonal matrix. Moreover we remark that if φ is a $\mathrm{Z}(\mathrm{D})$-automorphism of $M_{n}(D)$, then the derivation $d_{\varphi}=\varphi d \varphi^{-1}$ satisfies the same condition of d, that is
$\left[d_{\varphi}\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]$ is zero or invertible in $M_{n}(D)$.
For $n \geqslant t \geqslant 2$ and $b \in D$, let $\varphi=\varphi_{t, b}$ be the automorphism of $M_{n}(D)$ defined by $\varphi(x)=\left(1-b e_{1 t}\right) x\left(1+b e_{1 t}\right)$. Then $\varphi^{-1}(x)=\left(1+b e_{1 t}\right) x\left(1-b e_{1 t}\right)$ and

$$
\begin{gathered}
d_{\varphi}(x)=\varphi d_{A}\left(\varphi^{-1}(x)\right)+\varphi \bar{\delta}\left(\varphi^{-1}(x)\right) \\
=\varphi\left(A \varphi^{-1}(x)-\varphi^{-1}(x) A\right) \\
+\varphi\left(\delta(b) e_{1 t} x\left(1-b e_{1 t}\right)+\left(1+b e_{1 t}\right) \bar{\delta}(x)\left(1-b e_{1 t}\right)+\left(1+b e_{1 t}\right) x\left(-\delta(b) e_{1 t}\right)\right) \\
=\varphi(A) x-x \varphi(A)+\left(1-b e_{1 t}\right) \delta(b) e_{1 t} x+\bar{\delta}(x)+x\left(-\delta(b) e_{1 t}\right)\left(1+b e_{1 t}\right) \\
=\varphi(A) x-x \varphi(A)+\delta(b) e_{1 t} x-x \delta(b) e_{1 t}+\bar{\delta}(x) \\
=d_{B}(x)+\bar{\delta}(x), \quad \text { where } B=\varphi(A)+\delta(b) e_{1 t} .
\end{gathered}
$$

Therefore, as above, B must be a diagonal matrix. Since $A=\sum_{i} \alpha_{i} e_{i i}$, we obtain

$$
\left(-b \alpha_{t}+\alpha_{1} b+\delta(b)\right) e_{1 t}=0, \text { for any } b \in D \text { and } n \geqslant t \geqslant 2 .
$$

In particular set $b=1$, then $\alpha_{1}=\alpha_{t}$ for any t, that is A is a scalar matrix, $A=\alpha I_{n}, \quad\left(\alpha=\alpha_{1}\right)$. Therefore $\delta(b)=-(\alpha b-b \alpha)$, which inplies $\bar{\delta}=-d_{\alpha I_{n}}$ and $d=d_{A}+\bar{\delta}=d_{\alpha I_{n}}-d_{\alpha I_{n}}=0$, a contradiction. Hence n must be 1 and the proof is complete.

Remark. Notice that the proof of the previous Lemma can be easily deduced by the main Theorem's one in [5]. We have included it for sake of clearness.

Now we are ready to prove the following:

Theorem 2.1. Let R a 2-torsion free semiprime ring, d a non-zero derivation of R and $a, b, c, d \in R$ such that $\left[d\left([[a, b],[c, d]]_{k}\right),[[a, b],[c, d]]_{k}\right] \neq 0$. If $\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]$ is zero or invertible in R, for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$, then R is a division ring.

Proof. Suppose at first that there exists a right ideal ϱ of R such that

$$
\left[d\left(\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right),\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right]
$$

is an identity in ϱ.
Let $a \in \varrho-\{0\}$, then R satisfies the differential identity

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{4}, d\left(x_{1}\right), \ldots, d\left(x_{4}\right)\right) \\
=\left[d\left(\left[\left[a x_{1}, a x_{2}\right],\left[a x_{3}, a x_{4}\right]\right]_{k}\right),\left[\left[a x_{1}, a x_{2}\right],\left[a x_{3}, a x_{4}\right]\right]_{k}\right] .
\end{gathered}
$$

In other words, for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$
$0=\left[\left(\sum_{h}(-1)^{h}\binom{k}{h} d\left(\left[a r_{3}, a r_{4}\right]^{h}\left[a r_{1}, a r_{2}\right]\left[a r_{3}, a r_{4}\right]^{k-h}\right),\left[\left[a r_{1}, a r_{2}\right],\left[a r_{3}, a r_{4}\right]\right]_{k}\right)\right]$.

Now let

$$
f_{h}=d\left(\left[a r_{3}, a r_{4}\right]^{h}\left[a r_{1}, a r_{2}\right]\left[a r_{3}, a r_{4}\right]^{k-h}\right)
$$

and say

$$
f_{h}=f_{h}^{1}+f_{h}^{2}+f_{h}^{3}
$$

where

$$
\begin{gathered}
f_{h}^{1}=d\left(\left[a r_{3}, a r_{4}\right]^{h}\right)\left[a r_{1}, a r_{2}\right]\left[a r_{3}, a r_{4}\right]^{k-h} \\
\left.=\sum_{s+t=h-1}\left[a r_{3}, a r_{4}\right]^{s}\left(d\left(\left[a r_{3}, a r_{4}\right]\right)\right)\left[a r_{3}, a r_{4}\right]^{t}\right)\left[a r_{1}, a r_{2}\right]\left[a r_{3}, a r_{4}\right]^{k-h} \\
f_{h}^{2}=\left[a r_{3}, a r_{4}\right]^{h} d\left(\left[a r_{1}, a r_{2}\right]\right)\left[a r_{3}, a r_{4}\right]^{k-h} \\
f_{h}^{3}=\left[a r_{3}, a r_{4}\right]^{h}\left[a r_{1}, a r_{2}\right] d\left(\left[a r_{3}, a r_{4}\right]^{k-h}\right) \\
=\left[a r_{3}, a r_{4}\right]^{h}\left[a r_{1}, a r_{2}\right]\left(\sum_{s+t=k-h-1}\left[a r_{3}, a r_{4}\right]^{s} d\left(\left[a r_{3}, a r_{4}\right]\right)\left[a r_{3}, a r_{4}\right]^{t}\right) .
\end{gathered}
$$

Consider the following generalized differential polynomials:

$$
\begin{aligned}
& \Phi_{h}^{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, d\left(x_{3}\right), d\left(x_{4}\right)\right)=d\left(\left[a x_{3}, a x_{4}\right]^{h}\right)\left[a x_{1}, a x_{2}\right]\left[a x_{3}, a x_{4}\right]^{k-h} \\
& =\left(\sum_{s+t=h-1}\left[a x_{3}, a x_{4}\right]^{s} d\left(\left[a x_{3}, a x_{4}\right]\right)\left[a x_{3}, a x_{4}\right]^{t}\right)\left[a x_{1}, a x_{2}\right]\left[a x_{3}, a x_{4}\right]^{k-h} \\
& \Phi_{h}^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, d\left(x_{1}\right), d\left(x_{2}\right)\right)=\left[a x_{3}, a x_{4}\right]^{h} d\left(\left[a x_{1}, a x_{2}\right]\right)\left[a x_{3}, a x_{4}\right]^{k-h} \\
& \Phi_{h}^{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, d\left(x_{3}\right), d\left(x_{4}\right)\right)=\left[a x_{3}, a x_{4}\right]^{h}\left[a x_{1}, a x_{2}\right] d\left(\left[a x_{3}, a x_{4}\right]^{k-h}\right) \\
& =\left[a x_{3}, a x_{4}\right]^{h}\left[a x_{1}, a x_{2}\right]\left(\sum_{s+t=k-h-1}\left[a x_{3}, a x_{4}\right]^{s} d\left(\left[a x_{3}, a x_{4}\right]\right)\left[a x_{3}, a x_{4}\right]^{t}\right) .
\end{aligned}
$$

Denote

$$
\Phi_{h}\left(x_{1}, x_{2}, x_{3}, x_{4}, d\left(x_{1}\right), d\left(x_{2}\right), d\left(x_{3}\right), d\left(x_{4}\right)\right)=\Phi_{h}^{1}+\Phi_{h}^{2}+\Phi_{h}^{3}
$$

Therefore R satisfies the differential identitiy

$$
\begin{gathered}
\Phi\left(x_{1}, \ldots, x_{4}, d\left(x_{1}\right), \ldots, d\left(x_{4}\right)\right) \\
=\left[\left(\sum_{h}(-1)^{h}\binom{k}{h} \Phi_{h}\left(x_{1}, \ldots, x_{4}, d\left(x_{1}\right), \ldots, d\left(x_{4}\right)\right),\left[\left[a x_{1}, a x_{2}\right],\left[a x_{3}, a x_{4}\right]\right]_{k}\right)\right] .
\end{gathered}
$$

If d is not inner then R satisfies the non-trivial generalized polynomial identity

$$
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

In particular R satisfies

$$
\begin{gathered}
\Phi\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, 0,0,0\right) \\
=\left[\left(\sum_{h}(-1)^{h}\binom{k}{h} \Phi_{h}^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, 0\right),\left[\left[a x_{1}, a x_{2}\right],\left[a x_{3}, a x_{4}\right]\right]_{k}\right)\right] \\
=\left[\left(\sum_{h}(-1)^{h}\binom{k}{h}\left[\left[a y_{1}, a x_{2}\right],\left[a x_{3}, a x_{4}\right]\right]_{k},\left[\left[a x_{1}, a x_{2}\right],\left[a x_{3}, a x_{4}\right]\right]_{k}\right)\right] .
\end{gathered}
$$

Moreover R is simple with 1 , hence $R \cong M_{n}(D)$.
Let now d the inner derivation induced by $A \in Q$, that is

$$
\left[A,\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]_{2}=0 \quad \text { for any } \quad r_{1}, r_{2}, r_{3}, r_{4} \in \varrho
$$

Fix $u \in \varrho$. Let $\alpha \in Z(R)$ such that $(A-\alpha) u=0$. Thus, for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$, $(A-\alpha)\left[\left[u r_{1}, u r_{2}\right],\left[u r_{3}, u r_{4}\right]\right]_{k}=0$, and

$$
\begin{aligned}
& 0=\left[A-\alpha,\left[\left[u r_{1}, u r_{2}\right],\left[u r_{3}, u r_{4}\right]\right]_{k}\right]_{2} \\
& =\left(\left[\left[u r_{1}, u r_{2}\right],\left[u r_{3}, u r_{4}\right]\right]_{k}\right)^{2}(A-\alpha)
\end{aligned}
$$

i.e. R satisfies the generalized polynomial identity

$$
\left(\left[\left[u x_{1}, u x_{2}\right],\left[u x_{3}, u x_{4}\right]\right]_{k}\right)^{2}(A-\alpha) .
$$

As above $R \cong M_{n}(D)$.
Now we may assume that, for any $\alpha \in Z(R),(A-\alpha) u \neq 0$, which means that $A u$ and u are linearly independent over $Z(R)$.

Also in this case, by $[4],\left[A,\left[\left[u x_{1}, u x_{2}\right],\left[u x_{3}, u x_{4}\right]\right]_{k}\right]_{2}$ is a non-trivial generalized polynomial identity in R and this implies again $R \cong M_{n}(D)$.

In any case the conclusion follows by the previous lemma.
Now we supose that for any ϱ right ideal of R,

$$
\left[d\left(\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right),\left[\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]_{k}\right]
$$

is not an identity in ϱ.
For any $r_{1}, r_{2}, r_{3}, r_{4} \in \varrho,\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right] \in d(\varrho) \varrho$ $+\varrho \subseteq d(\varrho)+\varrho$, since $d(\varrho)+\varrho$ is a right ideal of R.

Therefore $d(\varrho)+\varrho$ contains an invertible element of R, that is $d(\varrho)+\varrho=R$, for any right ideal ϱ.

Let $\varrho_{1} \subseteq \varrho_{2}$ be right ideals of R. Thus $d\left(\varrho_{1}\right)+\varrho_{1}=R=d\left(\varrho_{2}\right)+\varrho_{2}$. Fix $c \in \varrho_{2}$ $-\varrho_{1}, c=a+d(b)$, where $a, b \in \varrho_{1}, d(b) \neq 0$ and $d(b) \in \varrho_{2}$, since $c \notin \varrho_{1}$. In particular $b R$ is a right ideal of R, and so $d(b R)+b R=R$, and also $d(b R)=d(b) R$ $+b d(R) \subseteq \varrho_{2}$. Therefore $R=d(b R)+b R \subseteq \varrho_{2}$, i.e. $R=\varrho_{2}$. Also in this case R is a division ring.

We conclude this note with an easy application to Lie ideal in prime rings:

Corollary 2.1. Let R be a prime ring with characteristic different from 2, d a non-zero derivation of R, L a non-central Lie ideal of R such that $\left.\left[d\left(\left[u_{1}, u_{2}\right]_{k}\right)\right),\left[u_{1}, u_{2}\right]_{k}\right]$ is zero or invertible, for any $u_{1}, u_{2} \in L$. Then R is a division ring.

Proof. As in Corollary 1.1, there exists a non-zero two-sided ideal I of R such that $[I, I] \subseteq L$. Thus $\left[d\left([[x, y],[z, t]]_{k}\right),[[x, y],[z, t]]_{k}\right]$ is zero or invertible, for any $x, y, z, t \in I$.

In the case $\left[d\left([[x, y],[z, t]]_{k}\right),[[x, y],[z, t]]_{k}\right]=0$ is a differential identity in I, by Lemma 1.1, we obtain the contradiction that R is commutative.

If $\left[d\left([[a, b],[c, d]]_{k}\right),[[a, b],[c, d]]_{k}\right] \neq 0$, for suitable $a, b, c, d \in I$, then I contains an invertible element of R and $R=I$. In this case we conclude, by previous theorem, that R is a division ring.

Acknowledgement. The author wishes to thank Professor O. M. Di Vincenzo for his valuable suggestions which semplify some arguments of this paper.

References

[1] K. I. Beidar, W. S. Martindale III and V. Mikhalev, Rings with generalized identities, Pure and Applied Math., Dekker, New York 1996.
J. Bergen and L. Carini, Derivations with invertible values on a Lie ideal, Canad. Math. Bull. 31 (1988), 103-110.
[3] J. Bergen, I. N. Herstein and C. Lanski, Derivations with invertible values, Canad. J. Math. 35 (1983), 300-310.
[4] C. L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103, 3 (1988), 723-728.
[5] V. De Filippis and O. M. Di Vincenzo, Derivations on multilinear polynomials in semiprime rings, to appear on Communications in Algebra.
[6] C. Faith, Lecture on injective modules and quotient rings, Lecture Notes in Math. 49 Springer Verlag, New York 1967.
[7] I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, 1969.
[8] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155-168.
[9] J. Lambek, Lecture on rings and modules, Blaisdell Waltham, MA 1966
[10] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 731-734.
[11] T. K. Lee, Derivations with invertible values on a multilinear polynomial, Proc. Amer. Math. Soc. 119 (1993), 1077-1083.
[12] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38.
[13] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[14] C. Polcino Milies, Derivations of full matrix rings, Atas de XI Eschola de Algebra, S. Paolo 1990, 92-103.
[15] L. Rowen, Polynomial identities in ring theory, Pure and Applied Math. 84, Academic Press, New York 1980.

Abstract

Let R be a 2-torsion free semiprime ring, d a non-zero derivation of R and a, b, $c, d \in R \quad$ such that $\quad\left[d\left([[a, b],[c, d]]_{k}\right),[[a, b],[c, d]]_{k}\right] \neq 0$. We prove that if $\left[d\left(\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right),\left[\left[r_{1}, r_{2}\right],\left[r_{3}, r_{4}\right]\right]_{k}\right]$ is zero or invertible, for any $r_{1}, r_{2}, r_{3}, r_{4} \in R$, then R is a division ring.

