A note on the matrix representations of the Lie algebras L_r^s for quantized Hamiltonians where rs = 0 (**)

1 - Introduction

The Lie-algebraic decomposition formulas of Baker, Campbell, Hausdorff and Zassenhaus [9] and their matrix representations, were used by Steinberg in his method to solve certain types of linear partial differential equations [8]. The required matrix representations must be faithful and of low-dimension. Recently, the method has been used to derive solutions of the Schrödinger's wave equations for the Hamiltonian model of coupled quantized harmonic oscillators of the form [7], $H = K_0 + \lambda(K_+ + K_-)$, $\lambda \in \mathbb{R}^*$ (the set of nonzero real numbers) is the coupling parameter, and the Lie algebras L_r^s generated by the three operators K_0 , K_{\pm} ; $r, s \in \mathbb{R}$ with $[K_+, K_-] = sK_0$, $[K_0, K_{\pm}] = \pm rK_{\pm}$.

All considered matrix representations should satisfy the physical requirements namely, $K_{-} = K_{+}^{\dagger}$ († is used for Hermitian conjugation), K_{0} is real and diagonal and $(K_{+} + K_{-})$ is real.

For r = 1, s = 2 the model corresponds to two-level optical atom model, while for r = 1, s = -2 it corresponds to light amplifier model. When $rs \neq 0$, it was proved in [5], that L_r^s has faithful matrix representations only if rs > 0. When rs = 0, we show that L_0^0 has three faithful matrix representations of dimension 3, as the least dimension. But L_0^s , $s \neq 0$ and L_r^0 , $r \neq 0$ have none.

Unless otherwise stated, 0 is the zero matrix of appropriate size, I_k is the identity matrix of order k, $N = \{1, 2, ..., n\}$, while $X = [x_{ij}], Y = [y_{ij}]$ and

^(*) Kuwait University, Faculty of Science, Dept. of Math. and Comp. Sci., P. O. Box 5969, Safat 13060, Kuwait.

 $^{(^{\}ast\ast})$ Received February 16, 1998 and in revised form September 22, 1998. AMS classification 17 B 81.

L. A-M. HANNA

 $Z = [\delta_{ij} z_{ij}]$ are $n \times n$ representation matrices for K_+, K_- and K_0 respectively. Thus, $z_{ij} \in \mathbb{R}$, $y_{ij} = x_{ij}^{\dagger} = \overline{x}_{ji}$, where δ_{ij} is the Kronecker delta; $i, j \in N$. Obviously for a faithful representation

(1)
$$\lambda Z + \mu X + \nu Y = \mathbf{0}$$

is only satisfied by $\lambda = \mu = \nu = 0$.

The defining relations of L_r^s are: $[K_+, K_-] = sK_0$, $[K_0, K_-] = -rK_-$, or

(2)
$$[K_+, K_-] = sK_0, \quad [K_0, K_+] = rK_+.$$

Hence from (2)

$$[X, Y] = sZ, [Z, X] = rX$$

and for $i, j \in N$, we have

(4)
$$x_{ij}(z_{ii}-z_{jj}-r)=0,$$

(5)
$$s\delta_{ij}z_{ij} = \sum_{l=1}^{n} (x_{il}x_{lj}^{\dagger} - x_{il}^{\dagger}x_{lj}),$$

(6)
$$sz_{ii} = \sum_{l=1}^{n} \left(|x_{il}|^2 - |x_{li}|^2 \right).$$

Lemma 1. For any $p, q \in N$, let $\sigma = (pq)$ be a permutation on N that is applied to the rows as well as to the columns of X, Y and Z, then the resulting matrices X', Y' and Z', respectively are also representation matrices for K_+ , K_- and K_0 , respectively.

Proof. Let *P* be the elementary matrix, obtained by applying σ to the rows of I_n . Since $P = P^{-1} = P^T$, $X' = P^{-1}XP$, $Y' = P^{-1}YP$ and $Z' = P^{-1}ZP$. Also, the physical properties are satisfied by X',Y' and Z'.

Remark 1. Using Lemma 1, the matrix Z can be rearranged as $Z = \text{diag}(\alpha_1 I_{m_1}, \alpha_2 I_{m_2}, \ldots, \alpha_t I_{m_t})$, with different α_i 's, $i = 1, 2, \ldots, t; t \in N$. If Z is singular, we take $\alpha_t = 0$.

2 - Faithful matrix representations for L_0^s , $s \neq 0$

Lemma 2. The matrices X, Y and Z consist of diagonal blocks of equal corresponding sizes.

151

Proof. If z_{ii} and z_{jj} are from different diagonal blocks, then from (4) as r = 0 we have $x_{ij} = x_{ji} = 0$.

Theorem 3. L_0^s , $s \neq 0$, has no faithful matrix representations.

Proof. From (1), $Z \neq 0$. So, let $\alpha_1 I_{m_1} = \alpha I_m \neq 0$. From Lemma 2 the first diagonal block of X has order m. Using (6), we have

$$\alpha ms = \sum_{i=1}^{m} sz_{ii} = \sum_{i=1}^{m} \sum_{l=1}^{n} (|x_{il}|^2 - |x_{li}|^2) = \sum_{i=1}^{m} \sum_{l=1}^{m} (|x_{il}|^2 - |x_{li}|^2) = 0,$$

but $\alpha ms \neq 0$.

3 - Faithful matrix representations for L_r^0 , $r \neq 0$

Lemma 4. X and Y are real matrices whose diagonal elements are all zeros.

Proof. The following results are immediate from (4) when $r \neq 0$.

- (7) If $x_{ij} \neq 0$, then $z_{ii} z_{jj} = r$.
- (8) If $x_{ii} \neq 0$, then $x_{ii} = 0$.

(9)
$$x_{ii} = 0, \text{ for } i = 1, 2, ..., n.$$

Since X + Y is real, then for $i, j \in N$, $x_{ij} + \overline{x}_{ji}$ is real, but from (8) x_{ij} and x_{ji} cannot both be nonzero. Then x_{ij} must be real.

We note from (6) and Lemma 4, as s = 0, that

(10)
$$\sum_{l=1}^{n} x_{il}^{2} = \sum_{l=1}^{n} x_{li}^{2}$$

Lemma 5. If X has m zero rows (or columns), where $0 \le m < n$, then L_r^0 has a representation of dimension (n - m).

Proof. If the *i*-th row of X is a zero row, then from (10) the *i*-th column of X must be a zero column, and vice versa. Use Lemma 1 so that, $X = \operatorname{diag}(X', \mathbf{0})$, $Y = \operatorname{diag}(Y', \mathbf{0})$ and $Z = \operatorname{diag}(Z', Z'')$, where, $X' = [x_{ij}']$, $Y' = X'^{\dagger}$ and $Z' = [\delta_{ij} z_{ij}']$ are $(n-m) \times (n-m)$ matrices, and X' has no zero rows or columns. For $i, j = 1, 2, \ldots, (n-m)$; $x_{ij}' = x_{ij}$ and from (3) and (10) we have $rx_{ij} = \sum_{l=1}^{n} (\delta_{il} z_{il} x_{lj} - x_{il} \delta_{lj} z_{lj}) = \sum_{l=1}^{n-m} (\delta_{il} z_{il}' x_{lj}' - x_{il}' \delta_{lj} z_{lj}') = rx_{ij}'$ and $\sum_{l=1}^{n-m} x_{ll}'^2 = \sum_{l=1}^{n-m} x_{ll}'^2$.

Hence, [Z', X'] = rX' and [X', Y'] = 0. Therefore, X', Y' and Z' are representation matrices for K_+ , K_- and K_0 , respectively.

Remark 2. We use Lemma 5 to eliminate all zero rows and zero columns of X. Thus, if $X \neq 0$ then it can be considered that X has no zero row or zero column.

Theorem 6. The nontrivial matrix representations of L_r^0 are not faithful and of the form X = Y = 0 and Z is a nonzero real diagonal matrix.

Proof. Case 1: If n = 1, then $X = Y = x_{11} = 0$, from Lemma 4.

Case 2: If n = 2, then from (10) $x_{12}^2 = x_{21}^2$ and from (8) either x_{12} or x_{21} is zero. Thus X = Y = 0.

Case 3: For $n \ge 3$, suppose that $X \ne 0$ and has k nonzero elements. Then from (8-9) $n \le k \le (n^2 - n)/2$. From Remark 2, for each $i \in N$ choose an $x_{ij} \ne 0$. Then from (7), we have $z_{ii} - z_{jj} = r$ or equivalently, $c_{ii} - c_{jj} = 1$, where $c_{ll} = z_{ll}/r$; l = i, j. After this, the proof follows the same lines as that of Theorem 3.1 of [4], where it was proved that the system of equations $c_{ii} - c_{jj} = 1$, is inconsistent.

In all cases, for a nontrivial representation Z is a nonzero real diagonal matrix.

4 - Faithful matrix representations for L_0^0

Lemma 7. L_0^0 has no faithful matrix representations of dimension 2.

Proof. Suppose that $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $Y = X^{\dagger}$ and $Z = \begin{bmatrix} u & 0 \\ 0 & v \end{bmatrix}$ are representation matrices for K_+ , K_- and K_0 , respectively, where $a, b, c, d \in \mathbb{C}$; $u, v \in \mathbb{R}$. Since X + Y is real and from (3) as r = s = 0, we have:

(11)
$$b + \overline{c} = \operatorname{real}$$

(12) $|b|^2 = |c|^2$ and $\overline{c}(a-d) = b(\overline{a} - \overline{d})$,

(13)
$$b(v-u) = 0$$
.

From (11) and (12), we have either c = b or $c = -\overline{b}$.

It can be shown, using (12-13), when c = b = 0 or $c = -\overline{b} = 0$ that (1) has a nontrivial solution in λ , μ and ν . Hence the representation is not faithful. Also, if $c = b \neq 0$ or $c = -\overline{b} \neq 0$, then from (13), as $Z \neq 0$, we have u = v = l, for some $l \in \mathbb{R}^*$. It can be shown, using (12), that (1) has a nontrivial solution.

Theorem 8. L_0^0 has three types of faithful matrix representations of dimension 3, as the least dimension, namely:

type 1: $Z = uI_3$, $u \neq 0$, X = diag(a, b, c), $\Delta_1 \neq 0$, type 2: Z = diag(u, u, v), X = diag(a, b, c), $\Delta_2 \neq 0$, type 3: Z = diag(u, v, w), X = diag(a, b, c), $\Delta_3 \neq 0$,

where,

$$\varDelta_1 = \begin{vmatrix} 1 & a & \overline{a} \\ 1 & b & \overline{b} \\ 1 & c & \overline{c} \end{vmatrix}, \quad \varDelta_2 = \begin{vmatrix} u & a & \overline{a} \\ u & b & \overline{b} \\ v & c & \overline{c} \end{vmatrix}, \quad \varDelta_3 = \begin{vmatrix} u & a & \overline{a} \\ v & b & \overline{b} \\ w & c & \overline{c} \end{vmatrix};$$

for $a, b, c \in \mathbb{C}$ and different $u, v, w \in \mathbb{R}$. $Y = X^{\dagger} = \overline{X}$.

Proof. Since r = 0, in view of (4), Lemma 2 is also applicable to L_0^0 . Thus we have the following three cases.

Case 1: Let $Z = uI_3 \neq 0$ and let $A, B = A^{\dagger}$ and C = Z, be 3×3 representation matrices for K_+, K_- and K_0 respectively. Since $AA^{\dagger} = A^{\dagger}A$, A is a normal matrix. Hence, $A = U^{\dagger}DU$ for some unitary matrix U and a complex diagonal matrix D. Since $A + A^{\dagger}$ is real, $U^{\dagger}(D + \overline{D}) U = R$ for some real matrix R. But $U^{\dagger}(D + \overline{D}) U$ is a Hermitian matrix, therefore, R is symmetric and consequently, has real eigenvalues. Also, $D + \overline{D} = URU^{\dagger}$ is a real diagonal matrix. Hence, U^{\dagger} can be chosen as a real matrix since its columns consist of the eigen vectors of R. Therefore, U = O for some orthogonal matrix O. Hence, $A = O^{-1}DO$, $B = O^{-1}\overline{D}O$ and $C = O^{-1}uI_3O$. Obviously, this representation is conjugate to the representation $X = D = \text{diag}(a, b, c), Y = \overline{D}$ and $Z = uI_3$ which in view of (1) is faithful if $\Delta_1 \neq 0$.

Case 2: Let $Z = \operatorname{diag}(u, u, v)$, let $A, B = A^{\dagger}$ and C = Z, be 3×3 representation matrices for K_+, K_- and K_0 respectively. From Lemma 2, $A = \operatorname{diag}(A', c), A'$ is a 2×2 matrix. Since $AA^{\dagger} = A^{\dagger}A, A'A'^{\dagger} = A'^{\dagger}A'$, and as $A + A^{\dagger}$ is real, $A' + A'^{\dagger}$ is also real. With a similar argument for A' instead of A as in Case 1, we find that $A' = O'^{-1}D'O'$ for some orthogonal matrix O' and diagonal matrix $D' = \operatorname{diag}(a, b)$. Let $O = \operatorname{diag}(O', 1)$, and $D = \operatorname{diag}(D', c)$, then we have $A = O^{-1}DO, B = O^{-1}\overline{D}O$ and $C = O^{-1}ZO$, since O is an orthogonal matrix. Clearly, this representation is conjugate to the representation $X = D = \operatorname{diag}(a, b, c), Y = \overline{D}$ and $Z = \operatorname{diag}(u, u, v)$ which in view of (1) is faithful if $\Delta_2 \neq 0$.

L. A-M. HANNA

[6]

Case 3: If Z = diag(u, v, w), then from Lemma 2, X is a complex diagonal matrix. So, let X = diag(a, b, c) which from (1), is faithful if $\Delta_3 \neq 0$.

Acknowledgment. The author acknowledges the fruitful discussions with Prof. Georg Heinig, Prof. S. S. Hassan and Prof. S. Singh, and the support of Kuwait University.

References

- M. A. AL-GWAIZ, M. S. ABDALLA and S. DESHMUKH, Lie algebraic approach to coupled-mode oscillator, J. Phys. A 27 (1994), 1275-1282.
- [2] G. DATTOLI, P. DI LAZZARO and A. TORRE, A spinor approach to the propagation in self-focusing fibers, Il Nuovo Cimento B 105 (1990), 165-178.
- [3] G. DATTOLI, M. RICHETTA, G. SCHETTINI and A. TORRE, Lie algebraic methods and solutions of linear partial differential equations, J. Math. Phys. 31 (1990), 2856-2863.
- [4] L. A.-M. HANNA, M. E. KHALIFA and S. S. HASSAN, On Representations of Lie algebras for quantized Hamiltonians, Linear Algebra Appl. 266 (1997), 69-79.
- [5] L. A.-M. HANNA, On the matrix representation of the Lie algebras for quantized Hamiltonians and their central extensions, Riv. Mat. Univ. Parma (5) 6 (1997), 5-11.
- [6] S. S. HASSAN, L. A.-M. HANNA and M. E. KHALIFA, Lie algebraic approach to Schrödinger equations for Hamiltonian models of optical atoms, Second Int. Conf. on Dynamic Systems and Applications, Atlanta, USA 1995, to appear.
- [7] R. J. C. SPREEUW and J. P. WOERDMAN, Optical atoms, Progr. Optics 31 (1993), 263-319.
- [8] S. STEINBERG, Applications of the Lie algebraic formulas of Baker, Campbell, Hausdorff and Zassenhaus to the calculation of explicit solutions of partial differential equations, J. Differential Equations 26 (1977), 404-434.
- [9] W. WITSCHEL, Ordered operator expansions by comparison, J. Phys. A 8 (1975), 143-155.

Abstract

Consider the Lie algebras L_r^s : $[K_+, K_-] = sK_0$, $[K_0, K_{\pm}] = \pm rK_{\pm}$; $r, s \in \mathbb{R}$, K_0 is a Hermitian operator and $K_- = K_+^{\dagger}$. In [4], [5] the faithful matrix representations of L_r^s and $^cL_r^s$ were discussed for $rs \neq 0$. In this note we consider the case rs = 0. We prove that L_0^0 has three types of faithful 3-dimensional representations, as the least dimension, while L_0^s , $s \neq 0$ and L_r^0 , $r \neq 0$ have none.

* * *