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Rings satisfying the generalized
polynomial identity (x —a")([x, 1, — [x, y]I') = 0 (**)

0 - Introduction

Throughout, R will represent an associative ring with center C' and Jacobson
radical J(R). If (x;);<n 18 a sequence of elements of R and k is a positive integer
we define [y, ..., 2, 1] inductively as follows:

[, vl =225 — 222y

[901) ceey Ly xk+1] = [[xlv ceey xk]’ xk-%—l]-

Ife;=xand s =... =a,,; =y, we write [x, ..., 2, 1] =[x, y];. Also for k=0
we define [, y], = .

By a ring R with torsion-free commutators, we mean that m[x, y] = 0 implies
[, y]=0 for all m=1, x, yeR.

A ring R is called left (resp. right) s-unital [8] if for each xe R we have
x e Rx(resp. x e xR). A ring R is called s-unital if for each x in R, x e xR N Rx. If
R is an s-unital ring , then for any finite subset F' of R, there exists an element e
in R such that ex = xe = « for all x € F' (see [8]). Such an element e will be called a
pseudo-identity of F.

In [3] Hirano and Yaqub studied the rings satisfying (x — ")y —y") =0.
Later in [7], Komatsu and Tominaga extended Theorem 3 of [3] as follows: If R
is a ring satisfying (x —2")(y —y") =0 (»>1) and if for each x, y € R, either
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(xy)" — (yxe)'eCyorx"y" —y"x"eC or (xy)" —y"x" e C then R is commutative.
(Note that, here (x —a")(y —y") =0, implies the Chacron’s condition). On the
other hand Giambruno, Goncalves and Mandel [5] have investigated the commuta-
tivity of rings satisfying [x, y1; = [«, ¥].. Now our objective is to investigate the
commutativity of rings satisfying any of the following conditions:

(P1) For each x,y in R there exist positive integers n =mn(x, y) >1,
m=m(x,y)>1 and k= k(x, y) =1, such that (x —x")([x, yI, — [x, yIi') =0.

(P2) For each x,y in R there exist positive integers n =n(x, y) >1,
m=m(x,y)>1 and k=Fk(x,y)=1 such that (1 —a")[x, y). — [x, y]I') =0
(here 1 is formal).

In section 1, we prove the following theorems:

Theorem 1. Let R be a division ring which satisfies (P1), then R 1is
commutative.

Although this result can not be extended to primitive rings, we show
that:

Theorem 2. If R is a ring which satisfies (P2), then the commutator ideal
of R is nil

In section 2, we generalize the result of Komatsu and Tominaga [6] by
proving:

Theorem 3. Let R be an s-unital ring, and n > 1 a fixed positive integer.
Suppose that for any x, ye R there exist r=r(x, y) =1 and m =m(x, y) >1
such that, either (xy) — (yx) eC, or x"y"—y'x"eC, or (xy) —y x"eC;
and

@D (@—a")[x, y]— [z, y]") =0,

(II) The commutator ideal of R is n!-torsion free, then R is commuta-
tve.

(Note that, here (x —ax™)([x, y] — [«, y]™) = 0 does not imply the Chacron’s
condition).
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1 - Commutativity results

In preparation for the proof of the main theorems we start with the following
lemmas. Proof of Lemma 1 can be found in [5] and Lemma 2 is obvious.

Lemma 1. Let R be a division ring. If for each x and y in R there exist po-
sitive integers m=mn(x, y) >1 and k=k(x, y) =1 such that [x, y]. =[x, y]i.
Then R is commutative.

Lemma 2. Let beR and aeJ(R). If ba =b then b=0.

With the above lemmas established, we are able to complete the proof of Theo-
rem 1 and 2.

Proof of Theorem 1. By Lemma 1 it is enough to show that if there exist
¢ and y such that

(1.1) [x, y] # [x, y]* for all m=1

then [x, y]..1 =[x, y]i’.: for some positive integer k¥ and m > 1. In order to
show this we replace x by [x, ¥] in (P1), thereby obtaining

(1.2) (Lo, y1 = [, 1)L, yli o — [, yli's 1) =0
for some #n >1, m >1 and k = 1. Comparing (1.1) with (1.2) now yields [, yl; 1
=[x, y1i’s1, as desired.

Remark 1. Theorem 1 can not be extended to primitive rings because a
trivial computation (by computer) shows that the noncommutative ring of 2 x 2
matrix over GF(2) with m =n =4 and k =1, satisfies the condition (P1).

Proof of Theorem 2. We prove Theorem 2 by dividing its proof into sev-
eral steps.

Step 1. Clearly Theorem 2 is true for any division ring (by Theorem 1).
Step 2. Theorem 2 is true for any left primitive ring R.

In this case either R = D for some division ring D-in which case we would de-
duce that R is commutative by use of step 1-or for some k >1 D, is a homomor-
phic image of a subring of R. We wish to show that this latter possibility does not
arise. If it did, D, as a homomorphic image of a subring of R would inherit the
property (P2). This is seen to be patently false by considering the elements
€ = FEy and y = E,,, for these satisfy (1 —a")([«, y]. — [&, y1I') = Es # 0, for all
n>1, m>1 and k =1. Thus , if R is primitive it must be commutative.
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Step 3. Theorem 2 is true for any semiprimitive ring K.

For, we have a subdirect product representation R — [] R;, where the R’;s
iel

are left primitive rings. Each R; satisfies (P2), and is therefore commutative.
Hence R is also commutative.

Step 4. Theorem 2 is true for any ring R.
Let x, y e R, then by (P2) we have

(I—-a"lx, yl,= 1 —a")x, yIi

m—1

= (1 - x’n)[x’ ?/]k[x, y]k

for some positive integers k=1, m > 1, n > 1. But Step 3 shows that R/J(R) is
commutative, hence [x, y]/* ~! € J(R) and therefore by Lemma 2 (1 — 2")[x, ], = 0.
Replacing x by [x, ] in the recent equality, we get (1 — [x, y])[x, ¥);+1=0,
for some n>1, k=1. Since [x, y]"eJ(R), we would deduce that [x, y]..;=0
by Lemma 2. Therefore the commutator ideal is nil, by [4].

The following corollary is an immediate consequence of [8].

Corollary 1. Iffor each x, y € R there exist positive integers n = n(x, y) > 1,
m=m(x,y)>1, k=k(x,y) =1 and a fixed integer »=1 such that

@ (I —a")[x, yl— [z, yIi) =0,
@) If rlx, y] =0 then [x, y] =0,
(iii) [2", y"]=0.

Then R 1s commutative.

2 - Extensions

In preparation for the proof of the Theorem 3, we start with the following lem-
mas. Proof of Lemma 3 can be found in [6], [1] and [2], Lemma 4 is obvious and
the proof of Lemma 5 can be found in [8].

Lemma 3. Suppose that R is a semiprimitive ring which satisfies any of
the following conditions:

(i) For all x,y 1 R there exists a positive integer r=r(x, y) =1 such
that (xy)" — (yx) eC.

(i) For all x,y in R there exists a positive integer r=1r(x, y) =1 such
that x"y"—y"x"eC.
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(iii) For all x,y in R there exists a positive integer r=1r(x, y) =1 such
that (xy) —y x"eC.

Then R is commutative.

Lemma 4. If([x, y] commutes with x, then [x", y] =rx" [x, y] for all po-
sitive integer .

Lemma 5. Let R be an s-unital ring and e a pseudo-identity of {x, 2z} CR.
If ™z = (x+e)"z for some positive integer m, then z = 0.

With the above lemmas established, we are able to complete the proof of Theo-
rem 3.

Proof of Theorem 3. Leta, y e R, then by (I) there exist positive integers
n>1 and m =m(x, y) >1 such that

(@ —a")Nw, yl = (@ —a")x, y]"
= (x —a")w, yllx, yI" "
But, by Lemma 3, [«, 41"~ 'eJ(R), therefore
2.1) (x—x")x, y]=0

by Lemma 2. Since R is an s-unital ring we can replace & by « + e in (2.1), where e
is the pseudo-identity of {w, y}, thereby obtaining:

n

(2.2) (aﬁn—i-(n)ac”l-i-
1 2

o n n .
" 2+.._+( )x2+( 90+6“—90_@)[9€,?/]:0.
n—2 n—1

Note that (e¢” —e)[x, y] = 0. Comparing (2.1) and (2.2) now yields

((T) oy (Z) R ...(n’jz) 2%+ (n“j 1) ) [, 41 =0

and therefore

n n n n
@3) ( )[ y]:(-( )--( )x—( )x)[m,y].
1 2 n—2 n—1
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Again, if we replace & by x +e in (2.3), we get

(n) (x"l—l— (n— 1) "+ . +e”1)[ac, Y]
1 1

2.4) =(—(n) (x”‘2+(n_2)x”3+...+e”2)—...—( "
2 1 n—2

n
( )(ac+e))[9c,y].
n—1

Comparing (2.3) and (2.4) now yields

(7 e
1 1 Y11=

(91 e R I ES2

Continuing the above process, we reach that

2.6) (" ("_1) (2) [, y1 = slz, ¥]
. | ) w2l y] = s,
1) 1 1 4 4

(xZ2+2x+e?)—

(2.5)

where s is an integer.
Now replacing x by « + ¢ in (2.6) yields =![«x, y] = 0, and therefore [x, y] =0,
by (II).

Remark 2. If n is an even integer in Theorem 3, then (II) can be replaced
by:

(IT)) The commutator ideal of R is 2-torsion free.

Proof. Letx, y e R, then by (2.1) there exist n > 1 such that (x — x™)[x, y] = 0.
Since n is even, replacing & by —x in (2.1), we deduce that

2.7 ole, yl= —x"[x, y].

Comparing (2.1) and (2.7) now yields 2x[x, y] = 0 and therefore x[x, y] =0, by
(II)'. Since R is an s-unital ring we can replace x by « + e, thereby obtaining
x[x, y]+ [z, y] =0. Hence [x, y] =0, as desired.

Corollary 2. Let R be an s-unital ring and n > 1, r > 1 fixed positive inte-
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gers. Suppose that for any x, y € R there exist positive integer m = m(x, y) such
that

D (@—ax")[x, y] =[x, y]") =0
In [«", y"1=0

(III) The commutator ideal of R s v(2" — 2)-torsion free. Then R 1is
commutative.

Proof. Let x, yeR, then by (2.1), (x —ax")[«, y] = 0. Hence
xlx, yl =x"[x, y]
=x" lolx, y].

Now if xeJ(R), applying Lemma 2 we deduce that x[x, y] =0 and therefore
(2" = 2)[x, y] =0 by (2.4), and so [«, y] = 0 by (III). On the other hand in view of
Lemma 3, (II) implies that [x, y]eJ(R), hence x[x, y] =[x, ylx and there-
fore

2.8) " Ha,y"]1=0

by Lemma 4, (IT) and (ITI). Now replacing x by « + e, where e is the pseudo-iden-
tity of {«, y}, we conclude that

(@+e) M,y 1=0=x"""x, y"]

and therefore [, ¥ "] = 0 by Lemma 5. By repeating the above argument, we get
[x,y]=0.

Example 1. In Theorem 3 the ring R must be s-unital because the follow-
ing noncommutative ring satisfies all of the other hypotheses.

0 a b
A= J 0 0 c||where a,b,c are any real numbersl
o o o J

for r=m=n=3.

Example 2. The hypothesis (IT) of Theorem 3 is essential as the following
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example showes.

a b ¢
A=4310 a d|]||a,b,c,deGF(2)

0 0 a

with n=m=2r=1.
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Abstract

The paper deals with the study of sufficient conditions for commutativity of a ring,
namely with the partial generalizations of the Maclegan-Wedderburn theorem according
to Jacobsons idea.



