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Maximum modulus, maximum term and approximation error

of an entire harmonic function in R3 (%)

Introduction

The harmonic functions in R® are the solutions of the Laplace equation

*H 9*H *H
0.1) + + =0
Sk O du?

A harmonic functions regular about the origin can be expanded as

02 H=H(r,0,¢9)= 2 r" 2 (a Y cos meo + a2)sin m¢) P (cos ),
0 m=0

n=

where x; =7 cos 6, x, =7 sin 0 cos ¢, x3 =7 sin 6 sin ¢ and P,"(t) are associated
Legendre’s functions of the first kind of degree m and order n. A harmonic poly-
nomial of degree k is a polynomial of degree k in «;, x; and x; which satisfies
0.1).

A harmonic function is said to be regular in Dy = {(xy, 2, ¥3): @f + x5 +
<RZ? 0 <R < o} if the series (0.2) converges uniformly on every compact sub-
set of Dr. The harmonic function is called entire if it is regular in D, . The order
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o and type T of an entire harmonic function are defined as

log log M(r, H
hmsup%wmz@, 0sos =,

and, for functions having order o(0 <p < «),

. log M(r, H)
hmsup—Q=T(H)ET, 0<st<T,
P—> 00 r
where M(r, H) = max | H(2y, 22, 23) ] .

o+ ad+af=r

Let Hp, 0 < R < « denote the class of all harmonic functions H regular in Dp
and continuous on Dg, the closure of Dy. For H € Hg, let E,(H, R), the error in
approximating the function H by harmonic polynomials in uniform norm, be de-
fined by

En(H, R) = glerg. ||H - g”R’

where 7, consists of all polynomials of degree at most n and

HH_QHR = max _ |H(901, L2, w3) — g(x1, X2, X3) | .
of +af + m? eDp

One way of characterizing the growth of an entire harmonic function in terms
of approximation error is to relate £, (H, R) with order ¢ and 7. Various authors
([3], [4], [5], [6]) established a relation between the growth parameters and appox-
imation error of an entire harmonic function, but as compared to the direct esti-
mates of K, (H, R) or M(r, H) these are still rather crude.

The purpose of this paper is to set up more precise interrelation between
M(r, H), u(r, H) and E,(H, R) for entire harmonic functions of relatively slow
growth, in terms of direct estimates for these quantities. Here, we call an entire
harmonic function slowly increasing if M(r, H) increases essentially, not faster
than

log(”r'/?”'R) :|ﬁ/(ﬂ1)
2p

for f =2 and an arbitrary ¢ > 0 (critical value 5 = 2 has been found to be signifi-

0.3) exp (¢c(B—1)) [

cant). For rapidly increasing functions there are direct estimates of M(r, H),
u(r, H) and E,(H, »). If H increases like (0.3) with 1 < 8 <2, for example Propo-
sition 2 and Corollary 1 apply, and for still more rapidly increasing harmonic
functions of classical order ¢ > 0, Proposition 1 and Theorem 2 apply. Though in
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the later case a necessary and sufficient characterization of the growth of H in
terms of £, (H, R) is possible, the results are still sharper than the limit relations
mentioned above.

1 - Auxiliary results

Here, we mention two results which have been utilized in the text:

Lemma 1. Let H e Hy be entire and ' > 1. Then, for all r > 27’ R and suf-
ficiently large values of n, we have

P’ n+1
E,(H, R)<KM(r, H)( ) ,
P

where K is a constant.
The proof of the lemma is left to the reader.

Lemma 2. Let He Hp. Then, for R, <R and n =1, there exists an entire
Sfunction h(z) such that

h(z) = §<2n+1>2EM<H,R>( ¢ )
n=1 Rs/

and
M(’V', H) S |CL(§(}) | +KOM(7/.7 h)y

where M(r, h) = |ma_x |h(2)|.

2

The proof of this lemma follows form [3], Lemma 4.

2 - Main results
I - Maximum modulus and approximation error

We first prove two propositions for a class of entire harmonic functions which
include all H of order o > 0. Then, we restrict ourselves to entire harmonic func-
tions of slow growth in order to obtain a characterization theorem of desired
precision.

We denote by C?[«x, =) the class of twice continuously differentiable functions
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on [x, ©) and for any aeC?[x, ») with a” >0, set

2.1) A(r) = exp {log 7(a’) (log r) — a((a’) " H)(log )} .

Proposition 1. Let He Hp. Then H has an analytic continuation as an
entire harmonic function and let aeC?[x, ) be such that a'(x)— © and
a’(x) >0 for each x=uxy. If M(v, H) = O(A(r/r' R)), v— o, then we have

(2~2) En(Ha R)ZO(;)5 n— oo,
Yyn+1)

where P(x) = exp alx), © = x;.

Proof. By Lemma 1, we have for »' >1 and r>2r'R,

’R n+1
E’n(H,R)SKM(r,H)(T ) .

r

For »/r' R=expa’'(n + 1), above inequality corresponds to (2.2).
We define I" to be the class of functions a e C?[x, «) for some x; =0 for
which there exists a function w such that x — w(x) =x;, x = .
%lergc o' (x) = o, @IET}O w?(x) a"(x) = o, wlLII}o a’(x) =0
and a"(x + ow(x)) =a"(x) as x— % on O such that |d]| <1.

Proposition 2. Let He Hyp have analytic continuation as an entire har-
monic function satisfying (2.2) for some v such that o(x) =log y(x)el.
Then

el gl ()] “a( ) o=
r' R r' R "R

Proof. Using Lemma 2, we have

n=1 %

M(r, H) < |aid |+ Ky > (2n+172E, _,(H, R)(Ri ) .

Since (2n +1)*"—1 as n— o and r' >1, it follows that (2n + 1)< (r')" for
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n=mny(r’). Thus, in vew of (2.2),

<] rr ! n

M(r, H)< |0L(§01)| + K, E E, (H, R)(R_)

n=1

%

(2.4)

n= *

o0 rr' n+1
$O(|a(§01>|+K0 ZO(R—) zp(n+1)).

Define h(x, t) = xt — a(t). The right side estimate of (2.4) is evaluated as

© 1 ’V”Y’, n+1 © 7,,,,,,/
LI (LA B hllog| 2= ||, n+1
ngl w(n+1)(R*) nzoeXp|: (Og(}%~k )) n

Since a e, the asymptotic relation

;ﬂ[h(log(g—; ) n+ 1)] :\/Z_JT[a"((a’)l(log(ﬁ )))]_WA( /R ) —

follows easily by using [1] Theorem 28.3. This concludes (2.3).

, ryY—> o0,

Remark. The conclusions of Propositions 1 and 2 are best possible in the
sense that O can not be replaced by o in (2.2) and (2.3), respectively. In case y
grows at least as rapidly as exp (x?!), t = 2, this will be a consequence of Theorem
1 below. For Proposition 2 and general 1 with a e I this is also clear from (2.4) by
choosing H with E,(H, R) =1/y(n +1).

Now, we consider the case of slowly increasing entire harmonic function ex-
pressed in terms of a particular 1 (x) of the form y(x) = exp (cx”), ¢ > 0, it means
that the following theorem will cover the case 3 = 2 whereas Propositions 1 and 2
cover the cases 8 >1 and 1 < <2, respectively. Let I" denote the class of func-
tions a e C?[x, ), for some x; =0 with wan}oa”(x) = o, a"(x) exist for x = x;
and lim a"(@) (a"(x)) 3?2 =0.

Theorem 1. Let He Hp have an analytic continuation as an harmonic
function for some a.e T and let A(r) be defined by (2.1). The following statements
are equivalent

G M(r, H) =O0A@r/r'R)), r— x.
() E,(H, R)=0(1/y(n+1)), n— .

Proof. The (i)=>(ii) is conteined in Proposition 1. For the converse, consi-
der first the case when %ILI’I}C a"(x) = ¢ >0 with ¢c— oo . Then, the proof follows as
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in Proposition 2. If @h_{% a"(x) = o, it follows again that

2. H)= W4k, S _ 1
25) M(r, H) O[|0000|Jr ) R, D)

n=0

r \n+1 1
_) ], r—ow and R, <R.

We have to show that the right side is O(A(v/r' R)) as r— . We set #n(x, &)
=& — a(), using a result of Sirovich [7], p. 96-98 and Evgrafov [2], p. 18

o

2 1/2
(2.6) J'en(x, & de = oM@, §o(®)) , r— o,
0 —ng(%, §o(x))

Here 7g denotes the second derivative with respect to & and &((x)
= (a')"!(x). The hypothesis of [5], p. 98, case 2, are satisfied since, for each
x>y, n(x, &), a function of & has a global maximum at &,=&,(x)=(a’) (),
ie., ng(x, &¢(x)) =0. Moreover, i :(x, §¢(x)) = —a"((a")"1(x)) # 0 and we have
(") 1(x)— o, as x— oo, it follows by the definition of T that

_x@%c’?.&s(%, Eo(x)) = o,
as well as
_ xli_)ngoﬂgg(x, go(%)) 77(90, 50(96‘))3/2 - .

Now, we set x, =& (log (+/r' R)) and K, = [x,.], where [x,] denotes the integral
parts of x,. Using (2.5), we have

© 1’”)"’ n+1 1 © 1’”}”’
_ | 1
nzo(R*) v+ 1) nZoeXp["(og(R* )’n+ )]

= i exp{n(log(%),n+l)

% ’

STNESE
+exp{n(log( WTR ) K + 1)] 4 f exp[n(log( T,’"R ) 5)} de

K1‘+1
<2expin|log y &
r'R

dé + exp

=)

Jenflel g

0
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As a recourse of definition of 7, (2.6) and (2.1), we obtain

—-1/2
M(r, H) = 0(|a(§(}>|+1{0 ( ) 2+\/—na”((a )~ 1(1og( " )) ) ) r—
"R 'R
holds if and only if

En(H,R)=O(;), s oo
exp (c(n + 1))

The asymptotic relation (2.6) is given by this for 1, in the cases fe N and > 2,
respectively.

II - Maximum term and approximation error

Consider the funetion h(z) = 2 2n+1)YE,_,(H, R)(#/R,)". Since h(z) is

an entire harmonic function and we know that & and H have same maximum term,
we denote it by u(r, H). A satisfactory characterization of u(r, H) in terms of ap-
proximation error holds for large class of entire functions, including those of or-
der 0 >0 and type T'=0.

Theorem 2. Let He Hp have an analytic continuation as an entire har-
monic function with maximum term u(r, H) and let o, v and A(r) be given as
usual. Then condition (2.2) is equivalent to u(r, H) = O(A(v/r' R)), r— .

Proof. Let (2.2) be satisfied, so that for each r >0, n=n,,

r n+1 r n+1 1
@7 (@2n+3YE,(H,R) <M for r'>1.
r'R. r'R n+1)

For fixed 7, the maximum over x of the function (r/r'R,)""1/y(n+1) is at-
tained at x=(a’) 'dog(®/r'R,)) and has value A(v/r'R,), provided
(a') *(log(r/r' R )) > x,. Therefore,

r n+1 r n+1 1 r
max (2n+3)°E,(H, R) <M max =MA
n=mn r' R n=mng r’R* 1/}(%4‘1) V’R*

for each r> r,. Choosing r; > 7, large enough, so that

» n+1 » n+1
= max ; 0<mn<nl.
r' R

E,(H,R)

E, (H, R)
0 /}”’R* "
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For each >, it also follows that u(r, H) < MA(v/r' R..), *> r;. Conversely,
(2.7) implies that

MA(r/r'R )

2.8 E,H RS ——
( ) ( ) (T/T/R*)nJrl

>,

where 7, and M are constant. Choosing 7/r' R, = expa'(n + 1) for some ne N in
(2.8), we have for n large enough, since a'(x) — « as x— o, and R, <R is ar-
bitrary, this implies (2.2).

III - Maximum modulus and maximum term

Corollary 1. Let H e Hp have an analytic continuation as an entire har-
monic function satisfying u(r, H) = O(A(v/r' R)), r— o with A(r) defined by
(2.1), for ael'. Then

-1 r -1z r
M(r, H)=O((a (a”)) (log(m)) A( g )), r— o,

This is direct consequence of Theorem 2 and Proposition 2.

Corollary 2. Let HeHp be given as in Theorem 1. The following state-
ments are equivalent

@ w(r, H) = O(A(r/r' R)), r— .
(i) M(r, H) = O(A(r/r'R)), r—> .

Theorems 1 and 2 combine to establish above equivalence and it is concerned
with functions of slow growth only.
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Abstract

Generally, the growth of an entire harmonic function is measured in terms of order

and type. Here, we have established the relations between maximum modulus, maximum
term and approximation errorv in the form of direct estimates.
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