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A dissipative boundary condition in Electromagnetism:

existence, uniqueness and asymptotic stability (**)

1 - Introduction

Let us consider an electromagnetic system, occupying a spatial region V and
regard its boundary as a conductor. A boundary condition with memory has been
introduced in [1], in order to prove the existence, uniqueness and asymptotic sta-
bility of the solution of Maxwell’s equations. The magnetic field on the boundary
is expressed through a functional on the history of the electric field.

For time-harmonic dependence, the tangential electric and magnetic fields are
linked by the relation

E(x , v)4h(x , v) H(x , v)3n(x) , x�¯V ,(1.1)

where v represents the angular frequence, n is the unit outward normal to ¯V

and h is a suitable scalar which describes the conductivity feature of the bound-
ary, usually given by

h(v)4o m(v)

e(v)1 is (v) /v
.
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Letting vKQ, the previous equation gives Graffi’s condition

lim
vKQ

h(v)4o m

e
.

For good conductors we can neglect ve in comparison with s, thus obtaining
Schelkunoff’s relation [5]

h(v)4 (11 i) o mv

2s
.(1.2)

In [1] Fabrizio and Morro provide a generalization of the condition (1.1) for
fields with arbitrary temporal dependence, introducing a hereditary model de-
scribed by the boundary condition

E(x , t)4l 0 (x) H(x , t)3n(x)1�
0

Q

l(x , s) Ht (x , s)3n(x) ds , x�¯V .(1.3)

Under the only hypothesis that l(x , Q)�L 1 (R1 ), which ensures the property of
fading memory, they prove that, when time-harmonic fields are considered, (1.3)
reduces to (1.1) with

h(x , v)4l 0 (x)1�
0

Q

l(x , s) e ivs ds .

Thus h(x , v) satisfies Graffi’s condition

lim
vKQ

h(x , v)4l 0 (x) .

In this paper we consider a boundary condition with memory like (1.3) in
which the kernel l(x , s) is such that h(v) satisfies Schelkunoff’s condition (1.2),
namely

lim
vKQ

h(v)4Q .

Such different assumptions on the memory kernel cause some difficulties in deal-
ing with the asymptotic behaviour of the solution.

Moreover we assume that the boundary condition agrees with the dissipation
principle of electromagnetic energy. Thus, in analogy with [1], we give the ther-
modynamic restrictions on the memory kernel which characterize a dissipative
boundary.
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The main part of the paper is devoted to the differential problem obtained
from Maxwell’s equations. In 4 we introduce the functional spaces which allow to
define the weak solution of the problem. By introducing the concept of boundary
free energy, we prove an existence and uniqueness theorem for the weak solution
in the bounded domain Q4V3 (0 , T).

Finally, in last Section, we prove a theorem of existence and uniqueness by let-
ting TKQ and we show that the weak solution is asymptotically stable if the
sources satisfy suitable hypotheses of decay.

2 - Boundary condition

The behaviour of an electromagnetic system in a connected region V%R3 is
described by Maxwell’s equations

¯D

¯t
4˜3H2J , ˜ QD4r ,(2.1)

¯B

¯t
42˜3E , ˜ QB40 .(2.2)

The material occupying V is supposed to be linear, namely described by the
constitutive equations

D(x , t)4e(x) E(x , t) ,

B(x , t)4m(x) H(x , t) ,

where 0Ee mGe(x)Ge M , 0Em mGm(x)Gm M . Moreover, for formal simplicity,
we let the charge density r vanish. The electric density of current J is given by
the sum of a term due to the conduction feature of the material and a term due to
external sources, namely

J4sE1Jf ,

where Jf is regarded as a known function of x and t .
For greater generality, we introduce another source, called magnetic current,

If and consider it as an assigned function. These hypotheses allow to rewrite the
system (2.1)-(2.2) in the form

eE
.
4˜3H2sE2Jf ˜ QeE40(2.3)

mH
.
42˜3E1If , ˜ QmH40 .(2.4)
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The previous equations must be completed by suitable initial conditions:

E(x , 0 )4E0 (x) ,

H(x , 0 )4H0 (x) .

Moreover, denoting by

E×t (x , s)4 �
t2s

t

E(x , j) dj

the «integral history» of the electric field E, we assume a boundary condi-
tion

D e f i n i t i o n 2.1. The boundary condition

S%L 2 (0 , T , H 1 (V) )3L 2 (0 , T , H 1 (V) )

is a set of fields (E , H) such that

H(x , t)3n(x)4�
0

Q

l 8 (x , s) E×t (x , s) ds x�¯V(2.5)

where E×t (x , Q)�L Q (0 , Q), l 8�C (V ; L 1 (0 , Q) ) and sl 8 (x , Q)�L 1 (0 , Q). The
dual boundary condition of S , henceforth denoted by S*%L 2 (0 , T , H 1 (V) )
3L 2 (0 , T , H 1 (V) ) is a set of fields (e , h)�S* such that

�
0

T

�
¯V

[e(x , t)3H(x , t) Qn(x)1E(x , t)3h(x , t) Qn(x) ] da dt40

for each E , H�S .

Note that in the definition (2.5) the initial integral history E×0 must be regarded
as known and for simplicity it will be assumed E×040.

If we consider time-harmonic fields in which the dependence on the angular
frequence v is given by e 2ivt , the constitutive equation (2.5) is expected to be

E(x , v)4h(x , v) H(x , v)3n(x) .(2.6)
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Indeed by substituting the representations

E(x , v)4E0 (x) e 2ivt ,

H(x , v)4H0 (x) e 2ivt ,

in (2.5) we obtain the identity

H(x , v)3n(x)4
E(x , v)

iv
�

0

Q

l 8 (x , s)(e ivs21) ds .(2.7)

In this way, comparison between (2.6) and (2.7) yields

h21 (x , v)4
1

iv
�

0

Q

l 8 (x , s)(e ivs21) ds .

According to the hypotheses about the kernel l 8 , it follows that h approaches
zero as vK0. This is coherent with the static boundary condition

E(x)3n(x)40 .

Concerning the dissipativity of the boundary, we give the following

D e f i n i t i o n 2.2. A boundary condition is called locally dissipative if

�
0

d

E(x , t) QH(x , t)3n(x) dtF0(2.8)

holds for every cycle of period d and x�¯V .

The following theorem ensures a necessary and sufficient condition for the
dissipativity of the boundary.

T h e o r e m 2.1. The boundary condition (2.5) is locally dissipative if and
only if

�
0

Q

l 8 (x , s) sin vs dsF0 , (x�V , v�R1 .(2.9)

P r o o f . In order to prove that the condition (2.9) is necessary, it suffices to
consider the periodic field E(x , t)4E0 (x) cos vt with period d42p/v . In this
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way, we obtain

0G�
0

d

E(x , t) QH(x , t)3n(x) dt

4E0
2 (x)�

0

d

cos vt�
0

Q

l 8 (x , s) �
t2s

t

cos vj dj ds dt .

By integrating with respect to j and t , from the previous inequality it fol-
lows

E0
2 (x)

v 2
�

0

Q

l 8 (x , s) sin vs dsF0 .

To show the sufficiency, we expand a generic periodic field in a Fourier
series

E(t)4 !
k41

Q

Ak cos kvt1Bk sin kvt .

Substitution in (2.7) yields the identity

�
0

d

E(t) QH(t)3n dt4
p

v
!

k41

Q Ak
21Bk

2

k
�

0

Q

l 8 (t) sin kvt dt .

The inequality (2.9) implies that each term of the series is positive. Hence (2.8)
holds. r

3 - Boundary free energy

In this section we define a functional, henceforth called boundary free energy,
c×: DKR1 , where D is a subset of the history space, such that
L Q (0 , Q , L 2 (¯V) )%D . The boundary free energy assigns to each history E×t the
positive value c(t) »4c×(E×t ) such that for each t� (0 , T)

c
.
(t)GE(t) QH(t)3n ,(3.1)

where H(x)3n is expressed in terms of E×t by (2.5).
The definition of the functional c is not unique: here we exhibit two possible
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choices, namely

c 1 (t)4
1

2
�

0

Q

l 8 (s)NE×t (s)N2 ds ,

c 2 (t)42
1

2
�

0

Q

�
0

Q

l 12 (Nu12u2 N) E×t (u1 ) QE×t (u2 ) du1 du2 ,

where l 12 (Nu12u2 N) »4 (¯2 lO¯u1 ¯u2 )(Nu12u2 N).
The former needs some more hypotheses about the kernel l 8, the latter re-

quires only the assumptions given in Section 2.
It’s clear that the positiveness of l 8 is a sufficient condition in order that c 1

may be positive valued. To verify the estimate (3.1), we assume that the second
derivative l 9 (s) exists and satisfies l 9 (s)G0 for each s�R1.

Consider the identity

c
.

1 (t)4E(t) Q�
0

Q

l 8 (s) E×t (s) ds2�
0

Q

l 8 (s) E×t (s) QE(t2s) ds .

Keeping (2.5) into account and integrating by parts, we obtain

c
.

1 (t)GE(t) QH(t)3n .

Concerning c 2 , we observe that, owing to the identity

l 12 (Nu12u2 N)42 l 9 (Nu12u2 N)22l 8 (Nu12u2 N) d(u12u2 )

we can write c 2 in the equivalent form

c 2 (t)42 �
0

Q

E×t (u1 ) Q�
0

u1

[l 9 (u12u2 )1l 8 (0) d(u12u2 ) ] E×t (u2 ) du1 du2 .

Therefore the application of Parseval-Plancherel theorem gives

c 2 (t)4
1

p
�

2Q

1Q

[l 8c (v)1l 8 (0) ][NE×c
t (v)N21NE×s

t (v)N2 ] dv ,

where the subscripts c , s mean respectively the cosine and the sine Fourier trans-
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form. By an integration by parts, we can prove the identity

l 9c (v)1l 8 (0)4vl 8s (v) .

Hence, owing to the condition (2.9), i.e. owing to the dissipativity of the bound-
ary, c 2 is positive valued. Moreover, a direct computation shows the equality

d

dt
c 2 (E×t )4

2

p
�

2Q

1Q

l 8s (v) E×s
t (v) QE(t) dv4E(t) QH(t)3n .

4 - Existence and uniqueness

In order to state a theorem of existence and uniqueness, first we shall consid-
er the problem (2.3)-(2.5) in a weak formulation. To this purpose, we introduce the
functional spaces

K(V)4]E , H�H 1 (V): ˜ QeE40, ˜ QmH40( ,

H(Q)4{E, H�L 2(0,T; K(V)): H(x, t)3n(x)4�
0

Q

l 8(x, s) E×t(x,s) ds on ¯V3(0,T)} ,

H*(Q)4{e, h�L 2(0,T; K(V)): h(x, t)3n(x)4�
0

Q

l 8(x, s) e×t(x,2s) ds on ¯V3(0,T)} ,

V(Q)4H(Q)OH 1 (0 , T ; L 2 (V) ) ,

W(Q)4H*(Q)OH 1 (0 , T ; L 2 (V) ) ,

J(V)4 me�L 2 (V): �
V

˜f Qe dv40, (f�C0
Q (V)n ,

R(V)4]e�J(V): ˜3e�J(V)( .

By assuming E×040 and e×T40, one can prove that the boundary condition given
in the definition of the space H*(Q) is the dual boundary condition of (2.5) in the
sense of definition 2.1.

D e f i n i t i o n 4.1. A pair E , H�V(Q) is called a strong solution of the prob-
lem (2.3)-(2.5) with sources If , Jf�L 2 (0 , T , J(V) ) and initial data E0 , H0
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�K(V) if

eE
.
4˜3H2sE2Jf ,

mH
.
42˜3E1If ,

E(x , 0 )4E0 (x) , H(x , 0 )4H0 (x) ,

a.e. in Q ,

a.e. in Q ,

in L 2 (V) .

D e f i n i t i o n 4.2. A pair (eE , mH)�L 2 (0 , T , J(V) ) is called a weak sol-
ution of the problem (2.3)-(2.5) with sources If , Jf�L 2 (0 , T , J(V) ) and initial
data eE0 , mH0�J(V) if

�
0

T

�
V

(eE Qe
.
1H Q˜3e1mH Qh

.
2E Q˜3h2sE Qe2Jf Qe1If Qh) dv dt

42�
V

(eE0 Qe01mH0 Qh0 ) dv
(4.1)

for each e , h�W(Q) such that

.
/
´

e(x , 0 )4e0 (x) , h(x , 0 )4h0 (x) ,

e(x , T)4h(x , T)40 .
(4.2)

In view of definition 4.2 it is clear that every strong solution of the problem (2.3)-
(2.5) is also a weak solution.

The previous results allow us to prove the uniqueness theorem for the weak
solution.

T h e o r e m 4.1. The weak solution of the problem (2.3)-(2.5) is unique.

P r o o f . Let (E1 , H1 ), (E2 , H2 ) be two solutions with the same sources If , Jf

and initial conditions E0 (x), H0 (x).
If we denote by E»4E12E2 H»4H12H2 , the linearity of equations (2.3),

(2.4) and of the boundary condition (2.5) implies that the pair (E , H) is a weak
solution of the same problem with sources If4Jf40 and histories E×04H×040.

Accordingly, by (4.1) the identity

�
0

T

�
V

(H Q˜3e2E Q˜3h1eE Qe
.
1mH Qh

.
2sE Qe) dv dt40(4.3)

holds for each e , h�W(Q) such that e(x , T)4h(x , T)40. We shall prove that
E(x , t)4H(x , t)40 identically.
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The arbitrariness of e , h in the equation (4.3) yields

�
0

T

�
V

(mH Qh
.
2E Q˜3h) dv dt40 ,(4.4)

�
0

T

�
V

(eE Qe
.
1H Q˜3e2sE Qe) dv dt40 .(4.5)

We make the identifications

EA(x , t)4�
0

t

E(j) dj ,

HA(x , t)4�
0

t

H(j) dj

and choose

e(x , t)4 eA(x)(T2t) ,

h(x , t)4hA(x)(T2t) ,

with eA, hA�C0
Q (V). Then, applying (4.4) and (4.5) at t4T and differentiating with

respect to t, we obtain

�
V

(mH QhA1EA Q˜3hA) dv42 �
¯V

EA QhA3n da40 ,(4.6)

�
V

(HA Q˜3eA2eE QeA2sEA QeA) dv4 �
¯V

eA QH3n da40 .(4.7)

The validity of (4.6) and (4.7) for each eA, hA�C0
Q (V) implies that both ˜3EA and

˜3HA exist and belong to L 2 (0 , T , L 2 (V) ). Moreover they satisfy

˜3EA42 mH ,(4.8)

˜3HA42 eE1sEA .(4.9)
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Multiplying (4.8) by HA and (4.9) by EA and subtracting, we obtain

�
¯V

EA QHA3n da42�
V

( mH QHA1eE QEA1sEA2 ) dv .(4.10)

Notice that the system (4.8), (4.9) can be written in the equivalent form

mHA
.
42˜3EA ,

eEA
.
4˜3HA2sEA .

Accordingly, EA, HA are regular solutions of Maxwell’s equations. Therefore, by the
definition of the boundary free energy given in Section 3, we obtain the
estimate

c
.
(t)GEA(t) QHA(t)3n .

Hence, by integrating (4.10) in the interval (0 , t) we prove the inequality

�
¯V

[c(x , t)2c(x , 0 ) ] daG2
1

2
�

V

[ mHA2 (x , t)1eEA2 (x , t) ] dv .(4.11)

Since E×040, the boundary free energy vanishes at t40.
The positive-definiteness of c and the inequality (4.11) imply in particular

EA(x , t)4HA(x , t)40 for each x�V , t�(0, T). Hence E(x , t)4H(x , t)40. r

We can prove an existence theorem of the problem (2.3)-(2.5). Let

A : V(Q)3V(Q)KL 2 (0 , T , J(V) )3L 2 (0 , T , J(V) )3K(V)3K(V)

be the operator defined by

A(E , H)4 (˜3H2eE
.
2sE , mH

.
1˜3E , eE0 , mH0 ) .

First, we state the following

L e m m a 4.1. The range R(A) of the operator A is dense in the Hilbert space
K(Q) »4L 2 (0 , T , J(V) )3L 2 (0 , T , J(V) )3J(V)3J(V).

P r o o f . Suppose by contradiction that R(A) is not dense in K(Q), then there
exists a non-zero element F4 (e , h , e0 , h0 )�K(Q), which is orthogonal to R(A).
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Hence each pair (E , H)�V(Q)3V(Q) satisfies the relation

�
0

T

�
V

[ (˜3H2eE
.
2sE) Qe1 (mH

.
1˜3E) Qh] dv dt

1�
V

(eE0 Qe01mH0 Qh0 ) dv40 .

(4.12)

By choosing first H(x , t)4E0 (x)40, then E(x , t)4H0 (x)40 we obtain

�
0

T

�
V

[˜3E Qh2 (eE
.
1sE) Qe] dv dt40 ,

�
0

T

�
V

(˜3H Qe1mH
.
Qh) dv dt40 .

These equations mean that (e , h) is a weak solution of the problem obtained by
the former after the temporal inversion t4T2 t. This backward problem has
sources If4Jf40 and initial data e(T)4h(T)40.

Proceeding like in the proof of the theorem 4.1, one can prove an uniqueness
theorem also in this case. Hence, e(x , t)4h(x , t)40.

Substitution in (4.12) yields e0 (x)4h0 (x)40 which contradicts the hypothe-
sis. r

Now we can prove the existence theorem.

T h e o r e m 4.2. If (Jf , If , eE0 , mH0 )�K(Q), the problem (2.3)-(2.5) has a
weak solution.

P r o o f . Since R(A) is dense in K(Q), there exists a sequence
(Jf

(n) , If
(n) , eE0

(n) , mH0
(n) )�R(A) which converges to (Jf , If , eE0 , mH0 ) in K(Q).

Accordingly, for each n there exists a pair (E(n) , H(n) )�V(Q) such that

2eE
.

(n)1˜3H(n)2sE(n)4Jf
(n) ,

mH
.

(n)1˜3E(n)4If
(n) .
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The solution (E(n)2E(m) , H(n)2H(m) ) satisfies the estimate (see [6])

e m VE(n)2E(m)
V

2
L 2 (Q)1m m VH(n)2H(m)

V

2
L 2 (Q)Gc]VJf

(n)2Jf
(m)

V

2
L 2 (Q)

1VIf
(n)2If

(m)
V

2
L 2 (Q)1e M VE0

(n)2E0
(m)

V

2
L 2 (V)1m M VH0

(n)2H0
(m)

V

2
L 2 (V)( .

It follows that ]E(n)(, ]H(n)( are Cauchy sequences in L 2 (Q), hence there exist
E , H�L 2 (Q) such that

lim
nKQ

E(n)4E , lim
nKQ

H(n)4H .

It remains to show that (E , H) is a weak solution. Consider e , h�W(Q) such that
e(T)4h(T)40. They satisfy the identities

�
0

T

�
V

H(n) Q˜3e dv dt1�
0

T

�
V

E(n) Qe
.

dv dt4�
0

T

�
V

˜3H(n) Qe dv dt

2�
0

T

�
V

E
.

(n) Qe dv dt2 �
E0

(n)

Qe0 dv ,

�
0

T

�
V

E(n) Q˜3h dv dt1�
0

T

�
V

H(n) Qh
.

dv dt4�
0

T

�
V

˜3E(n) Qh dv dt

2�
0

T

�
V

H
.

(n) Qh dv dt2�
V

H0
(n) Qh0 dv .

As nKQ, the sum of the previous equations gives the relation (4.1). r

5. – Asymptotic stability

In the previous section we stated an existence and uniqueness theorem in a
domain Q4V3 (0 , T). Now we examine the asymptotic behaviour of the weak
solutions, by letting TKQ.

First we have to extend the definition (4.2) to the unbounded case. The pair
(eE , mH)�L 2 (0 , Q , J(V) ) will be called a weak solution of the problem (2.3)-
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(2.5) if it satisfies the integral equation

�
0

Q

�
V

(eE Qe
.
1H Q˜3e1mH Qh

.
2E Q˜3h2sE Qe2Jf Qe1If Qh) dv dt

42�
V

(eE0 Qe01mH0 Qh0 ) dv .
(5.1)

In what follows, we denote by fF the temporal Fourier transform of f, considered
as a causal function. Moreover we denote by J*(V) and R*(V) the space of com-
plex functions, whose real and imaginary part belong to J(V) and R(V) respect-
ively.

The Parseval-Plancherel theorem allows to rewrite (5.1) in the equivalent
form

�
2Q

1Q

�
V

[eEF* Q (iveF2e0 )1mHF* Q (ivhF2h0 )1HF* Q˜3eF2EF* Q˜3hF

2sEF* QeF2JfF* QeF1IfF* Qhf ] dv dt12p�
V

(eE0 Qe01mH0 Qh0 ) dv ,
(5.2)

where the symbol * means the complex conjugate.

R e m a r k . If we apply the Fourier transform to (2.3)-(2.5), we obtain the
system

˜3HF4 (ive1s) EF1JfF2eE0 ,(5.3)

˜3EF42ivmHF1IfF2mH0 ,(5.4)

HF3n42l F EF .(5.5)

A straightforward check shows that the solutions of (5.3)-(5.5) satisfy (5.2).

L e m m a 5.1. For each v�R, if JfF (v), IfF (v)�J*(V), eE0 , mH0�J*(V)
OR*(V), l c (v)E0, the problem (5.3)-(5.5) has a unique solution EF (v), HF (v)
�R*(V). Moreover, EF (x , v), HF (x , v) depend continuously on v.

P r o o f . Consider the homogeneous problem associated with (5.3)-(5.4)

˜3HF4 (ive1s) EF ,(5.6)

˜3EF42 ivmHF ,(5.7)

HF3n42 l F EF .(5.8)
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According to the complex Poynting theorem, we obtain from (5.6)-(5.8) the
identity

�
¯V

l F NEF3nN2 da4�
V

[sNEFN21 iv(eNEF N22mNHF N2 ) ] dv .(5.9)

Hence, by comparing the real part, (5.9) gives

�
¯V

l c NEF3nN2 da4�
V

sNEFN2 dv .

Since l c is strictly negative, EF40. Substitution in (5.9) yields HF40. This
proves the uniqueness. In order to prove the existence of the solution, we observe
that, according to the uniqueness, the problem (5.6)-(5.8) admits no eigensolu-
tions, except the trivial one. The Theorem 3.12 of [7] ensures the existence of the
solution (EF (v), HF (v) ). Moreover, in view of lemma 44.1 of [8], the pair
(EF (v), HF (v) ) is proved to be analytic with respect to v and to satisfy the
estimate

�
V

[NEF (v)N21NHF (v)N2 ] dvGC(v)�
V

[NJfF (v)N21NIfF (v)N2 ] dv . r(5.10)

Let B*(V) denote the following set

B*(V)4](EF , HF )�R*(V)3R*(V): HF3n4l F EF on ¯V( .

In view of lemma 5.1, the differential operator Av : B*(V)KJ*(V)3J*(V) in-
duced by the system (5.3)-(5.5) is surjective. Therefore, there exist the tensor
Green’s functions P 1 (x , x8 , v), P 2 (x , x8 , v) which satisfy in the weak form the
system

˜3P 2 (x , x8 , v)1 (s1 ive) P 1 (x , x8 , v)4d(x2x8 ) I ,(5.11)

˜3P 1 (x , x8 , v)2 ivmP 2 (x , x8 , v)40 ,(5.12)

P 2 (x , x8 , v)3n(x)4l F (x , v) P 1 (x , x8 , v) ,(5.13)

where I is the identity tensor.
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The equations (5.3)-(5.5) and (5.11)-(5.13) give the expression of the electric
field

EF (x , v)42�
V

]P 1 (x , x8 , v)[JfF (x8 , v)2eE0 (x8 ) ]

2P 2 (x , x8 , v)[IfF (x8 , v)2mH0 (x8 ) ]( dv 8 .
(5.14)

Analogously, if we consider the Green’s functions J 1 , J 2 , defined as the solution
of the system

˜3J 2 (x , x8 , v)1 (s1 ive) J 1 (x , x8 , v)40 ,(5.15)

˜3J 1 (x , x8 , v)2 ivmJ 2 (x , x8 , v)4d(x2x8 ) I ,(5.16)

J 2 (x , x8 , v)3n(x)4l F (x , v) J 1 (x , x8 , v) ,(5.17)

we obtain the relation

HF (x , v)4�
V

]J 1 (x , x8 , v)[JfF (x8 , v)2eE0 (x8 ) ]

2J 2 (x , x8 , v)[IfF (x8 , v)2mH0 (x8 ) ]( dv 8 .
(5.18)

The following lemma shows the asymptotic behaviour of Green’s func-
tions.

L e m m a 5.2. Green’s functions satisfy the asymptotic condition

lim
vKQ

iv�
V

�
V

[eP 1 (x , x8 , v) f1 (x) Qf(x8 , v)

1mP 2 (x , x8 , v) f2 (x) Qf(x8 , v) ] dv dv 84 lim
vKQ

�
V

f(x , v) Q f1 (x) dv
(5.19)

for each f1 , f2�R*(V).

P r o o f . Keeping (5.11)-(5.13) into account we obtain the integral relation

�
V

�
V

[ivmf(x8 , v) QP 2 (x , x8 , v) f2 (x)1 (s1 ive) f(x , v) QP 1 (x , x8 , v) f1 (x)

2f(x8 , v) QP 1 (x , x8 , v) ˜3 f2 (x)1f(x8 , v) QP 2 (x , x8 , v) ˜3 f1 (x) ] dv dv 8

4�
V

f(x , v) Q f1 (x) dv .



171A DISSIPATIVE BOUNDARY CONDITION...[17]

Hence, letting vKQ, since f1 , f2 are independent of v, we obtain
(5.19). r

In a similar way, we can prove the asymptotic conditions for J 1 and J 2

lim
vKQ

iv�
V

�
V

[eJ 1(x, x8, v) f1(x) Qf(x8, v)1mJ 2(x, x8, v) f2(x) Qf(x8, v)] dv dv 8

42 lim
vKQ

�
V

f(x, v) Q f2(x) dv .
(5.20)

As a consequence of lemmas (5.1)-(5.2) we obtain the following

T h e o r e m 5.1. Let If , Jf�H 1 (0 , Q ; J(V) )OL 1 (0 , Q ; J(V) ), If (x , 0 )
4Jf (x , 0 )40, E0 , H0�R(V)OJ(V). Then, there exists a unique solution E ,
H�L 2 (0 , Q ; R(V) ) in the sense of definition (5.1).

P r o o f . According to lemma (5.2), from (5.14) we obtain the condition

lim
vKQ

�
V

[ivEF (x , v)2E0 (x) ] Q [iveF (x , v)2e0 (x) ] dv

A lim
vKQ

iv�
V

JfF (x , v) Q [iveF (x , v)2e0 (x) ] dv .
(5.21)

Since Jf�H 1 (0 , Q ; L 2 (V) )OL 1 (0 , Q ; L 2 (V) ) the previous equation implies

lim
vKQ

�
V

EF (x , v) Q [iveF (x , v)2e0 (x) ] dv

A lim
vKQ

1

iv
�

V

E0 (x) Q [iveF (x , v)2e0 (x) ] dv .

Therefore EF�L 2 (0 , Q ; L 2 (V) ).
In the same way, we prove that HF�L 2 (0 , Q ; L 2 (V) ).
In view of (5.21)

ivEF2E0�L 2 (0 , Q ; L 2 (V) ) .

Analogously,

ivHF2H0�L 2 (0 , Q ; L 2 (V) ) .

The Paley-Wiener theorem allows to conclude that EF , HF are the Fourier trans-
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forms of casual functions. Their inverse Fourier transforms E, H satisfy the rela-
tion (5.1). Moreover, according to (5.2), EF (v), HF (v)�R(V). Thus (E , H) is a
weak solution of the problem (2.3)-(2.5). r
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A b s t r a c t

In this paper, we study the differential problem of Maxwell’s equations with a memo-
ry boundary condition in the Schelkunoff’s hypothesis [1]. Such a condition describes an
electromagnetic solid with a conducting and dissipative boundary. We define a boundary
free energy in order to prove a theorem of existence and uniqueness for the weak solution.
Finally, we prove an asympotic stability theorem.

* * *


