L. A-M. Hanna (*)

A note on the matrix representations of the Lie algebras L_{r}^{s} for quantized Hamiltonians where $r s=0\left({ }^{(* *)}\right.$

1- Introduction

The Lie-algebraic decomposition formulas of Baker, Campbell, Hausdorff and Zassenhaus [9] and their matrix representations, were used by Steinberg in his method to solve certain types of linear partial differential equations [8]. The required matrix representations must be faithful and of low-dimension. Recently, the method has been used to derive solutions of the Schrödinger's wave equations for the Hamiltonian model of coupled quantized harmonic oscillators of the form [7], $H=K_{0}+\lambda\left(K_{+}+K_{-}\right), \lambda \in \mathbb{R}^{*}$ (the set of nonzero real numbers) is the coupling parameter, and the Lie algebras L_{r}^{s} generated by the three operators K_{0}, $K_{ \pm} ; r, s \in \mathbb{R}$ with $\left[K_{+}, K_{-}\right]=s K_{0},\left[K_{0}, K_{ \pm}\right]= \pm r K_{ \pm}$.

All considered matrix representations should satisfy the physical requirements namely, $K_{-}=K_{+}^{\dagger}$ (\dagger is used for Hermitian conjugation), K_{0} is real and diagonal and ($K_{+}+K_{-}$) is real.

For $r=1, s=2$ the model corresponds to two-level optical atom model, while for $r=1, s=-2$ it corresponds to light amplifier model. When $r s \neq 0$, it was proved in [5], that L_{r}^{s} has faithful matrix representations only if $r s>0$. When $r s=0$, we show that L_{0}^{0} has three faithful matrix representations of dimension 3, as the least dimension. But $L_{0}^{s}, s \neq 0$ and $L_{r}^{0}, r \neq 0$ have none.

Unless otherwise stated, $\mathbf{0}$ is the zero matrix of appropriate size, I_{k} is the identity matrix of order $k, N=\{1,2, \ldots, n\}$, while $X=\left[x_{i j}\right], Y=\left[y_{i j}\right]$ and
(*) Kuwait University, Faculty of Science, Dept. of Math. and Comp. Sci., P. O. Box 5969, Safat 13060, Kuwait.
(**) Received February 16, 1998 and in revised form September 22, 1998. AMS classification 17 B 81.
$Z=\left[\delta_{i j} z_{i j}\right]$ are $n \times n$ representation matrices for K_{+}, K_{-}and K_{0} respectively. Thus, $z_{i j} \in \mathbb{R}, y_{i j}=x_{i j}^{\dagger}=\bar{x}_{j i}$, where $\delta_{i j}$ is the Kronecker delta; $i, j \in N$. Obviously for a faithful representation

$$
\begin{equation*}
\lambda Z+\mu X+v Y=\mathbf{0} \tag{1}
\end{equation*}
$$

is only satisfied by $\lambda=\mu=\nu=0$.
The defining relations of L_{r}^{s} are: $\left[K_{+}, K_{-}\right]=s K_{0},\left[K_{0}, K_{-}\right]=-r K_{-}$, or

$$
\begin{equation*}
\left[K_{+}, K_{-}\right]=s K_{0}, \quad\left[K_{0}, K_{+}\right]=r K_{+} . \tag{2}
\end{equation*}
$$

Hence from (2)

$$
\begin{equation*}
[X, Y]=s Z,[Z, X]=r X \tag{3}
\end{equation*}
$$

and for $i, j \in N$, we have

$$
\begin{gather*}
x_{i j}\left(z_{i i}-z_{j j}-r\right)=0 \tag{4}\\
s \delta_{i j} z_{i j}=\sum_{l=1}^{n}\left(x_{i l} x_{l j}^{\dagger}-x_{i l}^{\dagger} x_{l j}\right), \\
s z_{i i}=\sum_{l=1}^{n}\left(\left|x_{i l}\right|^{2}-\left|x_{l i}\right|^{2}\right)
\end{gather*}
$$

Lemma 1. For any $p, q \in N$, let $\sigma=(p q)$ be a permutation on N that is applied to the rows as well as to the columns of X, Y and Z, then the resulting matrices X^{\prime}, Y^{\prime} and Z^{\prime}, respectively are also representation matrices for K_{+}, K_{-} and K_{0}, respectively.

Proof. Let P be the elementary matrix, obtained by applying σ to the rows of I_{n}. Since $P=P^{-1}=P^{T}, X^{\prime}=P^{-1} X P, Y^{\prime}=P^{-1} Y P$ and $Z^{\prime}=P^{-1} Z P$. Also, the physical properties are satisfied by X^{\prime}, Y^{\prime} and Z^{\prime}.

Remark 1. Using Lemma 1, the matrix Z can be rearranged as $Z=\operatorname{diag}\left(\alpha_{1} I_{m_{1}}, \alpha_{2} I_{m_{2}}, \ldots, \alpha_{t} I_{m_{t}}\right)$, with different $\alpha_{i}{ }^{\prime} \mathrm{s}, i=1,2, \ldots t ; t \in N$. If Z is singular, we take $\alpha_{t}=0$.

2-Faithful matrix representations for $L_{0}^{s}, s \neq 0$

Lemma 2. The matrices X, Y and Z consist of diagonal blocks of equal corresponding sizes.

Proof. If $z_{i i}$ and $z_{j j}$ are from different diagonal blocks, then from (4) as $r=0$ we have $x_{i j}=x_{j i}=0$.

Theorem 3. $L_{0}^{s}, s \neq 0$, has no faithful matrix representations.
Proof. From (1), $Z \neq 0$. So, let $\alpha_{1} I_{m_{1}}=\alpha I_{m} \neq 0$. From Lemma 2 the first diagonal block of X has order m. Using (6), we have

$$
\alpha m s=\sum_{i=1}^{m} s z_{i i}=\sum_{i=1}^{m} \sum_{l=1}^{n}\left(\left|x_{i l}\right|^{2}-\left|x_{l i}\right|^{2}\right)=\sum_{i=1}^{m} \sum_{l=1}^{m}\left(\left|x_{i l}\right|^{2}-\left|x_{l i}\right|^{2}\right)=0
$$

but $\alpha m s \neq 0$.

3-Faithful matrix representations for $L_{r}^{0}, r \neq 0$

Lemma 4. X and Y are real matrices whose diagonal elements are all zeros.

Proof. The following results are immediate from (4) when $r \neq 0$.

$$
\begin{align*}
& \text { If } x_{i j} \neq 0, \text { then } z_{i i}-z_{j j}=r \tag{7}\\
& \text { If } x_{i j} \neq 0, \text { then } x_{j i}=0 . \\
& \quad x_{i i}=0, \text { for } i=1,2, \ldots, n .
\end{align*}
$$

Since $X+Y$ is real, then for $i, j \in N, x_{i j}+\bar{x}_{j i}$ is real, but from (8) $x_{i j}$ and $x_{j i}$ cannot both be nonzero. Then $x_{i j}$ must be real.

We note from (6) and Lemma 4, as $s=0$, that

$$
\begin{equation*}
\sum_{l=1}^{n} x_{i l}^{2}=\sum_{l=1}^{n} x_{l i}^{2} . \tag{10}
\end{equation*}
$$

Lemma 5. If X has m zero rows (or columns), where $0 \leqslant m<n$, then L_{r}^{0} has a representation of dimension $(n-m)$.

Proof. If the i-th row of X is a zero row, then from (10) the i-th column of X must be a zero column, and vice versa. Use Lemma 1 so that, $X=\operatorname{diag}\left(X^{\prime}, \mathbf{0}\right)$, $Y=\operatorname{diag}\left(Y^{\prime}, \mathbf{0}\right) \quad$ and $\quad Z=\operatorname{diag}\left(Z^{\prime}, Z^{\prime \prime}\right)$, where, $\quad X^{\prime}=\left[x_{i j}^{\prime}\right], \quad Y^{\prime}=X^{\prime \dagger} \quad$ and $Z^{\prime}=\left[\delta_{i j} z_{i j}^{\prime}\right]$ are $(n-m) \times(n-m)$ matrices, and X^{\prime} has no zero rows or columns. For $i, j=1,2, \ldots,(n-m) ; x_{i j}^{\prime}=x_{i j}$ and from (3) and (10) we have $r x_{i j}$ $=\sum_{l=1}^{n}\left(\delta_{i l} z_{i l} x_{l j}-x_{i l} \delta_{l j} z_{l j}\right)=\sum_{l=1}^{n-m}\left(\delta_{i l} z_{i l}^{\prime} x_{l j}^{\prime}-x_{i l}^{\prime} \delta_{l j} z_{l j}^{\prime}\right)=r x_{i j}^{\prime}$ and $\sum_{l=1}^{n-m} x_{i l}^{\prime 2}=\sum_{l=1}^{n-m} x_{l i}^{\prime 2}$.

Hence, $\left[Z^{\prime}, X^{\prime}\right]=r X^{\prime}$ and $\left[X^{\prime}, Y^{\prime}\right]=0$. Therefore, X^{\prime}, Y^{\prime} and Z^{\prime} are representation matrices for K_{+}, K_{-}and K_{0}, respectively.

Remark 2. We use Lemma 5 to eliminate all zero rows and zero columns of X. Thus, if $X \neq \mathbf{0}$ then it can be considered that X has no zero row or zero column.

Theorem 6. The nontrivial matrix representations of L_{r}^{0} are not faithful and of the form $X=Y=\mathbf{0}$ and Z is a nonzero real diagonal matrix.

Proof. Case 1: If $n=1$, then $X=Y=x_{11}=0$, from Lemma 4.
Case 2: If $n=2$, then from (10) $x_{12}^{2}=x_{21}^{2}$ and from (8) either x_{12} or x_{21} is zero. Thus $X=Y=\mathbf{0}$.

Case 3: For $n \geqslant 3$, suppose that $X \neq 0$ and has k nonzero elements. Then from (8-9) $n \leqslant k \leqslant\left(n^{2}-n\right) / 2$. From Remark 2 , for each $i \in N$ choose an $x_{i j} \neq 0$. Then from (7), we have $z_{i i}-z_{j j}=r$ or equivalently, $c_{i i}-c_{j j}=1$, where $c_{l l}=z_{l l} / r ; l=i, j$. After this, the proof follows the same lines as that of Theorem 3.1 of [4], where it was proved that the system of equations $c_{i i}-c_{j j}=1$, is inconsistent.

In all cases, for a nontrivial representation Z is a nonzero real diagonal matrix.

4 - Faithful matrix representations for L_{0}^{0}

Lemma 7. L_{0}^{0} has no faithful matrix representations of dimension 2.
Proof. Suppose that $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], Y=X^{\dagger}$ and $Z=\left[\begin{array}{ll}u & 0 \\ 0 & v\end{array}\right]$ are representation matrices for K_{+}, K_{-}and K_{0}, respectively, where $a, b, c, d \in \mathbb{C} ; u, v \in \mathbb{R}$. Since $X+Y$ is real and from (3) as $r=s=0$, we have:

$$
\begin{align*}
& b+\bar{c}=\text { real }, \tag{11}\\
& |b|^{2}=|c|^{2} \quad \text { and } \quad \bar{c}(a-d)=b(\bar{a}-\bar{d}), \tag{12}\\
& \tag{13}\\
& b(v-u)=0 .
\end{align*}
$$

From (11) and (12), we have either $c=b$ or $c=-\bar{b}$.
It can be shown, using (12-13), when $c=b=0$ or $c=-\bar{b}=0$ that (1) has a nontrivial solution in λ, μ and ν. Hence the representation is not faithful. Also, if $c=b \neq 0$ or $c=-\bar{b} \neq 0$, then from (13), as $Z \neq \mathbf{0}$, we have $u=v=l$, for some $l \in \mathbb{R}^{*}$. It can be shown, using (12), that (1) has a nontrivial solution.

Theorem 8. L_{0}^{0} has three types of faithful matrix representations of dimension 3, as the least dimension, namely:
type 1: $Z=u I_{3}, u \neq 0, X=\operatorname{diag}(a, b, c), \Delta_{1} \neq 0$,
type 2: $Z=\operatorname{diag}(u, u, v), X=\operatorname{diag}(a, b, c), \Delta_{2} \neq 0$,
type 3: $Z=\operatorname{diag}(u, v, w), X=\operatorname{diag}(a, b, c), \Delta_{3} \neq 0$,
where,

$$
\Delta_{1}=\left|\begin{array}{ccc}
1 & a & \bar{a} \\
1 & b & \bar{b} \\
1 & c & \bar{c}
\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ccc}
u & a & \bar{a} \\
u & b & \bar{b} \\
v & c & \bar{c}
\end{array}\right|, \quad \Delta_{3}=\left|\begin{array}{ccc}
u & a & \bar{a} \\
v & b & \bar{b} \\
w & c & \bar{c}
\end{array}\right|
$$

for $a, b, c \in \mathbb{C}$ and different $u, v, w \in \mathbb{R} . Y=X^{\dagger}=\bar{X}$.

Proof. Since $r=0$, in view of (4), Lemma 2 is also applicable to L_{0}^{0}. Thus we have the following three cases.

Case 1: Let $Z=u I_{3} \neq 0$ and let $A, B=A^{\dagger}$ and $C=Z$, be 3×3 representation matrices for K_{+}, K_{-}and K_{0} respectively. Since $A A^{\dagger}=A^{\dagger} A, A$ is a normal matrix. Hence, $A=U^{\dagger} D U$ for some unitary matrix U and a complex diagonal matrix D. Since $A+A^{\dagger}$ is real, $U^{\dagger}(D+\bar{D}) U=R$ for some real matrix R. But $U^{\dagger}(D+\bar{D}) U$ is a Hermitian matrix, therefore, R is symmetric and consequently, has real eigenvalues. Also, $D+\bar{D}=U R U^{\dagger}$ is a real diagonal matrix. Hence, U^{\dagger} can be chosen as a real matrix since its columns consist of the eigen vectors of R. Therefore, $U=O$ for some orthogonal matrix O. Hence, $A=O^{-1} D O$, $B=O^{-1} \bar{D} O$ and $C=O^{-1} u I_{3} O$. Obviously, this representation is conjugate to the representation $X=D=\operatorname{diag}(a, b, c), Y=\bar{D}$ and $Z=u I_{3}$ which in view of (1) is faithful if $\Delta_{1} \neq 0$.

Case 2: Let $Z=\operatorname{diag}(u, u, v)$, let $A, B=A^{\dagger}$ and $C=Z$, be 3×3 representation matrices for K_{+}, K_{-}and K_{0} respectively. From Lemma 2, $A=\operatorname{diag}\left(A^{\prime}, c\right), A^{\prime}$ is a 2×2 matrix. Since $A A^{\dagger}=A^{\dagger} A, A^{\prime} A^{\prime \dagger}=A^{\prime \dagger} A^{\prime}$, and as $A+A^{\dagger}$ is real, $A^{\prime}+A^{\prime \dagger}$ is also real. With a similar argument for A^{\prime} instead of A as in Case 1, we find that $A^{\prime}=O^{\prime-1} D^{\prime} O^{\prime}$ for some orthogonal matrix O^{\prime} and diagonal matrix $D^{\prime}=\operatorname{diag}(a, b)$. Let $O=\operatorname{diag}\left(O^{\prime}, 1\right)$, and $D=\operatorname{diag}\left(D^{\prime}, c\right)$, then we have $A=O^{-1} D O, B=O^{-1} \bar{D} O$ and $C=O^{-1} Z O$, since O is an orthogonal matrix. Clearly, this representation is conjugate to the representation $X=D$ $=\operatorname{diag}(a, b, c), Y=\bar{D}$ and $Z=\operatorname{diag}(u, u, v)$ which in view of (1) is faithful if $\Delta_{2} \neq 0$.

Case 3: If $Z=\operatorname{diag}(u, v, w)$, then from Lemma $2, X$ is a complex diagonal matrix. So, let $X=\operatorname{diag}(a, b, c)$ which from (1), is faithful if $\Delta_{3} \neq 0$.

Acknowledgment. The author acknowledges the fruitful discussions with Prof. Georg Heinig, Prof. S. S. Hassan and Prof. S. Singh, and the support of Kuwait University.

References

[1] M. A. Al-Gwaiz, M. S. Abdalla and S. Deshmukh, Lie algebraic approach to coupled-mode oscillator, J. Phys. A 27 (1994), 1275-1282.
[2] G. Dattoli, P. Di Lazzaro and A. Torre, A spinor approach to the propagation in self-focusing fibers, Il Nuovo Cimento B 105 (1990), 165-178.
[3] G. Dattoli, M. Richetta, G. Schettini and A. Torre, Lie algebraic methods and solutions of linear partial differential equations, J. Math. Phys. 31 (1990), 2856-2863.
[4] L. A.-M. Hanna, M. E. Khalifa and S. S. Hassan, On Representations of Lie algebras for quantized Hamiltonians, Linear Algebra Appl. 266 (1997), 69-79.
[5] L. A.-M. Hanna, On the matrix representation of the Lie algebras for quantized Hamiltonians and their central extensions, Riv. Mat. Univ. Parma (5) 6 (1997), 5-11.
[6] S. S. Hassan, L. A.-M. Hanna and M. E. Khalifa, Lie algebraic approach to Schrödinger equations for Hamiltonian models of optical atoms, Second Int. Conf. on Dynamic Systems and Applications, Atlanta, USA 1995, to appear.
[7] R. J. C. Spreeuw and J. P. Woerdman, Optical atoms, Progr. Optics 31 (1993), 263-319.
[8] S. Steinberg, Applications of the Lie algebraic formulas of Baker, Campbell, Hausdorff and Zassenhaus to the calculation of explicit solutions of partial differential equations, J. Differential Equations 26 (1977), 404-434.
[9] W. Witschel, Ordered operator expansions by comparison, J. Phys. A 8 (1975), 143-155.

Abstract

Consider the Lie algebras $L_{r}^{s}:\left[K_{+}, K_{-}\right]=s K_{0},\left[K_{0}, K_{ \pm}\right]= \pm r K_{ \pm} ; r, s \in \mathbb{R}, K_{0}$ is a Hermitian operator and $K_{-}=K_{+}^{\dagger}$. In [4], [5] the faithful matrix representations of L_{r}^{s} and ${ }^{c} L_{r}^{s}$ were discussed for $r s \neq 0$. In this note we consider the case $r s=0$. We prove that L_{0}^{0} has three types of faithful 3-dimensional representations, as the least dimension, while $L_{0}^{s}, s \neq 0$ and $L_{r}^{0}, r \neq 0$ have none.

