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Rings satisfying the generalized

polynomial identity (x2x n )([x , y]k2 [x , y]m
k )40 (**)

0 - Introduction

Throughout, R will represent an associative ring with center C and Jacobson
radical J(R). If (xi )i�N is a sequence of elements of R and k is a positive integer
we define [x1 , R , xk11 ] inductively as follows:

[x1 , x2 ]4x1 x22x2 x1

[x1 , R , xk , xk11 ]4 [ [x1 , R , xk ], xk11 ] .

If x14x and x24R4xk114y, we write [x1 , R , xk11 ]4 [x , y]k . Also for k40
we define [x , y]k4x.

By a ring R with torsion-free commutators, we mean that m[x , y]40 implies
[x , y]40 for all mF1, x , y�R.

A ring R is called left (resp. right) s-unital [8] if for each x�R we have
x�Rx(resp . x�xR). A ring R is called s-unital if for each x in R, x�xRORx . If
R is an s-unital ring , then for any finite subset F of R, there exists an element e
in R such that ex4xe4x for all x�F (see [8]). Such an element e will be called a
pseudo-identity of F.

In [3] Hirano and Yaqub studied the rings satisfying (x2x n )(y2y n )40.
Later in [7], Komatsu and Tominaga extended Theorem 3 of [3] as follows: If R
is a ring satisfying (x2x n )(y2y n )40 (nD1) and if for each x , y�R, either
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(xy)n2 (yx)n�C, or x n y n2y n x n�C or (xy)n2y n x n�C then R is commutative.
(Note that, here (x2x n )(y2y n )40, implies the Chacron’s condition). On the
other hand Giambruno, Goncalves and Mandel [5] have investigated the commuta-
tivity of rings satisfying [x , y]n

k4 [x , y]k . Now our objective is to investigate the
commutativity of rings satisfying any of the following conditions:

(P1) For each x , y in R there exist positive integers n4n(x , y)D1,
m4m(x , y)D1 and k4k(x , y)F1, such that (x2x n )( [x , y]k2 [x , y]m

k )40.

(P2) For each x , y in R there exist positive integers n4n(x , y)D1,
m4m(x , y)D1 and k4k(x , y)F1 such that (12x n )( [x , y]k2 [x , y]m

k )40
(here 1 is formal).

In section 1, we prove the following theorems:

T h e o r e m 1. Let R be a division ring which satisfies (P1), then R is
commutative.

Although this result can not be extended to primitive rings, we show
that:

T h e o r e m 2. If R is a ring which satisfies (P2), then the commutator ideal
of R is nil.

In section 2, we generalize the result of Komatsu and Tominaga [6] by
proving:

T h e o r e m 3. Let R be an s-unital ring, and nD1 a fixed positive integer.
Suppose that for any x , y�R there exist r4r(x , y)F1 and m4m(x , y)D1
such that, either (xy)r2 (yx)r�C, or x r y r2y r x r�C, or (xy)r2y r x r�C;
and

(I) (x2x n )( [x , y]2 [x , y]m )40,

(II) The commutator ideal of R is n!-torsion free, then R is commuta-
tive.

(Note that, here (x2x n )( [x , y]2 [x , y]m )40 does not imply the Chacron’s
condition).
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1 - Commutativity results

In preparation for the proof of the main theorems we start with the following
lemmas. Proof of Lemma 1 can be found in [5] and Lemma 2 is obvious.

L e m m a 1. Let R be a division ring. If for each x and y in R there exist po-
sitive integers n4n(x , y)D1 and k4k(x , y)F1 such that [x , y]k4 [x , y]n

k .
Then R is commutative.

L e m m a 2. Let b�R and a�J(R). If ba4b then b40.

With the above lemmas established, we are able to complete the proof of Theo-
rem 1 and 2.

P r o o f o f T h e o r e m 1. By Lemma 1 it is enough to show that if there exist
x and y such that

[x , y]c [x , y]m for all mF1(1.1)

then [x , y]k114 [x , y]m
k11 for some positive integer k and mD1. In order to

show this we replace x by [x , y] in (P1), thereby obtaining

( [x , y]2 [x , y]n )( [x , y]k112 [x , y]m
k11 )40(1.2)

for some nD1, mD1 and kF1. Comparing (1.1) with (1.2) now yields [x , y]k11

4 [x , y]m
k11 , as desired.

R e m a r k 1. Theorem 1 can not be extended to primitive rings because a
trivial computation (by computer) shows that the noncommutative ring of 232
matrix over GF(2) with m4n44 and k41, satisfies the condition (P1).

P r o o f o f T h e o r e m 2. We prove Theorem 2 by dividing its proof into sev-
eral steps.

Step 1. Clearly Theorem 2 is true for any division ring (by Theorem 1).

Step 2. Theorem 2 is true for any left primitive ring R.

In this case either RBD for some division ring D-in which case we would de-
duce that R is commutative by use of step 1-or for some kD1 Dk is a homomor-
phic image of a subring of R. We wish to show that this latter possibility does not
arise. If it did, Dk as a homomorphic image of a subring of R would inherit the
property (P2). This is seen to be patently false by considering the elements
x4E21 and y4E22 , for these satisfy (12x n )( [x , y]k2 [x , y]m

k )4E21c0, for all
nD1, mD1 and kF1. Thus , if R is primitive it must be commutative.
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Step 3. Theorem 2 is true for any semiprimitive ring R.
For, we have a subdirect product representation RK »

i�I
Ri , where the R’i s

are left primitive rings. Each Ri satisfies (P2), and is therefore commutative.
Hence R is also commutative.

Step 4. Theorem 2 is true for any ring R.
Let x , y�R, then by (P2) we have

(12x n )[x , y]k4 (12x n )[x , y]m
k

4 (12x n )[x , y]k [x , y]m21
k

for some positive integers kF1, mD1, nD1. But Step 3 shows that ROJ(R) is
commutative, hence [x , y]m21

k �J(R) and therefore by Lemma 2 (12x n)[x , y]k40.
Replacing x by [x , y] in the recent equality, we get (12 [x , y]n)[x , y]k1140,
for some nD1, kF1. Since [x , y]n�J(R), we would deduce that [x , y]k1140
by Lemma 2. Therefore the commutator ideal is nil, by [4].

The following corollary is an immediate consequence of [8].

C o r o l l a r y 1. If for each x , y�R there exist positive integers n4n(x , y)D1,
m4m(x , y)D1, k4k(x , y)F1 and a fixed integer rF1 such that

(i) (12x n )( [x , y]k2 [x , y]m
k )40,

(ii) If r[x , y]40 then [x , y]40,

(iii) [x r , y r ]40.

Then R is commutative.

2 - Extensions

In preparation for the proof of the Theorem 3, we start with the following lem-
mas. Proof of Lemma 3 can be found in [6], [1] and [2], Lemma 4 is obvious and
the proof of Lemma 5 can be found in [8].

L e m m a 3. Suppose that R is a semiprimitive ring which satisfies any of
the following conditions:

(i) For all x , y in R there exists a positive integer r4r(x , y)F1 such
that (xy)r2 (yx)r�C.

(ii) For all x , y in R there exists a positive integer r4r(x , y)F1 such
that x r y r2y r x r�C.
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(iii) For all x , y in R there exists a positive integer r4r(x , y)F1 such
that (xy)r2y r x r�C.

Then R is commutative.

L e m m a 4. If [x , y] commutes with x, then [x r , y]4rx r21 [x , y] for all po-
sitive integer r.

L e m m a 5. Let R be an s-unital ring and e a pseudo-identity of ]x , z(’R.
If x m z4 (x1e)m z for some positive integer m, then z40.

With the above lemmas established, we are able to complete the proof of Theo-
rem 3.

P r o o f o f T h e o r e m 3. Let x , y�R, then by (I) there exist positive integers
nD1 and m4m(x , y)D1 such that

(x2x n )[x , y]4 (x2x n )[x , y]m

4 (x2x n )[x , y][x , y]m21 .

But, by Lemma 3, [x , y]m21�J(R), therefore

(x2x n )[x , y]40(2.1)

by Lemma 2. Since R is an s-unital ring we can replace x by x1e in (2.1), where e
is the pseudo-identity of ]x , y(, thereby obtaining:

gx n1gn
1
h x n211gn

2
h x n221R1g n

n22
h x 21g n

n21
h x1e n2x2eh [x,y]40 .(2.2)

Note that (e n2e)[x , y]40. Comparing (2.1) and (2.2) now yields

ggn
1
h x n211 gn

2
h x n221Rg n

n22
h x 21 g n

n21
h xh [x , y]40

and therefore

gn
1
h x n21 [x , y]4 g2gn

2
h x n222R2 g n

n22
h x 22 g n

n21
h xh [x , y] .(2.3)



16 AMIR H. YAMINI and SH. SAHEBI [6]

Again, if we replace x by x1e in (2.3), we get

gn
1
h gx n211 gn21

1
h x n221R1e n21h [x , y]

4g2gn
2
h gx n221gn22

1
h x n231R1e n22h2R2g n

n22
h (x 212x1e 2)2(2.4)

g n

n21
h (x1e)h [x , y] .

Comparing (2.3) and (2.4) now yields

gn
1
h gn21

1
h x n22[x,y]4

gg2gn
1
h gn21

2
h2gn

2
h gn22

1
hh x n232R2ggn

1
h1gn

2
h1R1g n

n21
hhh[x,y] .

(2.5)

Continuing the above process, we reach that

gn
1
h gn21

1
hRg2

1
h x[x , y]4s[x , y](2.6)

where s is an integer.
Now replacing x by x1e in (2.6) yields n![x , y]40, and therefore [x , y]40,

by (II).

R e m a r k 2. If n is an even integer in Theorem 3, then (II) can be replaced
by:

(II)8 The commutator ideal of R is 2-torsion free.

P r o o f . Let x , y�R, then by (2.1) there exist nD1 such that (x2x n)[x , y]40.
Since n is even, replacing x by 2x in (2.1), we deduce that

x[x , y]42 x n [x , y] .(2.7)

Comparing (2.1) and (2.7) now yields 2x[x , y]40 and therefore x[x , y]40, by
(II)8. Since R is an s-unital ring we can replace x by x1e, thereby obtaining
x[x , y]1 [x , y]40. Hence [x , y]40, as desired.

C o r o l l a r y 2. Let R be an s-unital ring and nD1, rD1 fixed positive inte-
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gers. Suppose that for any x , y�R there exist positive integer m4m(x , y) such
that

(I) (x2x n )( [x , y]2 [x , y]m )40

(II) [x r , y r ]40

(III) The commutator ideal of R is r(2n22)-torsion free. Then R is
commutative.

P r o o f . Let x , y�R, then by (2.1), (x2x n )[x , y]40. Hence

x[x , y]4x n [x , y]

4x n21 x[x , y] .

Now if x�J(R), applying Lemma 2 we deduce that x[x , y]40 and therefore
(2n22)[x , y]40 by (2.4), and so [x , y]40 by (III). On the other hand in view of
Lemma 3, (II) implies that [x , y]�J(R), hence x[x , y]4 [x , y]x and there-
fore

x r21 [x , y r ]40(2.8)

by Lemma 4, (II) and (III). Now replacing x by x1e, where e is the pseudo-iden-
tity of ]x , y(, we conclude that

(x1e)r21 [x , y r ]404x r21 [x , y r ]

and therefore [x , y r ]40 by Lemma 5. By repeating the above argument, we get
[x , y]40.

E x a m p l e 1. In Theorem 3 the ring R must be s-unital because the follow-
ing noncommutative ring satisfies all of the other hypotheses.

A4
.
/
´
u00

0

a

0

0

b

c

0

vNwhere a , b , c are any real numbers
ˆ
¨
˜

for r4m4n43.

E x a m p l e 2. The hypothesis (II) of Theorem 3 is essential as the following



18 AMIR H. YAMINI and SH. SAHEBI [8]

example showes.

A4
.
/
´
ua0

0

b

a

0

c

d

a

vNNa , b , c , d�GF(2)
ˆ
¨
˜

with n4m42,r41.
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A b s t r a c t

The paper deals with the study of sufficient conditions for commutativity of a ring,
namely with the partial generalizations of the Maclegan-Wedderburn theorem according
to Jacobsons idea.
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