Amir H. Yamini and Sh. Sahebi (*)

Rings satisfying the generalized

$$
\text { polynomial identity }\left(x-x^{n}\right)\left([x, y]_{k}-[x, y]_{k}^{m}\right)=0\left(^{* *}\right)
$$

0 - Introduction

Throughout, R will represent an associative ring with center C and Jacobson radical $J(R)$. If $\left(x_{i}\right)_{i \in \mathbb{N}}$ is a sequence of elements of R and k is a positive integer we define $\left[x_{1}, \ldots, x_{k+1}\right.$] inductively as follows:

$$
\begin{aligned}
{\left[x_{1}, x_{2}\right] } & =x_{1} x_{2}-x_{2} x_{1} \\
{\left[x_{1}, \ldots, x_{k}, x_{k+1}\right] } & =\left[\left[x_{1}, \ldots, x_{k}\right], x_{k+1}\right] .
\end{aligned}
$$

If $x_{1}=x$ and $x_{2}=\ldots=x_{k+1}=y$, we write $\left[x_{1}, \ldots, x_{k+1}\right]=[x, y]_{k}$. Also for $k=0$ we define $[x, y]_{k}=x$.

By a ring R with torsion-free commutators, we mean that $m[x, y]=0$ implies $[x, y]=0$ for all $m \geqslant 1, x, y \in R$.

A ring R is called left (resp. right) s-unital [8] if for each $x \in R$ we have $x \in R x(r e s p . x \in x R)$. A ring R is called s-unital if for each x in $R, x \in x R \cap R x$. If R is an s-unital ring, then for any finite subset F of R, there exists an element e in R such that $e x=x e=x$ for all $x \in F$ (see [8]). Such an element e will be called a pseudo-identity of F .

In [3] Hirano and Yaqub studied the rings satisfying $\left(x-x^{n}\right)\left(y-y^{n}\right)=0$. Later in [7], Komatsu and Tominaga extended Theorem 3 of [3] as follows: If R is a ring satisfying $\left(x-x^{n}\right)\left(y-y^{n}\right)=0(n>1)$ and if for each $x, y \in R$, either

[^0]$(x y)^{n}-(y x)^{n} \in C$, or $x^{n} y^{n}-y^{n} x^{n} \in C$ or $(x y)^{n}-y^{n} x^{n} \in C$ then R is commutative. (Note that, here $\left(x-x^{n}\right)\left(y-y^{n}\right)=0$, implies the Chacron's condition). On the other hand Giambruno, Goncalves and Mandel [5] have investigated the commutativity of rings satisfying $[x, y]_{k}^{n}=[x, y]_{k}$. Now our objective is to investigate the commutativity of rings satisfying any of the following conditions:
(P1) For each x, y in R there exist positive integers $n=n(x, y)>1$, $m=m(x, y)>1$ and $k=k(x, y) \geqslant 1$, such that $\left(x-x^{n}\right)\left([x, y]_{k}-[x, y]_{k}^{m}\right)=0$.
(P2) For each x, y in R there exist positive integers $n=n(x, y)>1$, $m=m(x, y)>1$ and $k=k(x, y) \geqslant 1$ such that $\left(1-x^{n}\right)\left([x, y]_{k}-[x, y]_{k}^{m}\right)=0$ (here 1 is formal).

In section 1, we prove the following theorems:

Theorem 1. Let R be a division ring which satisfies (P1), then R is commutative.

Although this result can not be extended to primitive rings, we show that:

Theorem 2. If R is a ring which satisfies (P2), then the commutator ideal of R is nil.

In section 2, we generalize the result of Komatsu and Tominaga [6] by proving:

Theorem 3. Let R be an s-unital ring, and $n>1$ a fixed positive integer. Suppose that for any $x, y \in R$ there exist $r=r(x, y) \geqslant 1$ and $m=m(x, y)>1$ such that, either $(x y)^{r}-(y x)^{r} \in C$, or $x^{r} y^{r}-y^{r} x^{r} \in C$, or $(x y)^{r}-y^{r} x^{r} \in C$; and
(I) $\left(x-x^{n}\right)\left([x, y]-[x, y]^{m}\right)=0$,
(II) The commutator ideal of R is n!-torsion free, then R is commutative.
(Note that, here $\left(x-x^{n}\right)\left([x, y]-[x, y]^{m}\right)=0$ does not imply the Chacron's condition).

1-Commutativity results

In preparation for the proof of the main theorems we start with the following lemmas. Proof of Lemma 1 can be found in [5] and Lemma 2 is obvious.

Lemma 1. Let R be a division ring. If for each x and y in R there exist positive integers $n=n(x, y)>1$ and $k=k(x, y) \geqslant 1$ such that $[x, y]_{k}=[x, y]_{k}^{n}$. Then R is commutative.

Lemma 2. Let $b \in R$ and $a \in J(R)$. If $b a=b$ then $b=0$.

With the above lemmas established, we are able to complete the proof of Theorem 1 and 2.

Proof of Theorem 1. By Lemma 1 it is enough to show that if there exist x and y such that

$$
\begin{equation*}
[x, y] \neq[x, y]^{m} \quad \text { for all } m \geqslant 1 \tag{1.1}
\end{equation*}
$$

then $[x, y]_{k+1}=[x, y]_{k+1}^{m}$ for some positive integer k and $m>1$. In order to show this we replace x by $[x, y]$ in ($\mathbf{P} 1$), thereby obtaining

$$
\begin{equation*}
\left([x, y]-[x, y]^{n}\right)\left([x, y]_{k+1}-[x, y]_{k+1}^{m}\right)=0 \tag{1.2}
\end{equation*}
$$

for some $n>1$, $m>1$ and $k \geqslant 1$. Comparing (1.1) with (1.2) now yields $[x, y]_{k+1}$ $=[x, y]_{k+1}^{m}$, as desired.

Remark 1. Theorem 1 can not be extended to primitive rings because a trivial computation (by computer) shows that the noncommutative ring of 2×2 matrix over $G F(2)$ with $m=n=4$ and $k=1$, satisfies the condition ($\mathbf{P} 1$).

Proof of Theorem 2. We prove Theorem 2 by dividing its proof into several steps.

Step 1. Clearly Theorem 2 is true for any division ring (by Theorem 1).
Step 2. Theorem 2 is true for any left primitive ring R.
In this case either $R \approx D$ for some division ring D-in which case we would deduce that R is commutative by use of step 1 -or for some $k>1 D_{k}$ is a homomorphic image of a subring of R. We wish to show that this latter possibility does not arise. If it did, D_{k} as a homomorphic image of a subring of R would inherit the property ($\mathbf{P} 2$). This is seen to be patently false by considering the elements $x=E_{21}$ and $y=E_{22}$, for these satisfy $\left(1-x^{n}\right)\left([x, y]_{k}-[x, y]_{k}^{m}\right)=E_{21} \neq 0$, for all $n>1, m>1$ and $k \geqslant 1$. Thus, if R is primitive it must be commutative.

Step 3. Theorem 2 is true for any semiprimitive ring R.
For, we have a subdirect product representation $R \rightarrow \prod_{i \in I} R_{i}$, where the $R_{i} s$ are left primitive rings. Each R_{i} satisfies (P2), and is therefore commutative. Hence R is also commutative.

Step 4. Theorem 2 is true for any ring R.
Let $x, y \in R$, then by (P2) we have

$$
\begin{aligned}
\left(1-x^{n}\right)[x, y]_{k} & =\left(1-x^{n}\right)[x, y]_{k}^{m} \\
& =\left(1-x^{n}\right)[x, y]_{k}[x, y]_{k}^{m-1}
\end{aligned}
$$

for some positive integers $k \geqslant 1, m>1, n>1$. But Step 3 shows that $R / J(R)$ is commutative, hence $[x, y]_{k}^{m-1} \in J(R)$ and therefore by Lemma $2\left(1-x^{n}\right)[x, y]_{k}=0$. Replacing x by $[x, y]$ in the recent equality, we get $\left(1-[x, y]^{n}\right)[x, y]_{k+1}=0$, for some $n>1, k \geqslant 1$. Since $[x, y]^{n} \in J(R)$, we would deduce that $[x, y]_{k+1}=0$ by Lemma 2. Therefore the commutator ideal is nil, by [4].

The following corollary is an immediate consequence of [8].
Corollary 1. If for each $x, y \in R$ there exist positive integers $n=n(x, y)>1$, $m=m(x, y)>1, k=k(x, y) \geqslant 1$ and a fixed integer $r \geqslant 1$ such that
(i) $\left(1-x^{n}\right)\left([x, y]_{k}-[x, y]_{k}^{m}\right)=0$,
(ii) If $r[x, y]=0$ then $[x, y]=0$,
(iii) $\left[x^{r}, y^{r}\right]=0$.

Then R is commutative.

2-Extensions

In preparation for the proof of the Theorem 3, we start with the following lemmas. Proof of Lemma 3 can be found in [6], [1] and [2], Lemma 4 is obvious and the proof of Lemma 5 can be found in [8].

Lemma 3. Suppose that R is a semiprimitive ring which satisfies any of the following conditions:
(i) For all x, y in R there exists a positive integer $r=r(x, y) \geqslant 1$ such that $(x y)^{r}-(y x)^{r} \in C$.
(ii) For all x, y in R there exists a positive integer $r=r(x, y) \geqslant 1$ such that $x^{r} y^{r}-y^{r} x^{r} \in C$.
(iii) For all x, y in R there exists a positive integer $r=r(x, y) \geqslant 1$ such that $(x y)^{r}-y^{r} x^{r} \in C$.

Then R is commutative.

Lemma 4. If $[x, y]$ commutes with x, then $\left[x^{r}, y\right]=r x^{r-1}[x, y]$ for all positive integer r.

Lemma 5. Let R be an s-unital ring and e a pseudo-identity of $\{x, z\} \subseteq R$. If $x^{m} z=(x+e)^{m} z$ for some positive integer m, then $z=0$.

With the above lemmas established, we are able to complete the proof of Theorem 3.

Proof of Theorem 3. Let $x, y \in R$, then by (I) there exist positive integers $n>1$ and $m=m(x, y)>1$ such that

$$
\begin{aligned}
\left(x-x^{n}\right)[x, y] & =\left(x-x^{n}\right)[x, y]^{m} \\
& =\left(x-x^{n}\right)[x, y][x, y]^{m-1} .
\end{aligned}
$$

But, by Lemma 3, $[x, y]^{m-1} \in J(R)$, therefore

$$
\begin{equation*}
\left(x-x^{n}\right)[x, y]=0 \tag{2.1}
\end{equation*}
$$

by Lemma 2. Since R is an s-unital ring we can replace x by $x+e$ in (2.1), where e is the pseudo-identity of $\{x, y\}$, thereby obtaining:

$$
\begin{equation*}
\left(x^{n}+\binom{n}{1} x^{n-1}+\binom{n}{2} x^{n-2}+\ldots+\binom{n}{n-2} x^{2}+\binom{n}{n-1} x+e^{n}-x-e\right)[x, y]=0 \tag{2.2}
\end{equation*}
$$

Note that $\left(e^{n}-e\right)[x, y]=0$. Comparing (2.1) and (2.2) now yields

$$
\left(\binom{n}{1} x^{n-1}+\binom{n}{2} x^{n-2}+\ldots\binom{n}{n-2} x^{2}+\binom{n}{n-1} x\right)[x, y]=0
$$

and therefore

$$
\begin{equation*}
\binom{n}{1} x^{n-1}[x, y]=\left(-\binom{n}{2} x^{n-2}-\ldots-\binom{n}{n-2} x^{2}-\binom{n}{n-1} x\right)[x, y] \tag{2.3}
\end{equation*}
$$

Again, if we replace x by $x+e$ in (2.3), we get

$$
\begin{gather*}
\binom{n}{1}\left(x^{n-1}+\binom{n-1}{1} x^{n-2}+\ldots+e^{n-1}\right)[x, y] \\
=\left(-\binom{n}{2}\left(x^{n-2}+\binom{n-2}{1} x^{n-3}+\ldots+e^{n-2}\right)-\ldots-\binom{n}{n-2}\left(x^{2}+2 x+e^{2}\right)-\right. \tag{2.4}\\
\left.\binom{n}{n-1}(x+e)\right)[x, y] .
\end{gather*}
$$

Comparing (2.3) and (2.4) now yields

$$
\begin{gather*}
\binom{n}{1}\binom{n-1}{1} x^{n-2}[x, y]= \\
\left(\left(-\binom{n}{1}\binom{n-1}{2}-\binom{n}{2}\binom{n-2}{1}\right) x^{n-3}-\ldots-\left(\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n-1}\right)[x, y]\right. \tag{2.5}
\end{gather*}
$$

Continuing the above process, we reach that

$$
\begin{equation*}
\binom{n}{1}\binom{n-1}{1} \ldots\binom{2}{1} x[x, y]=s[x, y] \tag{2.6}
\end{equation*}
$$

where s is an integer.
Now replacing x by $x+e$ in (2.6) yields $n![x, y]=0$, and therefore $[x, y]=0$, by (II).

Remark 2. If n is an even integer in Theorem 3, then (II) can be replaced by:
(II)' The commutator ideal of R is 2 -torsion free.

Proof. Let $x, y \in R$, then by (2.1) there exist $n>1$ such that $\left(x-x^{n}\right)[x, y]=0$. Since n is even, replacing x by $-x$ in (2.1), we deduce that

$$
\begin{equation*}
x[x, y]=-x^{n}[x, y] . \tag{2.7}
\end{equation*}
$$

Comparing (2.1) and (2.7) now yields $2 x[x, y]=0$ and therefore $x[x, y]=0$, by (II)'. Since R is an s-unital ring we can replace x by $x+e$, thereby obtaining $x[x, y]+[x, y]=0$. Hence $[x, y]=0$, as desired.

Corollary 2. Let R be an s-unital ring and $n>1, r>1$ fixed positive inte-
gers. Suppose that for any $x, y \in R$ there exist positive integer $m=m(x, y)$ such that
(I) $\left(x-x^{n}\right)\left([x, y]-[x, y]^{m}\right)=0$
(II) $\left[x^{r}, y^{r}\right]=0$
(III) The commutator ideal of R is $r\left(2^{n}-2\right)$-torsion free. Then R is commutative.

Proof. Let $x, y \in R$, then by (2.1), $\left(x-x^{n}\right)[x, y]=0$. Hence

$$
\begin{aligned}
x[x, y] & =x^{n}[x, y] \\
& =x^{n-1} x[x, y] .
\end{aligned}
$$

Now if $x \in J(R)$, applying Lemma 2 we deduce that $x[x, y]=0$ and therefore $\left(2^{n}-2\right)[x, y]=0$ by (2.4), and so $[x, y]=0$ by (III). On the other hand in view of Lemma 3, (II) implies that $[x, y] \in J(R)$, hence $x[x, y]=[x, y] x$ and therefore

$$
\begin{equation*}
x^{r-1}\left[x, y^{r}\right]=0 \tag{2.8}
\end{equation*}
$$

by Lemma 4 , (II) and (III). Now replacing x by $x+e$, where e is the pseudo-identity of $\{x, y\}$, we conclude that

$$
(x+e)^{r-1}\left[x, y^{r}\right]=0=x^{r-1}\left[x, y^{r}\right]
$$

and therefore $\left[x, y^{r}\right]=0$ by Lemma 5 . By repeating the above argument, we get $[x, y]=0$.

Example 1. In Theorem 3 the ring R must be s-unital because the following noncommutative ring satisfies all of the other hypotheses.

$$
A=\left\{\left.\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \right\rvert\, \text { where } a, b, c \text { are any real numbers }\right\}
$$

for $r=m=n=3$.

Example 2. The hypothesis (II) of Theorem 3 is essential as the following
example showes.

$$
A=\left\{\left(\begin{array}{lll}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right)| | a, b, c, d \in G F(2)\right\}
$$

with $n=m=2, r=1$.

References

[1] Abu-khuzam Hazar, Commutativity results for rings, Bull. Austral. Math. Soc. 38 (1988), 191-195.
[2] Abu-khuzam Hazar and A. Yaqub, A commutativity theorem for division rings, Austral. Math. Soc. 21 (1980), 43-46.
[3] Y. Hirano and A. Yaqub, Rings satisfying the identity $\left(X-X^{n}\right)\left(Y-Y^{n}\right)=0$, Math. J. Okayama Univ. 29 (1987), 185-189.
[4] Chuang Chen-Lian, On a conjecture by Herstein, J. Algebra 126 (1989), 119138.
[5] A. Giambruno, J. Z. Goncalves and A. Mandel, Rings with algebraic n-engel elements, Comm. Algebra (5) 22 (1994), 1685-1701.
[6] I. N. Herstein, On rings with a particular variable identity, Algebra 62 (1980), 346-357.
[7] H. Komatsu and H. Tominaga, Chacron's condition and commutativity theorems, Math. J. Okayama Univ. 31 (1989), 101-120.
[8] Amir H. Yamini, Some commutativity results for rings with certain polynomial identities, Math. J. Okayama Univ. 26 (1984), 133-136.

Abstract

The paper deals with the study of sufficient conditions for commutativity of a ring, namely with the partial generalizations of the Maclegan-Wedderburn theorem according to Jacobsons idea.

[^0]: (*) Dept. of Math., Amirkabir Univ. of Technology, Tehran. Iran; Dept. of Math. Islamic Azad Univ, Tehran Center Tehran, Iran.
 ${ }^{(* *)}$ Received August 7, 1998 and in revised form March 8, 1999. AMS classification 16 R 50.

