On a bound for the zeros of polynomials defined by special linear recurrences of order $k\left({ }^{(* *}\right)$

1- Introduction

Let $k \geqslant 2$ be an integer. The polynomial sequence of order $k\left\{G_{n}(x)\right\}$ is defined for every $n \geqslant 2$ by the recursion

$$
\begin{equation*}
G_{n}(x)=P_{1}(x) G_{n-1}(x)+P_{2}(x) G_{n-2}(x)+\ldots+P_{k}(x) G_{n-k}(x), \tag{1}
\end{equation*}
$$

where $P_{i}(x)(1 \leqslant i \leqslant k)$ and $G_{j}(x)(2-k \leqslant j \leqslant 1)$ are given polynomials with complex coefficients and $P_{k}(x) G_{1}(x)$ is not equal to the zeropolynomial. If it is necessary then we will use the formula

$$
G_{n}(x)=G_{n}\left(P_{1}(x), P_{2}(x), \ldots, P_{k}(x), G_{2-k}(x), G_{3-k}(x), \ldots, G_{1}(x)\right) .
$$

Recently, some papers have been publicated on the zeros of polynomials defined by second order linear recursions, that is, when $k=2$ in (1). These results are in close relation with the well-known Fibonacci-polynomials $G_{n}(x, 1,0,1)$ [4] and the Chebyshev-polynomials $G_{n}(2 x,-1,0,1)$. For example, M. N. S. Swamy ([8], [9]) and R. André-Jeannin ([2], [3]) have proved explicit formulae for the zeros of polynomials $G_{n}(x+2,-1,1, x+t)$ and $G_{n}(x+p,-q, 1, x+p \pm \sqrt{q})$, where $p \in \boldsymbol{R}, q \in \boldsymbol{R}^{+}$and $t=1,2,3$. Similar, but not explicit, results have been proved in [6] for the polynomials $G_{n}\left(P_{1}(x), P_{2}(x), 0,1\right), G_{n}\left(P_{1}(x), q, c_{0}, c_{1}\right)$ and $G_{n}\left(P_{1}(x), q, c, c p(x)+e\right)$, where $q, c_{0}, c_{1}, c, e \in \boldsymbol{C}$.
(*) Eszterházy Károly Teachers’ Training College, Institute of Mathematics and Informatics, H-3301 Eger, Pf. 43., Hungary. E-mail: matyas@gemini.ektf.hu
(**) Received October 14, 1998. AMS classification 11 B 39, 12 D 10. Research supported by the Hungarian OTKA Foundation, No. T 020295.

Using another method, P. E. Ricci [7] has given a common upper bound for the absolute values of zeros of polynomials $G_{n}(x, 1,1, x+1)$, namely if $G_{n}(x, 1,1, x+1)=0$ then $|x|<2$. We generalized his result in [5], and afterwards it was proved in [6] that if z was a zero of the polynomial $G_{n}\left(a x+b, q^{\prime}, c, d x+e\right)$ with some $n \geqslant 1$, then

$$
\begin{equation*}
|z| \leqslant \frac{1}{|a d|}\left(\max \left(\left|a c \sqrt{q^{\prime}}\right|+|a e-b d|, 2\left|d \sqrt{q^{\prime}}\right|\right)+|b d|\right), \tag{2}
\end{equation*}
$$

where $a, b, c, d, e, q^{\prime} \in \boldsymbol{C}$ and $a q^{\prime} c d \neq 0$.
G. B. Djordjevic [1] has proved an explicit formula for the polynomials $G_{n}(x+p, 0,-q, 0,0,1)(p, q \in \boldsymbol{R}, q \neq 0)$, that is, for the terms of a third order Morgan-Voyce-type polynomial sequence, but that is not a suitable formula even to determine the zeros of these very special polynomials.

The purpose of this paper is to investigate the zeros of polynomials

$$
G_{n}\left(p x+q, 0,0, \ldots, 0, e, a_{2-k}, a_{3-k}, \ldots, a_{0}, r x+s\right),
$$

where $p, q, r, s, a_{j} \in \boldsymbol{C}(2-k \leqslant j \leqslant 0), p r \neq 0, e=1$ or $e=-1$. We are going to construct a common upper bound for the absolute values of zeros of above polynomials, which does not depend on n.

The following theorem will be proved.
Theorem. Let $k \geqslant 2$ be an integer, $p, q, r, s, a_{j} \in \boldsymbol{C}(2-k \leqslant j \leqslant 0)$, $e=1$ or $e=-1, p r \neq 0$. With some $n \geqslant 1$ and $x=z$ complex number, if

$$
G_{n}\left(p x+q, 0,0, \ldots, 0, e, a_{2-k}, a_{3-k}, \ldots, a_{0}, r x+s\right)=0
$$

then

$$
|z| \leqslant \frac{1}{|p r|}\left(\max \left(|p s-r q|+|p| \sum_{j=2-k}^{0}\left|a_{j}\right|, 2|r|\right)+|r q|\right) .
$$

It is obvious, that from the above Theorem one can get (2) if $k=2$ and $q^{\prime}= \pm 1$.

2-Auxiliary results

To prove our Theorem we need some lemmas.
Lemma 1. Let $G_{n}(x)$ be defined by (1), and let $k \geqslant 2$. Then, for every
$n \geqslant 2-k$ and $c \in \boldsymbol{C} \backslash\{0\}$,

$$
\begin{equation*}
G_{n}(x)=c G_{n}^{\star}\left(P_{1}(x), \ldots, P_{k}(x), \frac{G_{2-k}(x)}{c}, \frac{G_{3-k}(x)}{c}, \ldots, \frac{G_{1}(x)}{c}\right) . \tag{3}
\end{equation*}
$$

Proof. It is obvious that (3) holds for every $2-k \leqslant n \leqslant 1$. Let us suppose that (3) holds for $n-k, n+1-k, \ldots, n-1$ if $n \geqslant 2$. By (1) and our induction hipothesis we have

$$
\begin{gathered}
G_{n}(x)=P_{1}(x) G_{n-1}(x)+P_{2}(x) G_{n-2}(x)+\ldots+P_{k}(x) G_{n-k}(x) \\
=P_{1}(x) c G_{n-1}^{\star}(x)+P_{2}(x) c G_{n-2}^{\star}(x)+\ldots+P_{k}(x) c G_{n-k}^{\star}(x) \\
=c\left(P_{1}(x) G_{n-1}^{\star}(x)+P_{2}(x) G_{n-2}^{\star}(x)+\ldots+P_{k}(x) G_{n-k}^{\star}(x)\right)=c G_{n}^{\star}(x) .
\end{gathered}
$$

So, (3) holds for every $n \geqslant 2-k$.
Now, let $\left\{G_{n}(x)\right\}$ be a polynomial sequence satisfying the conditions of the Theorem. Then, substituting

$$
\begin{equation*}
y=p x+q \quad\left(x=\frac{y-q}{p}\right), \tag{4}
\end{equation*}
$$

we have

$$
\begin{align*}
& G_{n}\left(p x+q, 0,0, \ldots, 0, e, a_{2-k}, a_{3-k}, \ldots, a_{0}, r x+s\right) \\
& =G_{n}\left(y, 0,0, \ldots, 0, e, a_{2-k}, a_{3-k}, \ldots, a_{0}, \frac{r}{p} y-\frac{r q-p s}{p}\right), \tag{5}
\end{align*}
$$

which can be easily verified.
For $n \geqslant 2-k$, applying Lemma 1, we have

$$
\begin{align*}
& G_{n}\left(y, 0,0, \ldots, 0, e, a_{2-k}, a_{3-k}, \ldots, a_{0}, \frac{r}{p} y-\frac{r q-p s}{p}\right) \tag{6}\\
& =\frac{r}{p} G_{n}^{\star}\left(y, 0,0, \ldots, 0, e, \alpha_{2-k}, a_{3-k}, \ldots, \alpha_{0}, y-\alpha\right),
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{j}=\frac{p a_{j}}{r} \quad(2-k \leqslant j \leqslant 0) \quad \text { and } \quad \alpha=\frac{r q-p s}{r} . \tag{7}
\end{equation*}
$$

The following step is to determine a matrix \boldsymbol{A}_{n} with the characteristic polyno$\operatorname{mial} G_{n}^{\star}\left(y, 0,0, \ldots, 0, e, \alpha_{2-k}, \alpha_{3-k}, \ldots, \alpha_{0}, y-\alpha\right)$.

Let us consider the $n \times n$ matrix $\boldsymbol{A}_{n}=\left(a_{t, j}\right)$ where $a_{1,1}=\alpha, a_{1, j}=\varepsilon^{j+1} \alpha_{j-k}$ $(2 \leqslant j \leqslant k), a_{j+1, j}=\varepsilon^{3}(1 \leqslant j \leqslant n-1), a_{j, k+j-1}=\varepsilon^{k+1}(2 \leqslant j \leqslant n+1-k)$ and the other entries are equal to 0 . That is,

$$
\boldsymbol{A}_{n}=\left(\begin{array}{cccccccccc}
\alpha & \varepsilon^{3} \alpha_{2-k} & \varepsilon^{4} \alpha_{3-k} & \ldots & \varepsilon^{k+1} \alpha_{0} & 0 & 0 & \ldots & 0 & 0 \tag{8}\\
\varepsilon^{3} & 0 & 0 & \ldots & 0 & \varepsilon^{k+1} & 0 & \ldots & 0 & 0 \\
0 & \varepsilon^{3} & 0 & \ldots & 0 & 0 & \varepsilon^{k+1} & \ldots & 0 & 0 \\
. & . & . & . & . & . & . & . & . & . \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & \varepsilon^{3} & 0
\end{array}\right)
$$

where $\varepsilon=-1$ if $e=-1$ and $\varepsilon=-i$ if $e=1$.
We prove that the matrix \boldsymbol{A}_{n} has the expected property.
Lemma 2. For every $n \geqslant 1$, the characteristic polynomial of \boldsymbol{A}_{n} is the polynomial $G_{n}^{\star}(y)=G_{n}^{\star}\left(y, 0,0, \ldots, 0, e, \alpha_{2-k}, \alpha_{3-k}, \ldots, \alpha_{0}, y-\alpha\right)$.

Proof. Denote the characteristic polynomial of matrix \boldsymbol{A}_{n} by $f_{n}(y)$. It is known that $f_{n}(y)=\operatorname{det}\left(y \boldsymbol{I}_{n}-\boldsymbol{A}_{n}\right)$, where \boldsymbol{I}_{n} is the $n \times n$ unit matrix. Because of the entries of matrix \boldsymbol{A}_{n}, we need to separate the proof into the cases $1 \leqslant n \leqslant k$ and $n>k$.

First we consider the case $1 \leqslant n \leqslant k$. Then, for $n=1 f_{1}(y)=\operatorname{det}\left(y \boldsymbol{I}_{1}-\boldsymbol{A}_{1}\right)$ $=y-\alpha=G_{1}^{\star}(y)$. If $n=2$ or 3 , then we have

$$
\begin{gathered}
f_{2}(y)=\left|\begin{array}{cc}
y-\alpha & -\varepsilon^{3} \alpha_{2-k} \\
-\varepsilon^{3} & y
\end{array}\right|=y(y-\alpha)-\varepsilon^{6} \alpha_{2-k} \\
=y G_{1}^{\star}(y)+e G_{2-k}^{\star}(y)=G_{2}^{\star}(y)
\end{gathered}
$$

and

$$
\begin{gathered}
f_{3}(y)=\left|\begin{array}{ccc}
y-\alpha & -\varepsilon^{3} \alpha_{2-k} & -\varepsilon^{4} \alpha_{3-k} \\
-\varepsilon^{3} & y & 0 \\
0 & -\varepsilon^{3} & y
\end{array}\right| \\
=y f_{2}(y)-\varepsilon^{4} \alpha_{3-k} \varepsilon^{6}=y G_{2}^{\star}(y)-\varepsilon^{2} \alpha_{3-k}=y G_{2}^{\star}(y)+e G_{3-k}^{\star}(y)=G_{3}^{\star}(y) .
\end{gathered}
$$

Suppose that $f_{n-j}(y)=G_{n-j}^{\star}(y)(j=1,2,3)$ holds for an integer n, where
$4 \leqslant n<k$. Then, developing the determinant

$$
\begin{gathered}
\operatorname{det}\left(y \boldsymbol{I}_{n}-\boldsymbol{A}_{n}\right) \\
=\left|\begin{array}{cccccc}
y-\alpha & -\varepsilon^{3} \alpha_{2-k} & -\varepsilon^{4} \alpha_{3-k} & \ldots & -\varepsilon^{n} \alpha_{n-1-k} & -\varepsilon^{n+1} \alpha_{n-k} \\
-\varepsilon^{3} & y & 0 & \ldots & 0 & 0 \\
0 & -\varepsilon^{3} & y & \ldots & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \ldots & -\varepsilon^{3} & y
\end{array}\right|
\end{gathered}
$$

with respect to the last column, we have

$$
\begin{aligned}
& f_{n}(y)=\operatorname{det}\left(y \mathbf{I}_{n}-\boldsymbol{A}_{n}\right)=y f_{n-1}(y)-(-1)^{n+1} \varepsilon^{n+1} \alpha_{n-k}\left(-\varepsilon^{3}\right)^{n-1} \\
= & y G_{n-1}^{\star}(y)+(-1)^{2 n+1} \varepsilon^{4 n-2} \alpha_{n-k}=y G_{n-1}^{\star}(y)+e G_{n-k}^{\star}(y)=G_{n}^{\star}(y) .
\end{aligned}
$$

That is, Lemma 2 holds for every n, if $1 \leqslant n \leqslant k$.
Now, we shall deal with the case $n>k$. If $n=k+1$ then

$$
\begin{aligned}
& f_{k+1}(y)=\left|\begin{array}{cccccc}
y-\alpha & -\varepsilon^{3} \alpha_{2-k} & -\varepsilon^{4} \alpha_{3-k} & \ldots & -\varepsilon^{k+1} \alpha_{0} & 0 \\
-\varepsilon^{3} & y & 0 & \ldots & 0 & -\varepsilon^{k+1} \\
0 & -\varepsilon^{3} & y & \ldots & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \ldots & -\varepsilon^{3} & y
\end{array}\right| \\
& =y f_{k}(y)+\varepsilon^{3}\left|\begin{array}{cccccc}
y-\alpha & -\varepsilon^{3} \alpha_{2-k} & -\varepsilon^{4} \alpha_{3-k} & \ldots & -\varepsilon^{k} \alpha_{-1} & 0 \\
-\varepsilon^{3} & y & 0 & \ldots & 0 & -\varepsilon^{k+1} \\
0 & -\varepsilon^{3} & y & \cdots & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \cdots & -\varepsilon^{3} & 0
\end{array}\right| .
\end{aligned}
$$

Developing successively the resulting determinants with respect to their last row, we have

$$
f_{k+1}(y)=y f_{k}(y)+\left(\varepsilon^{3}\right)^{k-1}\left|\begin{array}{cc}
y-\alpha & 0 \\
-\varepsilon^{3} & -\varepsilon^{k+1}
\end{array}\right|
$$

$$
=y G_{k}^{\star}(y)-\varepsilon^{3 k-3} \varepsilon^{k+1}(y-\alpha)=y G_{k}^{\star}(y)+e G_{1}^{\star}(y)=G_{k+1}^{\star}(y)
$$

Let us suppose that $f_{n-j}(y)=G_{n-j}^{\star}(y)(1 \leqslant j \leqslant k)$ holds for an integer $n \geqslant k+2$. In this case, by (8),

$$
\left.\begin{aligned}
& f_{n}(y)=\left|\begin{array}{ccccccccc}
y-\alpha & -\varepsilon^{3} \alpha_{2-k} & \ldots & -\varepsilon^{k+1} \alpha_{0} & 0 & 0 & \ldots & 0 & 0 \\
-\varepsilon^{3} & y & \ldots & 0 & -\varepsilon^{k+1} & 0 & \ldots & 0 & 0 \\
0 & -\varepsilon^{3} & \ldots & 0 & 0 & -\varepsilon^{k+1} & \ldots & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & . & . & . & . \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots & -\varepsilon^{3} & y
\end{array}\right| \\
& =y f_{n-1}(y)+\varepsilon^{3}\left|\begin{array}{ccccccc}
y-\alpha & -\varepsilon^{3} \alpha_{2-k} & \ldots & -\varepsilon^{k+1} \alpha_{0} & 0 & \ldots & 0 \\
0 \\
-\varepsilon^{3} & y & \ldots & 0 & -\varepsilon^{k+1} & \ldots & 0 \\
0 & -\varepsilon^{3} & \ldots & 0 & 0 & \ldots & 0 \\
0 \\
\cdot & \cdot & \cdot & . & . & . & \cdot \\
0 \\
0 & 0 & \ldots & 0 & 0 & \ldots & -\varepsilon^{3}
\end{array}\right|
\end{aligned} \right\rvert\, .
$$

Now, develop successively the resulting determinants with respect to their last row. Then one can get the following equalities:

$$
\begin{gathered}
f_{n}(y)=y f_{n-1}(y)+\left(\varepsilon^{3}\right)^{k-1}\left(-\varepsilon^{k+1}\right) f_{n-k}(y) \\
=y G_{n-1}^{\star}(y)-\varepsilon^{2} G_{n-k}(y)=y G_{n-1}^{\star}(y)+e G_{n-k}(y)=G_{n}^{\star}(y)
\end{gathered}
$$

This completes the proof of Lemma 2.

3-Proof of the Theorem

Using our lemmas the Theorem can already be proved. According to (5), (6) and (7)

$$
\begin{aligned}
& G_{n}\left(p x+q, 0,0, \ldots, 0, e, a_{2-k}, a_{3-k}, \ldots, a_{0}, r x+s\right) \\
& =\frac{r}{p} G_{n}^{\star}\left(y, 0,0, \ldots, 0, e, \alpha_{2-k}, \alpha_{3-k}, \ldots, \alpha_{0}, y-\alpha\right)
\end{aligned}
$$

holds for every $n \geqslant 2-k$. Since, by Lemma $2, G_{n}^{\star}(y)$ is the characteristic polynomial of matrix \boldsymbol{A}_{n}, therefore the zeros of polynomial G_{n}^{\star} are equal to the eigenvalues of matrix \boldsymbol{A}_{n}. Applying the Gershgorin's theorem, we have that these eigen-
values can be found in the set $C_{1} \cup C_{2}$, where

$$
C_{1}=\left\{\omega: \omega \in \boldsymbol{C},|\omega-\alpha| \leqslant \sum_{j=2-k}^{0}\left|\alpha_{j}\right|\right\}
$$

and

$$
C_{2}=\{\omega: \omega \in \boldsymbol{C},|\omega| \leqslant 2\}
$$

These sets C_{1} and C_{2} are called Gershgorin circles (It is sufficient to consider only these two Gershgorin circles, because the other ones are parts of the set C_{1} or C_{2}.) Thus, if a complex number $y=\varrho$ is a zero of the polynomial $G_{n}^{\star}(y)$ with some $n \geqslant 1$, then

$$
\begin{equation*}
|\varrho| \leqslant \max \left(|\alpha|+\sum_{j=2-k}^{0}\left|\alpha_{j}\right|, 2\right) . \tag{9}
\end{equation*}
$$

Applying (7), we have

$$
\begin{equation*}
|\varrho| \leqslant \max \left(\frac{|p s-r q|}{|r|}+\sum_{j=2-k}^{0} \frac{\left|p a_{j}\right|}{|r|}, 2\right) \tag{10}
\end{equation*}
$$

and hence, by (4), the following inequality can be obtained for any zero $x=z(z$ $=(\varrho-q) / p)$ of the polynomial $G_{n}(x)$.

$$
\begin{gathered}
|z| \leqslant \frac{|\varrho|+|q|}{|p|} \leqslant \frac{\max \left(\frac{|p s-r q|}{|r|}+\sum_{j=2-k}^{0} \frac{\left|p a_{j}\right|}{|r|}, 2\right)+|q|}{|p|}= \\
\frac{1}{|p r|}\left(\max \left(|p s-r q|+|p| \sum_{j=2-k}^{0}\left|a_{j}\right|, 2|r|\right)+|r q|\right) .
\end{gathered}
$$

The proof of the Theorem is complete.

References

[1] G. B. Djordjevic, On a Generalization of a Class of Polynomials, Fibonacci Quart. 36.2 (1998), 110-117.
[2] R. André-Jeannin, A Note on the General Class of Polynomials, Fibonacci Quart. 32.5 (1994), 445-454.
[3] R. André-Jeannin, A Note on the General Class of Polynomials Part II, Fibonacci Quart. 33.4 (1995), 341-351.
[4] F. MÁTYÁs, Real roots of Fibonacci-like polynomials, Number Theory, Eds. Györy/Pethö/Sós, Walter de Gruyter GmbH \& Co., Berlin, New York 1998, 361-370.
[5] F. MÁtyás, Bounds for the Zeros of Fibonacci-like Polynomials, Acta Academiae Paedagogicae Agriensis Sectio Matematicae 25 (1998) (to appear).
[6] F. MÁtyás, Location of the zeros of polynomials defined by linear recursions, Publicationes Mathematicae Debrecen (to appear).
[7] P. E. Ricci, Generalized Lucas polynomials and Fibonacci polynomials, Riv. Mat. Univ. Parma (5) 4 (1995), 137-146.
[8] M. N. S. Swamy, Further Properties of the Polynomials Defined by MorganVoyce, Fibonacci Quart. 6.5 (1968), 166-175.
[9] M. N. S. Swamy, On a Class of Generalized Polynomials, Fibonacci Quart. 35.4 (1997), 329-334.

Abstract

Let $k \geqslant 2$ be an integer, while let $G_{j}(x)=a_{j} \in \boldsymbol{C}(2-k \leqslant j \leqslant 0)$ and $p x+q, G_{1}(x)=r x+s$ be given polynomials of x with complex coefficients, where $p r \neq 0$. For $n \geqslant 2$ the sequence $\left\{G_{n}(x)\right\}$ is defined by the following recursion of order k.

$$
G_{n}(x)=(p x+q) G_{n-1}(x)+e G_{n-k}(x), \text { where } e=1 \text { or } e=-1
$$

We prove that the absolute values of the zeros of polynomials $G_{n}(x)(n \geqslant 1)$ have a common upper bound, which depends only on $a_{j}(2-k \leqslant j \leqslant 0), p, q$, r and s. Namely, if $G_{n}(z)$ $=0$ for $a z \in \boldsymbol{C}$ with some $n \geqslant 1$ then

$$
|z| \leqslant \frac{1}{|p r|}\left(\max \left(|p s-r q|+|p| \sum_{j=2-k}^{0}\left|a_{j}\right|, 2|r|\right)+|r q|\right) .
$$

This result extends and generalizes some earlier results presented in [5], [6] and [7] for the case $k=2$.

