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On a bound for the zeros of polynomials

defined by special linear recurrences of order k (**)

1 - Introduction

Let kF2 be an integer. The polynomial sequence of order k ]Gn (x)( is de-
fined for every nF2 by the recursion

Gn (x)4P1 (x) Gn21 (x)1P2 (x) Gn22 (x)1R1Pk (x) Gn2k (x) ,(1)

where Pi (x) (1G iGk) and Gj (x) (22kG jG1) are given polynomials with com-
plex coefficients and Pk (x) G1 (x) is not equal to the zeropolynomial. If it is
necessary then we will use the formula

Gn (x)4Gn (P1 (x), P2 (x), R , Pk (x), G22k (x), G32k (x), R , G1 (x) ) .

Recently, some papers have been publicated on the zeros of polynomials de-
fined by second order linear recursions, that is, when k42 in (1). These results
are in close relation with the well-known Fibonacci-polynomials Gn (x , 1 , 0 , 1 ) [4]
and the Chebyshev-polynomials Gn (2x , 21, 0 , 1 ). For example, M. N. S. Swamy
([8], [9]) and R. André-Jeannin ([2], [3]) have proved explicit formulae for the ze-
ros of polynomials Gn (x12, 21, 1 , x1 t) and Gn (x1p , 2q , 1 , x1p6kq),
where p�R, q�R1 and t41, 2 , 3. Similar, but not explicit, results have been
proved in [6] for the polynomials Gn (P1 (x), P2 (x), 0 , 1 ), Gn (P1 (x), q , c0 , c1 ) and
Gn (P1 (x), q , c , cp(x)1e ), where q , c0 , c1 , c , e�C.
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Using another method, P. E. Ricci [7] has given a common upper bound
for the absolute values of zeros of polynomials Gn (x , 1 , 1 , x11), namely if
Gn (x , 1 , 1 , x11)40 then NxNE2. We generalized his result in [5], and
afterwards it was proved in [6] that if z was a zero of the polynomial
Gn (ax1b , q 8 , c , dx1e) with some nF1, then

NzNG
1

NadN
(max (Nackq 8N1Nae2bdN , 2Ndkq 8N)1NbdN) ,(2)

where a , b , c , d , e , q 8�C and aq 8 cdc0.
G. B. Djordjevic [1] has proved an explicit formula for the polynomials

Gn (x1p , 0 , 2q , 0 , 0 , 1 ) (p , q�R , qc0), that is, for the terms of a third order
Morgan–Voyce-type polynomial sequence, but that is not a suitable formula even
to determine the zeros of these very special polynomials.

The purpose of this paper is to investigate the zeros of polynomials

Gn (px1q , 0 , 0 , R , 0 , e , a22k , a32k , R , a0 , rx1s),

where p , q , r , s , aj�C (22kG jG0), prc0, e41 or e421. We are going to
construct a common upper bound for the absolute values of zeros of above polyno-
mials, which does not depend on n.

The following theorem will be proved.

T h e o r e m . Let kF2 be an integer, p , q , r , s , aj�C (22kG jG0), e41 or
e421, prc0. With some nF1 and x4z complex number, if

Gn (px1q , 0 , 0 , R , 0 , e , a22k , a32k , R , a0 , rx1s)40

then

NzNG
1

NprN
gmax gNps2rqN1NpN !

j422k

0

Naj N , 2NrNh1NrqNh .

It is obvious, that from the above Theorem one can get (2) if k42 and
q 8461.

2 - Auxiliary results

To prove our Theorem we need some lemmas.

L e m m a 1. Let Gn (x) be defined by (1), and let kF2. Then, for every
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nF22k and c�C0]0(,

Gn (x)4cGn
xgP1 (x), R , Pk (x),

G22k (x)

c
,

G32k (x)

c
, R ,

G1 (x)

c
h.(3)

P r o o f . It is obvious that (3) holds for every 22kGnG1. Let us suppose
that (3) holds for n2k , n112k , R , n21 if nF2. By (1) and our induction
hipothesis we have

Gn (x)4P1 (x) Gn21 (x)1P2 (x) Gn22 (x)1R1Pk (x) Gn2k (x)

4P1 (x) cGn21
x (x)1P2 (x) cGn22

x (x)1R1Pk (x) cGn2k
x (x)

4c (P1 (x) Gn21
x (x)1P2 (x) Gn22

x (x)1R1Pk (x) Gn2k
x (x) )4cGn

x (x).

So, (3) holds for every nF22k.

Now, let ]Gn (x)( be a polynomial sequence satisfying the conditions of the
Theorem. Then, substituting

y4px1q gx4 y2q

p
h ,(4)

we have

Gn (px1q , 0 , 0 , R , 0 , e , a22k , a32k , R , a0 , rx1s)

4Gngy , 0 , 0 , R , 0 , e , a22k , a32k , R , a0 ,
r

p
y2

rq2ps

p
h ,

(5)

which can be easily verified.
For nF22k, applying Lemma 1, we have

Gngy , 0 , 0 , R , 0 , e , a22k , a32k , R , a0 ,
r

p
y2

rq2ps

p
h

4
r

p
Gn

x (y , 0 , 0 , R , 0 , e , a 22k , a 32k , R , a 0 , y2a) ,

(6)

where

a j4
paj

r
(22kG jG0) and a4

rq2ps

r
.(7)
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The following step is to determine a matrix An with the characteristic polyno-
mial Gn

x (y , 0 , 0 , R , 0 , e , a 22k , a 32k , R , a 0 , y2a).
Let us consider the n3n matrix An4 (at , j ) where a1, 14a, a1, j4e j11 a j2k

(2G jGk), aj11, j4e 3 (1G jGn21), aj , k1 j214e k11 (2G jGn112k) and
the other entries are equal to 0. That is,

(8) An4

.
`
`
`
´

a

e 3

0

Q

0

e 3 a 22k

0

e 3

Q

0

e 4 a 32k

0

0

Q

0

R

R

R

Q

R

e k11 a 0

0

0

Q

0

0

e k11

0

Q

0

0

0

e k11

Q

0

R

R

R

Q

R

0

0

0

Q

e 3

0

0

0

Q

0

ˆ
`
`
`
˜

,

where e421 if e421 and e42i if e41.
We prove that the matrix An has the expected property.

L e m m a 2. For every nF1, the characteristic polynomial of An is the poly-
nomial Gn

x (y)4Gn
x (y , 0 , 0 , R , 0 , e , a 22k , a 32k , R , a 0 , y2a).

P r o o f . Denote the characteristic polynomial of matrix An by fn (y). It is
known that fn (y)4 det (yIn2An ), where In is the n3n unit matrix. Because of
the entries of matrix An , we need to separate the proof into the cases 1GnGk
and nDk.

First we consider the case 1GnGk. Then, for n41 f1 (y)4 det (yI12A1 )
4y2a4G1

x (y). If n42 or 3, then we have

f2 (y)4
N
N
N

y2a

2e 3

2e 3 a 22k

y

N
N
N
4y(y2a)2e 6 a 22k

4yG1
x (y)1eG22k

x (y)4G2
x (y)

and

f3 (y)4
N
N
N

y2a

2e 3

0

2e 3 a 22k

y

2e 3

2e 4 a 32k

0

y

N
N
N

4yf2 (y)2e 4 a 32k e 64yG2
x (y)2e 2 a 32k4yG2

x (y)1eG32k
x (y)4G3

x (y).

Suppose that fn2 j (y)4Gn2 j
x (y) ( j41, 2 , 3 ) holds for an integer n, where
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4GnEk. Then, developing the determinant

det (yIn2An )

4

N
N
N

y2a

2e 3

0

Q

0

2e 3 a 22k

y

2e 3

Q

0

2e 4 a 32k

0

y

Q

0

R

R

R

Q

R

2e n a n212k

0

0

Q

2e 3

2e n11 a n2k

0

0

Q

y

N
N
N

with respect to the last column, we have

fn (y)4det (yIn2An )4yfn21 (y)2 (21)n11 e n11 a n2k (2e 3 )n21

4yGn21
x (y)1 (21)2n11 e 4n22 a n2k4yGn21

x (y)1eGn2k
x (y)4Gn

x (y).

That is, Lemma 2 holds for every n, if 1GnGk.
Now, we shall deal with the case nDk. If n4k11 then

fk11 (y)4

N
N
N

y2a

2e 3

0

Q

0

2e 3 a 22k

y

2e 3

Q

0

2e 4 a 32k

0

y

Q

0

R

R

R

Q

R

2e k11 a 0

0

0

Q

2e 3

0

2e k11

0

Q

y

N
N
N

4yfk (y)1e 3

N
N
N

y2a

2e 3

0

Q

0

2e 3 a 22k

y

2e 3

Q

0

2e 4 a 32k

0

y

Q

0

R

R

R

Q

R

2e k a 21

0

0

Q

2e 3

0

2e k11

0

Q

0

N
N
N

.

Developing successively the resulting determinants with respect to their last row,
we have

fk11 (y)4yfk (y)1 (e 3 )k21NN
N

y2a

2e 3

0

2e k11

N
N
N
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4yGk
x (y)2e 3k23 e k11 (y2a)4yGk

x (y)1eG1
x (y)4Gk11

x (y).

Let us suppose that fn2 j (y)4Gn2 j
x (y) (1G jGk) holds for an integer

nFk12. In this case, by (8),

fn (y)4

N
N
N

y2a

2e 3

0

Q

0

2e 3 a 22k

y

2e 3

Q

0

R

R

R

Q

R

2e k11 a 0

0

0

Q

0

0

2e k11

0

Q

0

0

0

2e k11

Q

0

R

R

R

Q

R

0

0

0

Q

2e 3

0

0

0

Q

y

N
N
N

4yfn21 (y)1e 3

N
N
N

y2a

2e 3

0

Q

0

2e 3 a 22k

y

2e 3

Q

0

R

R

R

Q

R

2e k11 a 0

0

0

Q

0

0

2e k11

0

Q

0

R

R

R

Q

R

0

0

0

Q

2e 3

0

0

0

Q

0

N
N
N

.

Now, develop successively the resulting determinants with respect to their last
row. Then one can get the following equalities:

fn (y)4yfn21 (y)1 (e 3 )k21 (2e k11 ) fn2k (y)

4yGn21
x (y)2e 2 Gn2k (y)4yGn21

x (y)1eGn2k (y)4Gn
x (y).

This completes the proof of Lemma 2.

3 - Proof of the Theorem

Using our lemmas the Theorem can already be proved. According to (5), (6)
and (7)

Gn (px1q , 0 , 0 , R , 0 , e , a22k , a32k , R , a0 , rx1s)

4
r

p
Gn

x (y , 0 , 0 , R , 0 , e , a 22k , a 32k , R , a 0 , y2a)

holds for every nF22k. Since, by Lemma 2, Gn
x (y) is the characteristic polyno-

mial of matrix An , therefore the zeros of polynomial Gn
x are equal to the eigenval-

ues of matrix An . Applying the Gershgorin’s theorem, we have that these eigen-
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values can be found in the set C1NC2, where

C14 mv : v�C , Nv2aNG !
j422k

0

Na j Nn
and

C24]v : v�C , NvNG2( .

These sets C1 and C2 are called Gershgorin circles (It is sufficient to consider only
these two Gershgorin circles, because the other ones are parts of the set C1 or
C2 .) Thus, if a complex number y4r is a zero of the polynomial Gn

x (y) with some
nF1, then

NrNGmax gNaN1 !
j422k

0

Na j N , 2h .(9)

Applying (7), we have

NrNGmax g Nps2rqN

NrN
1 !

j422k

0 Npaj N

NrN
, 2h(10)

and hence, by (4), the following inequality can be obtained for any zero x4z (z
4 (r2q) /p ) of the polynomial Gn (x).

NzNG
NrN1NqN

NpN
G

max g Nps2rqN

NrN
1 !

j422k

0 Npaj N

NrN
, 2h1NqN

NpN
4

1

NprN
gmax gNps2rqN1NpN !

j422k

0

Naj N , 2NrNh1NrqNh.
The proof of the Theorem is complete.
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[5] F. MÁTYÁS, Bounds for the Zeros of Fibonacci-like Polynomials, Acta Academiae
Paedagogicae Agriensis Sectio Matematicae 25 (1998) (to appear).
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A b s t r a c t

Let kF2 be an integer, while let Gj(x)4aj�C (22kGjG0) and px1q , G1(x)4rx1s
be given polynomials of x with complex coefficients, where prc0. For nF2 the sequence
]Gn(x)( is defined by the following recursion of order k.

Gn(x)4 (px1q)Gn21(x)1eGn2k(x), where e41 or e421.

We prove that the absolute values of the zeros of polynomials Gn(x) (nF1) have a com-
mon upper bound, which depends only on aj (22kGjG0), p , q , r and s. Namely, if Gn(z)
40 for a z�C with some nF1 then

NzNG
1

NprN
gmax gNps2rqN1NpN !

j422k

0

Naj N , 2NrNh1NrqNh .

This result extends and generalizes some earlier results presented in [5], [6] and [7] for the
case k42.

* * *


