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Error analysis for singular integral evaluation

on piecewise smooth curves in Galerkin BEM (**)

Dedicated to the memory of G. L. Braglia

1 - Introduction

The formulation of certain classes of boundary value problems (potential, elas-
ticity, fracture mechanics etc.) in terms of hypersingular boundary integral equa-
tions (HBIE) is currently gaining increasing interest; see for example ([5], [9],
[12], [15], [16]). Quite often these equations are coupled with Cauchy singular
boundary integral equations (CBIE).

The numerical method most frequently used to solve such type of equations is
certainly the collocation method; but there are applications where the use of a
Galerkin method may give some important advantages (see [11], [14], [24]). The
Galerkin method however requires the user to compute efficiently integrals of the
form

�
G

fj (y)�
G

K(x , y) fi (x) dG x dG y ,(1.1)

where G is the boundary of the domain, fj , fi are respectively test and shape
functions and the kernel K(x , y) may be of the type ln r, r 21 , r 22 , with
r4Nx2yN.

(*) Dip. di Matematica, Università di Parma, Via D’Azeglio 85, 43100 Parma, Italy.
(**) Received December 2, 1998. AMS classification 65 N 38, 65 D 32.
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To compute such integrals few strategies have been proposed (see [8], [9],
[13]). In general they require some analytical computations or manipolations;
moreover, they are either efficient but limited to particular cases of kernels,
boundaries and approximants, or of wider applicability but not very efficient. To
overcome these drawbacks, in [2] we have considered CBIE and HBIE defined
on 2D polygonal domains and proposed very efficient numerical schemes to com-
pute the corresponding Galerkin integrals. These formulas only require the user
to define a mesh on the polygonal boundary, not necessarily uniform, and specify
the local degrees of the approximant; they are quite suitable for the construction
of p and h2p versions of the BEM.

In [1] we have considered the case of a boundary with piecewise smooth para-
metric representation and we have shown how the quadrature formulas proposed
in [2] can be used also in this more general situation, approximating the real
boundary with very short linear interpolants when double integrals are defined on
two consecutive elements with different parametrizations.

In this note we give error estimates for this approximation procedure in the
case of weakly singular and Cauchy singular integrals, and analyse numerical ex-
amples dealing with critical situations.

2 - Evaluation of the Galerkin matrix elements

We assume that the boundary G in (1.1) is a piecewise smooth closed curve in

D2 ; further, we assume that G can be decomposed as G4 0
l41

M

G l , where each piece

G l is the image of a one-to-one smooth map fl defined on a closed interval Il%D.
In particular we define xf (j 1 , j 2 )�G l by

j 14 fl , 1 (t) , j 24 fl , 2 (t) , t�Il .

A partition of Il (Il
k , k41, R , nl ) will define a corresponding partition of G l

(G l
k , k41, R , nl ).
Let us also assume that on the boundary G of our problem we have defined a

mesh or partition, not necessarily uniform, obtained as image of a partition of

I4 0
l41

M

Il . Let em be an element of the mesh on G, image of the element (am , bm ) of

the partition of I. By ]f i( we denote a (global) Lagrange basis relative to the
partition of I. The local Lagrange basis, of degree dm , defined on the element
(am , bm ) will be denoted by ]f i

(m)(. The corresponding bases on G will be ]fi(
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and ]fi
(m)( where:

fi (x)4f i i fl
21 (x) if x�G l

fi
(m) (x)4f i

(m)
i fl

21 (x) if x�G l .

The elements of the Galerkin matrix contain double integrals of the form

�
G

fj (y)�
G

K(y , x) fi (x) dG x dG y ,(2.1)

where the kernel K can be weakly singular, singular or hypersingular. In the lat-
ter two cases the inner integral in (2.1) ought to be defined as a Cauchy principal
value and as Hadamard finite part, respectively.

Further, integral (2.1) can be decomposed as the sum of double integrals of
the form

�
em

fj
(m) (y)�

G

K(y , x) fi (x) dG x dG y ,(2.2)

Since em�G l for some l, by introducing the corresponding mapping fl the integral
(2.2) can be rewritten as

�
am

bm

f j
(m) (s) Jl , m (s)�

G

K ( fl (s), x ) fi (x) dG x ds ,

where

Jl , m (s)fJm ( fl (s) )4][ fl , 18 (s) ]21 [ fl , 28 (s) ]2(1/2 , amGsGbm .

We decompose also the inner integral in (2.2), hence reduce the evaluation of (2.1)
to the computation of integrals of the form

�
am

bm

f j
(m) (s) Jl , m (s)�

en

K ( fl (s), x ) fi
(n) (x) dG x ds ,(2.3)

with en�G k for some k. When the kernel is hypersingular and enfem , this de-
composition is possible, however, only if we define both the inner and the outer in-
tegrals in (2.3) as finite parts, while if em and en are consecutive, only the outer in-
tegral in (2.3) must be defined in the finite part sense. Indeed, in such cases, the
outer integral, which exists as an ordinary (improper) integral when the inner one
is considered on the whole boundary G, is not defined on a single boundary ele-
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ment unless the product fj
(m) fi

(n) vanishes at those endpoints where the kernel K
becomes hypersingular. For instance this is the case when em4en , i4 j and
fi

(n) (x) does not vanish at both endpoints of the element en . Notice that in the
above situations the outer integral diverges if considered as an ordinary integral,
since the inner one gives rise to a not integrable singularity at one or both end-
points of the outer element of integration, while the sum over all elements of G

has a finite value. This remark, which has been made for the first time in [6], is vi-
tal if we want to overcome the numerical cancellation phenomenon that otherwise
would naturally arise when we evaluate (2.3) by a quadrature rule and sum the
contributions of all boundary elements. In other words, by defining the outer inte-
gral as stated above, we eliminate a priori (and analitically) the singular terms
that would otherwise arise and that ought anyway cancell out each other in the fi-
nal answer. Numerical experiments have shown that in such cases numerical can-
cellation can be quite dramatic, particularly when we require high accuracy. Fi-
nally, since in (2.3) the point y4 fl (s) is either outside the element en or in its inte-
rior (this happens only when enfem ), the introduction of the change of variable
x4 fk (t) is allowed and we obtain the new representation

�
am

bm

f j
(m) (s) Jl , m (s)�

an

bn

K(s , t) f i
(n) (t) Jk , n (t) dt ds ,(2.4)

where we have set K(s , t)fK ( fl (s), fk (t) ).
Since the kernel K(y , x) is of the type (I) ln r, (II) r 21 , (III) r 22 , integrals

which cause difficulties, i.e., those which cannot be evaluated efficiently by the
product of two Gauss-Legendre formulas, are those associated with elements em ,
en which are either coincident or consecutive. In these critical cases the distance r
can be expressed respectively in the following forms:

Case (i): emfen�G l

r 24 [ fl , 1 (t)2 fl , 1 (s) ]21 [ fl , 2 (t)2 fl , 2 (s) ]24 (t2s)2 F1 (t , s) ,(2.5)
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where

F1 (t , s)4
.
/
´

y fl , 1 (t)2 fl , 1 (s)

t2s
z2

1 y fl , 2 (t)2 fl , 2 (s)

t2s
z2

,

(Jl , m (s) )2 ,

tcs ,

t4s

has one degree of smoothness less than that of fl , 1 and fl , 2 , and is always
positive.

Case (iia ): em , en consecutive with the same parametrization fl :

r 24 [ fl , 1 (t)2 fl , 1 (2s) ]21 [ fl , 2 (t)2 fl , 2 (2s) ]24 (t1s)2 F2 (t , s) ,(2.6)

where

F2 (t , s)4
.
/
´

y fl , 1 (t)2 fl , 1 (2s)

t1s
z2

1 y fl , 2 (t)2 fl , 2 (2s)

t1s
z2

,

(Jl , m (2s) )2 ,

tc2 s ,

t42 s40

has one degree of smoothness less than that of fl , 1 and fl , 2 , and is always
positive.

Case (iib ): em , en consecutive but with a different parametrization:

We replace em , en by their linear interpolants em , h , en , h ; therefore we have the
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following expression of the distance:

r 24 (t2as )21bs
2(2.7)

with as4s(lm /ln) cos (u) and bs4s(lm /ln) sin (u), having denoted with lm4bm2am

the length of the interval (am , bm ) associated with the element em (see
(2.4)).

Analogously, we can replace each (curved) element by a quadratic interpolant
instead of a linear one, proceeding as follows. Having chosen three points (xi , yi ),
i41, 2 , 3 on en , we can define a parametric representation of the parabola:

x(t)4N t (t) x ,

y(t)4N t (t) y , 21G tG1 ,

where

x4 (x1 , x2 , x3 )t , y4 (y1 , y2 , y3 )t ,

N(t)4 (N1 (t), N2 (t), N3 (t) )t ,

N1 (t)4
1

2
t(t21) , N2 (t)4 (12 t)(t11) , N3 (t)4

1

2
t(t11) .

Doing the same for the element em , then we define

with

j(s)4N1 (s) j 11N2 (s) j 21N3 (s) j 3 ,

h(s)4N1 (s) h 11N2 (s) h 21N3 (s) h 3
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and

x(t)4N1 (t) x11N2 (t) x21N3 (t) x3 ,

y(t)4N1 (t) y11N2 (t) y21N3 (t) y3 .

A simple calculation gives:

r 24r1
21r2

2 ,

where

r14a0 t 21a1 s 21a2 t1a3 s1a4 ,

r24b0 t 21b1 s 21b2 t1b3 s1b4 ,

with

.
`
`
/
`
`
´

a04
1

2
(x122x21x3 ) ,

a142
1

2
(j 122j 21j 3 ) ,

a24
1

2
(x32x1 ) ,

a34
1

2
(j 12j 3 ) ,

a44x22j 2 ,

b04
1

2
(y122y21y3 ) ,

b142
1

2
(h 122h 21h 3 ) ,

b24
1

2
(y32y1 ) ,

b34
1

2
(h 12h 3 ) ,

b44y22h 2 .

Therefore we have:

r 24A0 t 41A1 t 31A2 t 21A3 t1A4 ,

where the Ai are known functions of s:

A04a0
21b0

2 ,

A142a0 a212b0 b2 ,

A24s 2 (2a0 a112b0 b1 )1s(2a0 a312b0 b3 )1 (a2
212a0 a412b0 b41b2

2 ) ,

A34s 2 (2a1 a212b1 b2 )1s(2a2 a312b2 b3 )1 (2a2 a412b2 b4 ) ,

A44s 4 (a1
21b1

2 )1s 3 (2a1 a312b1 b3 )1s 2 (a3
212a1 a412b1 b41b3

2 )

1s(2a3 a412b3 b4 )1 (a4
21b4

2 )

that is, having set Bi4Ai /A0 , i41, R , 4 ,

r 24A0 (t 41B1 t 31B2 t 21B3 t1B4 ) .(2.8)
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Equation (2.8) can be trasformed, by the substitution t4y2B1 /4, into:

r 24A0 (y 41py 21qy1d)

with: p42
3

8
B1

21B2, q4
1

8
B1

32B1B2/21B3, d42
3

256
B1

41B1
2B2/22B1B3/41B4.

A cumbersome, but straightforward manipulation, leads to the factorization:

r 24A0 [ (t2a 1 )21b 1
2 ][ (t2a 2 )21b 2

2 ](2.9)

which contains factors of the same type of (2.7), where

a 14
B1

4
1

z

2
, b 1

2 4
4(u2zv)2z 2

4
,

a 24
B1

4
2

z

2
, b 2

2 4
4v2z 2

4
,

v4
1

2z
(z 31pz1q) ,

u4p1z 21
1

2
(z 31pz1q) g12 1

z
h ,

z4
uv2d

v 2

and z is solution of the following equation: z 612pz 41 (p 224d) z 22q 240.

We recall that in the situation described in case (iib ), if the solution of the inte-
gral equation has a «singularity» at the point 0, an h2p stategy will take ele-
ments em , en with length much shorter than those of the elements where the sol-
ution is smooth. Otherwise, we will take anyway elements em , en of small lenghts.
Therefore the above linear or quadratic interpolations should cause a neglegible
error, which will be studied in the next Section. Notice that we propose to replace
em , en by their interpolants only when we consider double integrals defined over
these consecutive elements, not in all other cases: we introduce this interpolation
simply to approximate the specific integral and not the boundary.

Using the above expressions (2.5), (2.6), (2.7) or (2.9) of r in terms of the pa-
rameters s , t and basic quadrature rules such as product rules of interpolatory
type for logarithmic and rational kernels ([2]) and the DE-rule ([20]) in [1] we
have shown how to evaluate integrals of type (2.4) with numerical quadrature
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schemes of the form

�
0

1

�
0

1

K(s , t) f (s , t) dt dsC !
k42N

N

wk
DE !

i41

n

wi
I (sk

DE ) f (sk
DE , ti

I )

where ]sk
DE(, ]wk

DE( are nodes and weights of the DE-rule, and ]ti
I(, ]wi

I (sk
DE )(

are nodes and weights of product rules. Note that these last weights depend on
the outer node of integration.

3 - Estimates of the perturbations caused by the linearization of two consecutive

elements

In Section 2 we have remarked that when we have to deal with double inte-
grals defined on two consecutive elements with a different parametrization we re-
place them either by linear or by quadratic interpolants, hence proceed with these
latters to compute the (approximate) Galerkin integrals.

Here we examine the behaviour of the errors generated when two consecutive
elements are replaced by their linear interpolants. In particular we show that for
kernels of type ln r and r 21 the errors produced in the Galerkin integrals by
these boundary approximants are of order O(h 2 ), h being the maximum size of
the partition Il

k (l41, R , M ; k41, R , nl ). The case of quadratic elements is
much more cumbersome and we omit it.

Given a curved element e, and having defined its linear interpolant eh , we in-
troduce the one-to-one function c between eh and e. Given any x�e, c21 (x) is the
point of eh which lies on the normal to e at x. At the endpoints of e we have
c21 (x)4x.
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We consider the following situation:

By replacing em , em11 by em , h , em11, h , in the case of the ln r kernel we pro-
duce the error:

E14N �
em11

fj
(m11) (y) �

em

ln rfi
(m) (x) dG x dG y2 �

em11, h

f j , h
(m11) (y) �

em , h

ln rf i , h
(m) (x) dx dyN

where ]f i , h
(n) ( denotes the basis elements corresponding to ]fi

(n)( on en , h , that is:

E14N �
am11

bm11

f j
(m11) (s) �

am

bm

lnNc i fm11
h (s)2c i fm

h (t) N

f i
(m) (t) Jm11 (c i fm11

h (s) ) Jm (c i fm
h (t) ) dt ds

1 �
am11

bm11

f j
(m11) (s) �

am

bm

lnNfm11
h (s)2 fm

h (t)Nf i
(m) (t) Jm11 ( fm11

h (s) ) Jm ( fm
h (t) ) dt dsN,

where fm
h : [am , bm ]Kem , h is a smooth map and c i fm

h (s)4c(( fm , 1
h (s), fm , 2

h (s) )t).
Then we rewrite E1 as follows:

E14N �
am11

bm11

f j
(m11) (s) �

am

bm

lnNc i fm11
h (s)2c i fm

h (t) Nf i
(m) (t)(3.1)

[Jm11 (c i fm11
h (s) ) Jm (c i fm

h (t) )2Jm11 ( fm11
h (s) )Jm ( fm

h (t))] dt ds1

�
am11

bm11

f j
(m11) (s) Jm11 ( fm11

h (s) ) �
am

bm

ln
Nc i fm11

h (s)2c i fm
h (t)N

Nfm11
h (s)2 fm

h (t)N
f i

(m) (t) Jm ( fm
h (t) ) dt dsN.
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The quantity contained in the square bracket in (3.1):

A4Jm11 (c i fm11
h (s) ) Jm (c i fm

h (t) )2Jm11 ( fm11
h (s) ) Jm ( fm

h (t) )

can be bounded by:

NANGNJm (c i fm
h (t) )N QNJm11 (c i fm11

h (s) )2Jm11 ( fm11
h (s) )N

1NJm11 ( fm11
h (s) )N QNJm (c i fm

h (t) )2Jm ( fm
h (t) )N ,

hence, because of (2.12) in ([21], Lemma 3), by:

NJm (c i fm
h (t) )NC1 h 2 sup

am11GsGbm11

ND 2 fl11 (s)N

1NJm11 ( fm11
h (s) )NC2 h 2 sup

amG tGbm

ND 2 fl (t)N .

By assuming the parametrization functions fj of class C 2 (Gj ), we finally ob-
tain:

NANGCh 2 .

The quantity:

lnN c i fm11
h (s)2c i fm

h (t)

fm11
h (s)2 fm

h (t)
N

is uniformly bounded for all values of am11GsGbm11 , amG tGbm (see [21],
(2.13)).

Therefore we have:

E1GC1 h 2 �
am11

bm11

Nf j
(m11) (s)N �

am

bm

NlnNc i fm11
h (s)2c i fm

h (t)V QNf i
(m) (t)Ndt ds

1C2 �
am11

bm11

Nf j
(m11) (s)NNJm11 ( fm11

h (s) )N �
am

bm

Nf i
(m) (t)NNJm ( fm

h (t) )Ndt ds .

(3.2)

Since the first term in (3.2) defines a continuous bilinear form on L 2 (G l)3L 2 (G l11 ),
and each NJ(Q)N is uniformly bounded by a constant, from (3.2) we have:

E1GC1 h 2
Vfj

(m11)
VL 2 (G l11 ) QVfi

(m)
VL 2 (G l )1C2 h 2

Vf j
(m11)

VLQ (am11 , bm11 ) QVf i
(m)

VLQ (am , bm ) ,
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that is:

E1GCh 2 .(3.3)

In the case of the r 21 kernel, i.e., for example, K(s , t)4
n Qr

r 2
, where n is either

nx or ny , we have:

E24N �
em11

fj
(m11) (y) �

em

n Qr

r 2
fi

(m) (x) dG x dG y2 �
em11, h

fj , h
(m11) (y) �

em , h

n Qr

r2
fi , h

(m) (x) dx dyN

4N �
am11

bm11

f j
(m11) (s) �

am

bmk n Qr

r 2 l
s , t

f i
(m) (t) Jm11 (c i fm11

h (s) ) Jm (c i fm
h (t) ) dt ds

2 �
am11

bm11

f j
(m11) (s) �

am

bmk n Qr

r2 l
s , t

f i
(m) (t) Jm11 ( fm11

h (s) ) Jm ( fm
h (t) ) dt dsN,

where [a]s , t denotes the parametrization of a. Then we write:

E24N �
am11

bm11

f j
(m11) (s) �

am

bmk n Qr

r 2 l
s , t

f i
(m) (t)

Q [Jm11 (c i fm11
h (s) ) Jm (c i fm

h (t) )2Jm11 ( fm11
h (s) ) Jm ( fm

h (t) )] dt ds

1 �
am11

bm11

f j
(m11) (s) �

am

bm{k n Qr

r 2 l
s , t

2 k n Qr

r2 l
s , t
} f i

(m) (t) Jm11 ( fm11
h (s) ) Jm ( fm

h (t) ) dt dsN,

and derive, using the same arguments of the ln r case, the bound:

E2GC1 h 2y �
am11

bm11

Nf j
(m11) (s)N �

am

bm

Nk n Qr

r 2 l
s , t

N QNf i
(m) (t)Ndt dsz

1C2y �
am11

bm11

Nf j
(m11) (s)N �

am

bm

Nk n Qr

r 2 l
s , t

2 k n Qr

r 2 l
s , t

N QNf i
(m) (t)Ndt dsz .
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Notice that we also have ([21], Lemma 3):

Nk n Qr

r 2 l
s , t

2 k n Qr

r 2 l
s , t

N4 N(n Qr) r22 (n Qr) r 2 N

r 2 r2

G
Nn QrNr21Nn QrNr 2

r 2 r2
G

c1* NnNr 2 r21c2* NnNr2 r 2

r 2 r2
Gc .

Therefore,

E2GC1 h 2 �
am11

bm11

Nf j
(m11) (s)N �

am

bm

Nk n Qr

r 2 l
s , t

NNf i
(m) (t)Ndt ds

1C2 �
am11

bm11

Nf j
(m11) (s)N �

am

bm

Nf i
(m) (t)Ndt ds .

Finally, as in the ln r case we obtain:

E2GC1* h 2
Vfj

(m11)
VL 2 (G l11 ) QVfi

(m)
VL 2 (G l )1C2* h 2

Vf j
(m11)

VLQ (am11 , bm11 ) QVf i
(m)

VLQ (am , bm ) ,

i.e.,

E24O(h 2 ) .(3.4)

4 - Numerical results

In this section, some significant examples are reported in order to verify the
accuracy of the numerical solution obtained with the integration schemes pro-
posed in [1] and to analyse the error produced by the linearization of two consecu-
tive elements with different parametrizations. In particular, we use different ver-
sions of Galerkin BEM, the classical h-version, which achieves the accuracy by re-
fining the mesh while using low degrees p of elements, the p-version which keeps
the mesh fixed and the accuracy is achieved by increasing the degree p, and the
h2p version which combines both approaches.
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E x a m p l e 1. We consider the following Dirichlet problem: for given u0

�H 1O2 find u satisfying:

˜2 u40 in D22G , u4u0 on G , u4O g 1

NxN
h as NxNKQ(4.1)

where G ia an open arc (smooth piece of a curve) non-intersecting itself.
For problem (4.1), an existence and uniqueness result [22] holds; moreover, it

can be reduced to a weakly singular integral equation of the first kind:

2
1

2p
�

G

Dq(y) lnNx2yNdG y4u0 (x) , x�G .(4.2)

In this example we consider u04
1

4p
ln 2 and G the semi-circular arc ](x1 , x2 ),

x14cos u , x24sin4u , 0EuEp( with the true solution in polar coordinates
([4]):

Dq(u)4
k2

4p
ygtan

u

2
h1/2

1 gcot
u

2
h1/2z .

We have analysed the numerical solution using the h2p version on different geo-
metric decompositions of G. To this end, we have defined a geometric mesh G s

n ,
depending on a parameter s , 0EsE1, on G with nodes:

x1, 04

x1, i4

x1, 2n122 i4

1 ,

cos g p

2
s n112ih ,

2x1, i ,

x2, 04

x2, i4

x2, 2n122 i4

0 ,

sin g p

2
s n112ih ,

x2, i ,

i41, R , n11 ,

i40, R , n .

Denoting with Dq N the computed approximate solution and with:

D(Dq) »42
1

2p
�

G

Dq(y) lnNx2yNdG y

in Table I we present the relative error in energy norm:

VeVD , r »4
VDq2Dq N

VD(G)

VDqVD(G)

4 { au0 , Dq2Dq N bL2 (G)

aD(Dq), DqbL2 (G)

}1/2

(4.3)

for some values of s , n and p, this last parameter being the degree of shape func-
tions we have used. Our numerical experiments confirm the error estimates for
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TABLE I. – The relative error in energy norm (4.3).

s40.0625

p

n42 n44 n46 n48

N VeVD , r N VeVD , r N VeVD , r N VeVD , r

1 7 0.72887E21 11 0.70212E21 15 0.70201E21 19 0.70200E21
2 13 0.37269E21 21 0.33526E21 29 0.33508E21 37 0.335089E21
3 19 0.16995E21 31 0.13192E21 43 0.13175E21 55 0.13174E21
4 25 0.10860E21 41 0.60550E22 57 0.60284E22 73 0.60283E22
5 31 0.69606E22 51 0.23970E22 71 0.24407E22 91 0.24406E22

s40.125

1 7 0.57839E21 11 0.41157E21 15 0.40840E21 19 0.40835E21
2 13 0.34843E21 21 0.17332E21 29 0.16796E21 37 0.16789E21
3 19 0.22099E21 31 0.46290E22 43 0.37585E22 55 0.37432E22
4 25 0.17587E21 41 0.27392E22 57 0.32977E22 73 0.25144E22
5 31 0.14429E21 51 0.11765E22 71 0.24993E22 91 0.33056E22

s40.5

1 7 0.16349E+0 11 0.83058E21 15 0.41712E21 19 0.20936E21
2 13 0.11207E+0 21 0.56374E21 29 0.28128E21 35 0.13856E21
3 19 0.85618E21 31 0.42899E21 43 0.21322E21 53 0.10362E21
4 25 0.69467E21 41 0.34729E21 57 0.17192E21 71 0.82203E22
5 31 0.58484E21 51 0.29185E21 71 0.14380E21 89 0.67357E22

the h2p version for geometric mesh given in [22] for Dirichlet problem:

VDq2Dq N
VHA1/2GCe 2bkN(4.4)

where N is the number of degrees of freedom, C and b are some positive con-
stants depending on s but not on N. In Figure 1, 2 and 3, we compare some of the
previous results in the kN2 lnVeVD , r scale; in particular, Figure 1 (n44) and
Figure 2 (n48) show that the error decays exponentially with increasing degree
p of the shape functions (and therefore, with increasing number N of degrees of
freedom) when the number of grid-points is kept fixed; the speed of convergence
clearly depends on s. Figure 3 shows that when we keep p fixed (p45), and
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Figure 1.

Figure 2.
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Figure 3.

choose for example s40.0625 and s40.125, the rate of convergence is not
exponential; for s40.0625 we obtain the best results.

E x a m p l e 2. This problem involves the solution of the Laplace equation in a
circular domain of radius R subject to the boundary conditions shown in Figure 4.
Note that there is a discontinuity of the solution for the points (R , 0 ) and (R , p).
An analytical solution of the problem can be obtained ([3]) as a Fourier series of
the type:

u(r , u)

u0

4
1

2
12 !

n40

Q 1

(2n11) p
g r

R
h(2n11)

sin (2n11) u .

We have then determined a numerical solution of this problem using the h2p
version of the BEM, on different geometric decompositions of G taking classical
Lagrange polynomials with degree p varying from 1 to 3 as interpolation
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Figure 4. - The problem of Example 2 with the boundary conditions.

functions. We have defined a geometric mesh G s
n (0EsE1) on G with nodes

generated by the following decomposition of the interval [0 , 2p):

t040 ,

ti4
p

2
s n112 i , i41, R , n11 ,

tn111 i4p2 tn112 i , i41, R , n11 ,

t2n121 i4p1
p

2
s n112 i , i41, R , n11 ,

t3n131 i42p2 tn112 i , i41, R , n11 .

Results for some internal points (Figure 5) are compared in Table II for s40.25,
n43, and p41, 2 , 3, assuming u0410 and R42. Since the analytical solution is
expanded as a sine series, it is not capable of predicting the distribution of fluxes.
The boundary fluxes present a singularity; the numerical results, for several
discretizations tend to represent this singularity as shown in Figure 6.
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Figure 5. - Internal points.

TABLE II. – Comparison for some internal points (Figure 5).

s40.25 n43

Point Analytical p41 p42 p43 Point Analytical p41 p42 p43

1 5.0000 5.0000 5.0000 5.0000 9 5.0000 5.0000 5.0000 5.0000

2 6.5596 6.5599 6.5596 6.5596 10 2.5937 2.5924 2.5937 2.5937

3 6.1479 6.1483 6.1479 6.1483 11 2.0483 2.0488 2.0483 2.0483

4 5.0000 5.0000 5.0000 5.0000 12 9.0967 9.0881 9.0967 9.0967

5 3.8521 3.8517 3.8520 3.8521 13 8.7547 8.7596 8.7547 8.7547

6 3.4404 3.4401 3.4404 3.4404 14 5.0000 5.0000 5.0000 5.0000

7 7.9517 7.9512 7.9517 7.9517 15 1.2453 1.2404 1.2452 1.2453

8 7.4063 7.4076 7.4063 7.4063 16 0.9033 0.9119 0.9033 0.9033
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Figure 6. - Results for the radial fluxes.

E x a m p l e 3. Again, in this example the boundary condition provided
everywhere is potential, with the normal gradients as unknowns. Figure 7 shows
the domain employed: its boundary G is formed by four circular arcs, centred

Figure 7. - Domain of Example 3.
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Figure 8. - Numerical approximation of flux on G.

respectively at (1 , 3 ), (21, 3), (1 , 23) and (21, 23), each of radius 3.64. The
potential distribution over the domain is

u(x , y)4 ln ](x22)21 (y22)2(20.51x 22y 2 .

Figure 8 shows, on the four arcs of G, the analytical gradients and the numerical
approximation of the flux obtained with a uniform decomposition of the boundary

Figure 9. - Relative error of Example 3.



202 A. AIMI and M. DILIGENTI [22]

Figure 10. - Example 4: geometry and boundary conditions.

in 32 elements, using linear shape functions. In Figure 9 nodal relative errors
between the exact and the numerical solutions are plotted: here we note that, as it
is obvious, the maximum error occours at the junction point between different
arcs, where we have evaluated the corresponding double integrals substituting
the real boundary with its linear interpolant, and specially where the datum has
greater magnitude; in the middle of each arc, errors are much smaller. Further,

Figure 11. - ! h40.2, p h400.1.
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we observe that using more elements in the decomposition of G does not improve
substantially the numerical result just presented, since the diminishing
integration error is «compensated» by an increasing condition number of the final
linear system, which produces a global approximation error of the same
order.

E x a m p l e 4. In this case the domain V is represented in Fig. 10, and the
Dirichlet data on G are assigned in such a way that the solution (distributed
radially) is

u(r)4u(R1 )1
u0

ln (R2 /R1 )
ln (r/R1 )

where R1 and R2 denote the inner and outer radius, respectively, and u04u(R2 )
2u(R1 ). Figure 11 shows the behaviour of the approximated flux on G, obtained
with a decomposition of the boundary in 40 elements and using linear shape
functions. In the vertex A, B, C, D, we have replaced the consecutive elements em ,
en by their linear interpolants em , h , en , h of length h. We have evaluated numerical
solutions using different values of this parameter h, and we have reporeted in
Figure 11 two of them, corresponding to h40.2 and h40.01. We can observe
that the second solution is better than the first at the corner points, while in the
remaining parts of G, where no approximation of the boundary is introduced, the
two numerical fluxes are comparable.
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A b s t r a c t

In this paper we consider integral equations associated with 2D boundary value
problems defined on domains whose boundary is given by piecewise smooth parametric
representations. Given any (polynomial) local basis, in a previous work ([1]) we have
shown how to compute efficiently all integrals required by the Galerkin method, substitut-
ing the real boundary with short linear interpolants when double integrals are defined on
two consecutive elements with different parametrizations. Here we give estimates for the
error generated by this approximation procedure in weakly singular and Cauchy singu-
lar integrals and analyse numerical examples, not previously shown, dealing with criti-
cal cases.

* * *


