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ABDESLEM LY A G H F O U R I (*)

A unified formulation for the dam problem (**)

1 - Statement of the problem

Let V be a bounded, locally Lipschitz, domain in Rn (nF2). V represents a
porous medium. The boundary G of V is denoted by G. Assuming that the flow in
V has reached a steady state, we are concerned with finding the pressure p of the
fluid and the saturated region of the porous medium, i.e., the subset S of V where
pD0. Let us first describe the formulation of our problem.

The boundary of S that we denote by ¯S, is divided into four parts: an impervi-
ous part, G 1 , a free boundary, G 2 , a part covered by the fluid, G 3 , and finally a
seepage front, G 4 , where the fluid flows outside V but does not remain there in a
significant amount to modify the pressure (see Fig. 1).

Fig. 1.
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In the saturated region, the fluid velocity v
K

and its pressure p are related by
the generalized Darcy law

v
K
42 A (x , ˜(p1xn ) )42 A(x , ˜u)(1.1)

where x4 (x1 , R , xn ) denotes points in Rn , u4p1xn is the hydrostatic head
and A : V3RnKRn is a mapping that satisfies the following assumptions with
some constants qD1 and bFaD0:

.
/
´

the function xO A(x , j) is measurable (j�Rn , and

the function jO A(x , j) is continuous for a.e. x�V ,
(1.2)

for all j�Rn and a.e. x�V

A(x , j) NjFaNjNq ,(1.3)

NA(x , j)NGbNjNq21 ,(1.4)

for all j , z�Rn and a.e. x�V

( A(x , j)2A(x , z) ) N(j2z)F0 .(1.5)

A typical example of nonlinear Darcy’s laws for a homogeneous porous medium
(see [13], [16], [24], [28]) corresponds to the q-Laplacian

A(x , j)4NjNq22 j .

Now we have the following strong formulation

.
`
/
`
´

v
K
42A(x , ˜u)

div ( v
K

)40

uDxn

2 v
K
Nn�B(x , c2u)

in S ,

in S ,

in S and u4xn in S c ,

on G ,

where c4W1xn and W is a nonnegative Lipschitz continuous function in V, rep-
resenting the exterior pressure on G. B is a multivalued monotone function and
the goal of this modelisation is to give a unified formulation to the boundary con-
ditions for the dam problem. In the classical formulation of this problem, we have
G4S1NS2NS3 , where S1 denotes the impervious part of G, S2 is the part in con-
tact with the air and S34 0

1G iGN
S3, i the part covered by fluid (see Fig. 1). So if B
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is given by:

B(x , N)4
.
/
´

R3]0(

]0(3R

for a.e.

for a.e.

x�S1 ,

x�S2NS3 .
(1.7)

(resp. B(x , N)4
.
/
´

R3]0(

]0(3R

](u , b(x , u) ) /u�R(

for a.e.

for a.e.

for a.e.

x�S1 ,

x�S2 ,

x�S3 ,

(1.8)

where b : S33RKR is a continuous monotone function with respect to the sec-
ond variable), we are in the case of Dirichlet boundary conditions i.e. p4W on
S2NS3 (see [3, 4, 5, 6, 8, 11, 13, 27]) (resp. leaky boundary conditions i.e. p4W on
S2 and v

K
Nn42 b(x , W2p) on S3 (see [6, 12, 14, 15, 16, 17, 28, 30, 32])).

For B, we assume that

for a.e. x�G , sO B(x , s) is a maximal monotone graph of R2 ,(1.9)

0�B(x , 0 ) for a.e. x�G ,(1.10)

for a.e. x�G, D(B(x, N)) is closed .(1.11)

For a.e. x�G, let (a(x), b(x) )4 Int (D ( B(x , N) )) where 2QGa(x)G0Gb(x)
G1Q . Assumptions (1.10) and (1.11) imply that for a.e. x�G, there exists a
unique pair B1 (x , N) and B2 (x , N) of maximal monotone graphs in R2 such
that

.
`
`
`
/
`
`
`
´

D ( B2 (x , N) )4R ,

B2 (x , N)4B(x , N) , in (a(x), b(x) ) ,

B2 (x , a(x) )4]a(x)(3 [B0 (x , a(x) ), B0 (x , a(x)1 )] ,

B2 (x , s)4](s , B0 (x , a(x) ))( , (sEa(x) ,

B2 (x , s)4](s , B0 (x , b(x) ))( , (sDb(x) ,

B2 (x , b(x) )4]b(x)(3 [B0 (x , b(x)2 ), B0 (x , b(x) )] ,

D ( B1 (x , N) )4D ( B(x , N) ) ,

B1 (x , N)40 in Int (D ( B(x , N) )) ,

B4B11B2 ,

(1.12)

where B0 is the minimal section of B and for a.c. x�G , B0 (x , s2 ) (resp.
B0 (x , s1 ) ) is the left (resp. right) limit of B0 (x , Q) at s.



116 A. LYAGHFOURI [4]

Moreover, we assume that

(1.13) )HDmax (max ]xn , (x 8 , xn )�V(, max ]c(x), x�G( ) such that

�
G

NB0
2 (x , c(x)2H )Nq 8 ds(x), �

G

NB0
2 (x , W(x) )Nq 8 ds(x)E1Q

i.e. B0
2 (N , c2H), B0

2 (N , W)�L q 8 (G).

Note that (1.13) is satisfied for example if we have

)R0D0, (RFR0 , )CR such that B2 (x , s)% (2CR , CR ),

(s� (2R , R), for a.e. x�G .

Then we have the following weak unified formulation of the Dam problem
(see [2])

(P)

.
`
`
/
`
`
´

Find (u , g , g)�W 1, q (V)3L Q (V)3L q 8 (G), such that :

( i ) c(x)2u(x)�D ( B(x , N) ) for a.e. x�G ,

( ii ) uFxn , 0GgG1, gN(u2xn )40 a.e. in V ,

( iii ) g(x)�B2 (x , c(x)2u(x) ) for a.e. x�G ,

and g(x)G0 for a.e. x�G such that c(x)4xn ,

( iv ) �
V

( A(x , ˜u)2gA(x , e) ) N˜(j2u) dxF�
G

gN(j2u) ds(x) ,

(j�K4]j�W 1, q (V)/a(x)Gc(x)2j(x)Gc(x) for a.e. x�G(

where q 8 is the conjuguate exponent of q and for a.e. x�G: c(x)4b(x) if W(x)D0
and c(x)41Q if W(x)40.

In the following paragraph, we establish an existence of a solution of (P). In
the last section we consider the case of unbounded domains.

R e m a r k 1.1. Throughout this paper we denote by N . Nr , G , (Resp. NNNr ) the
usual L r-norm on G, (Resp. V) and NEN denotes the Lebesgue measure of the
measurable set E. NNN1, l denotes the usual norm of the Sobolev space W 1, l .

2 - The case of bounded domains

2.1 - Existence of a solution

We have
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T h e o r e m 2.1. Assume that W is a nonnegative Lipschitz continuous func-
tion, A satisfies (1.2)-(1.5) and B satisfies (1.9)-(1.13), then there exists a solution
(u , g , g) to problem (P).

For eD0, we introduce the following approximated problem

(Pe)

.
`
`
/
`
`
´

Find ue�V such that

�
V

e(NueNq22ue2NxnNq22xn)Nj1(A(x,˜ue)2Ge(ue)A(x,e))N˜j dx

1�
G

e(NueN
q 822ue2NxnN

q 822xn)Nj ds(x)

4�
G

(B1
e(x,c2ue)1B2

e(x,c2ue))Nj ds(x) ,

(j�V4]j�W 1,q(V)/j NG�L q 8(G)( ,

where Ge : L q (V)KL Q (V) is defined for a.e. x�V by

Ge (v(x) )4
.
/
´

0

12 (v(x)2xn ) /e

1

if

if

if

v(x)2xnFe ,

0Gv(x)2xnGe ,

v(x)2xnG0 .

(2.1)

Bi
e denotes the Yoshida approximation of Bi for i41, 2. Note that Bi

e is a nonde-
creasing Lipschitz continuous function with respect to the second variable. The
constant of Lipschitz is equal to 1 /e and by (1.10) and (1.12) we have

Bi
e (x , 0 )40 for a.e. x�G ,

which leads by the monotonicity of Bi
e (x , N) to

Bi
e (x , u) NuF0 for a.e. x�G , (u�R .(2.2)

The space V is equipped with the norm VuV4NuN1, q1NuNq 8 , G (u�V. Then we
have

T h e o r e m 2.2. Assume that W is a nonnegative Lipschitz continuous func-
tion, that A satisfies (1.2)-(1.5) and B satisfies (1.9)-(1.12). Then, there exists a
unique solution ue of (Pe ).
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P r o o f . First let us define for u�V

Au : VKR ,

jO aAu , jb4�
V

eNuNq22 uNj1A(x , ˜u) N˜j dx1�
G

eNuNq 822 uNj ds(x)

2�
G

( B1
e (x , c2u)1B2

e (x , c2u) ) Nj ds(x) .

Then it is clear that the operator A defined by A : u�VOAu is continuous from
V into V 8. Moreover as a consequence of the following lemma which is proved in
[18] and the monotonicity of A and Bi

e , one can see easily that A is mono-
tone,

L e m m a 2.3. Assume qD1. There exists mD0 such that for all (x , y)
� (Rn )2 we have

i ) if qF2 ,

ii ) if 1EqE2 ,

mNx2yNqG (NxNq22 x2NyNq22 y , x2y) ,

mNx2yN2G (NxN1NyN)22q (NxNq22 x2NyNq22 y , x2y) .

Now, we have for u�V

aAu , ub4�
V

eNuNq1A(x , ˜u) N˜u dx1e�
G

NuNq 8 ds(x)2!
i41

2

�
G

Bi
e (x , c2u) Nu ds(x) .

Note that by (2.2) and the Lipschitz continuity of Bi
e (x , N), we have

(2.3) �
G

Bi
e (x , c2u) Nu ds(x)G�

G

Bi
e (x , c2u) Ncds(x)

G
1

e
�

G

Nc2uNNNcNds(x)Gc01c1 NuNq 8 , G .

Using (1.3) and (2.3), one can check for some constants ci

aAu , ubFc2 (NuN1, q
q 1NuNq 8 , G

q 8 )22c1 NuNq 8 , G22c0 , (u�V .(2.4)
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Thus, since q , q 8D1

lim
VuVK1Q

aAu , ub

VuV
41Q .

So A is coercive. r
Next for v�L q (V), we consider the map:

fv : VKR ,

jO �
V

eNxn Nq22 xn . j dx1�
V

Ge (v) A(x , e) N˜j dx1�
G

eNxn Nq 822 xn . j ds(x).

It is clear that fv is a continuous linear form on V. Since A is continuous, coercive,
monotone, we deduce (see [26]) that for every v�L q (V) there exists a unique ue

solution of the variational problem

.
/
´

ue�V ,

aAue , wb4 a fv , wb , (w�V .
(2.5)

Now, let us consider the map Te defined by: Te : L q (V)KV , vOue .
Then one has

i ) )R(e)D0/Te(B (0 , R(e) ))%B (0 , R(e) ) ,

ii ) Te : L q (V)KL q (V) is continuous ,

where B (0 , R(e) ) denotes the closed ball in L q (V) of center 0 and radius
R(e).

Indeed, note that ue is a suitable test function of (2.5), so:

aAue , ue b4 a fv , ue b .(2.6)

Using (2.4) and (2.6), we deduce, for some constant R(e) depending on e,
that

Vue VGR(e) .

So we have : NueNq , VGVue VGR(e) and Te(B (0 , R(e) ))%B (0 , R(e) ). Moreover
Te(B (0 , R(e) )) is bounded in W 1, q (V) since Nue N1, qGVue VGR(e) and thus it is
relatively compact in L q (V).

ii) Let (vk )k be a sequence in L q (V) which converges to v in L q (V).

Set ue
k4Te (vk ) and ue4Te (v). Since ue

k2ue is a suitable test function for
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(2.5), one has by writting (2.5) for ue
k and ue and subtracting the equations

(2.7) �
V

( A(x , ˜ue
k )2A(x , ˜ue ) ) N˜(ue

k2ue )

1e(Nue
k Nq22 ue

k2Nue Nq22 ue ) N(ue
k2ue ) dx

1�
G

e(Nue
k Nq 822 ue

k2Nue Nq 822 ue ) N(ue
k2ue )ds(x)

4�
V

(Ge (vk )2Ge (v) ) A(x , e) N˜(ue
k2ue ) dx

1 !
i41

i42

�
G

( Bi
e (x , c2ue

k )2Bi
e (x , c2ue ) ) N(ue

k2ue ) ds(x) .

Now we have

N�
V

(Ge (vk )2Ge (v) ) A(x , e) N˜(ue
k2ue ) dxNG�

V

bNGe (vk )2Ge (v)NNN˜(ue
k2ue )Ndx

Gb g �
V

NGe (vk )2Ge (v)Nq 8 dxh1/q 8
Ng �

V

N˜(ue
k2ue )Nq dxh1/q

.

Moreover since q 8D1 and 0GGe (vk ), Ge (v)G1 a.e. in V, one has

NGe (vk )2Ge (v)Nq 8

4NGe (vk )2Ge (v)Nq 821 NGe (vk )2Ge (v)NGNGe (vk )2Ge (v)NG
1

e
Nvk2vN

which leads by Hölder’s inequality to

g �
V

NGe (vk )2Ge (v)Nq 8 dxh1/q 8
G

1

e 1/q 8 g �
V

Nvk2vNdxh1/q 8
G

NVN1/q 82

e 1/q 8 g �
V

Nvk2vNq dxh1/qq 8
.
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Hence we obtain

(2.8) N�
V

(Ge (vk )2Ge (v) ) A(x , e) N˜(ue
k2ue ) dxN

G
bNVN1/q 82

e 1/q 8
Vue

k2ue Vg �
V

Nvk2vNq dxh1/qq 8
.

Taking into account (2.8), the fact that Vue
k2ue VG2R(e), the monotonicity of

Bi
e (x , N), A(x , N) and Lemma 2.3, we deduce from (2.7)

�
V

e(Nue
k Nq22 ue

k2Nue Nq22 ue ) N(ue
k2ue ) dxGcNNvk2vNq

1/q 8

which leads to

lim
kK1Q

�
V

(Nue
k Nq22 ue

k2Nue Nq22 ue ) N(ue
k2ue ) dx40 .(2.9)

Using (2.9) and Lemma 2.3, we deduce that if qF2

ue
kKue in L q (V) .

When 1EqE2, we set we
k4Nue

k Nq22 ue
k and we4Nue Nq22 ue , so that ue

k

4Nwe
k Nq 822 we

k , ue4Nwe Nq 822 we and (2.9) becomes

lim
kK1Q

�
V

(Nwe
k Nq 822 we

k2Nwe Nq 822 we ) N(we
k2we ) dx40

which leads again by Lemma 2.3, since q 8D2 to we
kKwe in L q 8 (V). Now using

the continuity of the operator: L q 8 (V)KL q (V), wO NwNq 822 w, we get ue
kKue in

L q (V). Hence the continuity of Te holds.
At this step, applying the Schauder fixed point theorem on B (0 , R(e) ) (see

[23]), we derive that Te has a fixed point. Thus (Pe ) has at least one sol-
ution.

Let us now prove the uniqueness of the solution of (Pe ). Consider ue and ue8
two solutions of (Pe ).

For dD0, we define as in [9] a function Td : RKR by

Td (s)4
.
/
´

s

d
s

NsN

if

if

NsNGd ,

NsNDd .
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Since Td�C(R) and T 8d �L Q (R), we have (u�W 1, q (V): Td ou�W 1, q (V)
and

˜(Td ou)4Td8 (u) N˜u4x( [NuNGd] ) ˜u .(2.10)

Set v4ue2ue8. Choose Td (v) as a test function for (Pe ) written for ue and ue8.
Subtract the equations, so that

(2.11) �
V d

( A(x , ˜ue )2A(x , ˜ue8 ) ) N˜(ue2ue8 ) dx

1�
V

e(Nue Nq22 ue2Nue8 Nq22 ue8 ) NTd (v) dx

1�
G

e(Nue Nq 822 ue2Nue8 Nq 822 ue8 ) NTd (v) ds(x)

4 �
V d

(Ge (ue )2Ge (ue8 ) ) A(x , e) N˜(ue2ue8 ) dx

1 !
i41

i42

�
G

( Bi
e (x , c2ue )2Bi

e (x , c2ue8 ) ) NTd (v) ds(x)

where V d4]x�V/Nv(x)NGd(.
Using the monotonicity of A(x , N), Td , Bi

e (x , N) and Lemma 2.3, we get from
(2.11)

(2.12) �
V

e(Nue Nq22 ue2Nue8 Nq22 ue8 ) NTd (v) dx

G �
V d

(Ge (ue )2Ge (ue8 ) ) A(x , e) N˜(ue2ue8 ) dx .

But since V4V dNV d8 , where V d8 4]x�V/Nv(x)NDd( and V dOV d8 4¯, we
get by using the Lipschitz continuity of Ge

�
V d8

ed(Nue Nq22 ue2Nue8 Nq22 ue8 ) N
(ue2ue8 )

Nue2ue8 N
dx

1 �
V d

e(Nue N
q22 ue2Nue8 N

q22 ue8 ) NTd (ue2ue8 ) dxG
bd

e
�

V d

N˜(ue2ue8 )Ndx .
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Using the monotonicity of Td and wO NwNq22 w, we get:

�
V d8

NNue Nq22 ue2Nue8 Nq22 ue8 NdxG
b

e 2
�

V d

N˜(ue2ue8 )Ndx .(2.13)

Letting dK0 in (2.13), we get

�
V

NNue Nq22 ue2Nue8 Nq22 ue8 Ndx40

which leads to ue4ue8 a.e. in V. r

Let us now show that our sequence (ue ) is uniformly bounded in L Q (V).

L e m m a 2.4. Let ue be a solution of (Pe ) and let e 0D0 such that

HFmax (max ]e 01xn , (x 8 , xn )�V(, max ]c(x), x�G( ) ,(2.14)

where H is the nonnegative constant given by (1.13). Then we have for any
e� (0 , e 0 )

xnGueGH a.e. in V .(2.15)

P r o o f . i) Since (ue2H)1 is a suitable test function for (Pe ), we have

(2.16) �
V

A(x , ˜ue ) N˜(ue2H)11e(Nue Nq22 ue2Nxn Nq22 xn ) N(ue2H)1 dx

1�
G

e(Nue Nq 822 ue2Nxn Nq 822 xn ) N(ue2H)1 ds(x)

4�
V

Ge (ue ) A(x , e) N˜(ue2H)1 dx1 !
i41

i42

�
G

Bi
e (x , c2ue )(ue2H)1 ds(x) .

Note that by (2.14), one has for e� (0 , e 0 ) and ue (x)FH: ue (x)FHFe 01xn

Fe1xn for a.e. x�V and then by (2.1) Ge (ue (x) )40. So

Ge (ue ) A(x , e) N˜(ue2H)140 a.e. in V .(2.17)

Using (2.2), (2.14) and the monotonicity of Bi
e (x , N), one has

Bi
e (x , c2ue )(ue2H)1GBi

e (x , H2ue )(ue2H)1G0 for a.e. x�G .(2.18)
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Then we deduce from (1.3), (2.14)-(2.18) and Lemma 2.3

�
V

e(Nue Nq22 ue2NHNq22 H) N(ue2H)11aN˜(ue2H)1Nq dxG0

which leads to (ue2H)140 and ueGH a.e. in V.

ii) We denote by (N)2 the negative part of a function. Then j4 (ue2xn )2 is a
test function for (Pe ) and one has

(2.19) �
V

A(x , ˜ue ) N˜(ue2xn )21e(Nue Nq22 ue2Nxn Nq22 xn ) N(ue2xn )2 dx

1�
G

e(Nue Nq 822 ue2Nxn Nq 822 xn ) N(ue2xn )2 ds(x)

4�
V

Ge (ue ) A(x , e) N˜(ue2xn )2 dx1 !
i41

i42

�
G

Bi
e (x , c2ue )(ue2xn )2 ds(x) .

Using (2.1), one has

�
V

Ge (ue ) A(x , e) N˜(ue2xn )2 dx42 �
VO [ueGxn ]

Ge (ue ) A(x , e) N˜(ue2xn ) dx

42 �
VO [ueGxn ]

A(x , e) N˜(ue2xn ) dx .

Moreover using (2.2) and the monotonicity of Bi
e (x , N), one has also

�
G

Bi
e (x , c2ue )(ue2xn )2 ds(x)F�

G

Bi
e (x , xn2ue )(ue2xn )2 ds(x)

4 �
GO [ueGxn ]

Bi
e (x , xn2ue )(xn2ue ) ds(x)F0 .

Then we obtain from (2.19):

�
VO [ueGxn ]

( A(x , ˜ue )2A(x , ˜xn ) ) N(˜ue2˜xn )

1e(Nue Nq22 ue2Nxn Nq22 xn ) N(ue2xn ) dx

1 �
GO [ueGxn ]

e(Nue Nq 822 ue2Nxn Nq 822 xn ) N(ue2xn ) ds(x)G0 .
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Using (1.5) and Lemma 2.3, we conclude from the last inequality that ueFxn a.e.
in V. r

Now we give an a priori estimate for ˜ue .

Lemma 2.5. Under assumptions of Lemma 2.4, we have for any e�(0 , e 0 )

�
V

N˜ue Nq dxGC ,(2.20)

where C is a constant independent of e.

P r o o f . Note that ue2c is a suitable test function for (Pe ). Then we get by
(2.2)

�
V

e(Nue Nq22 ue2Nxn Nq22 xn ) N(ue2c)1( A(x , ˜ue )2Ge (ue ) A(x , e) ) N˜(ue2c) dx

1�
G

e(Nue Nq 822 ue2Nxn Nq 822 xn ) N(ue2c) ds(x)

4�
G

( B1
e (x , c2ue )1B2

e (x , c2ue ) ) N(ue2c) ds(x)G0

which leads to

(2.21) �
V

A(x,˜ue)N˜uedxG�
V

A(x,˜ue)N˜c dx2�
V

e(NueNq22ue2NxnNq22xn)N(ue2c) dx

1�
V

Ge (ue ) A(x , e) N˜(ue2c) dx2�
G

e(Nue Nq 822 ue2Nxn Nq 822 xn ) N(ue2c) ds(x).

By (1.4) and Hölder’s inequality, we have:

N�
V

A(x , ˜ue ) N˜c dxNGb g �
V

N˜ue Nq dxh1/q 8
Ng �

V

N˜cNq dxh1/q
,(2.22)

N�
V

Ge (ue ) A(x , e) N˜(ue2c) dxNGbNVN1/q 8g �
V

N˜ue N
q dxh1/q

1b�
V

N˜cNdx .(2.23)
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Using (1.3), (2.15), (2.21)-(2.23), we derive for some constant cD0

�
V

N˜ue Nq dxG
c

a g11 g �
V

N˜ue Nq dxh1/q
1 g �

V

N˜ue Nq dxh1/q 8h .(2.24)

Hence we get (2.20) from (2.24) since q , q 8D1. r

Proof of Theorem 2.1. The proof will consist in passing to the limit, when e

goes to 0, in (Pe ). First remark that Ge (ue ) is uniformly bounded (0GGe (ue )G1,
see (2.1)) and ue is bounded in W 1, q (V) by (2.15) and (2.20), thus one has for
some constant C independent of e

NGe (ue )Nq 8GC , Nue N1, qGC , NA(x , ˜ue )Nq 8GC .

So, due to the Rellich theorem and the complete continuity of the trace operator,
there exist a subsequence e k , u�W 1, q (V), g�L q 8 (V) and A0�Lq 8 (V) such
that

Ge k
(ue k

) � g in L q 8 (V) ,(2.25)

ue k
�u in W 1, q (V), ue k

Ku in L q (V) and a.e. in V ,(2.26)

ue k
Ku in L q (G) and a.e. on G .(2.27)

A(x , ˜ue k
) � A0 in Lq 8 (V).(2.28)

Moreover by (2.15), one has

c2HGc2ue k
Gc2xn4W a.e. in V .(2.29)

Using (2.29) and the monotonicity of B2
e k (x , N), we get for a.e. x�G (see [7],

Proposition 1.1 page 42)

NB2
e k (x , c2ue k

)NGmax (NB2
0 (x , c2H)N , NB2

0 (x , W)N )

from which we deduce by (1.13), for some constant C

NB2
e k (x , c2ue k

)Nq 8 , GGC .

Then we deduce that there exists g�L q 8 (G) such that

B2
e k (x , c2ue k

) � g�L q 8 (G) .(2.30)

We are going to show that (u , g , g) is a solution of (P).
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Since the set K14]v�W 1, q (V) /vFxn a.e. in V( is weakly closed and ue k

�K1 , u is in this set so that

uFxn a.e. in V .(2.31)

Next, the set K24]v�L q 8 (V) /0GvG1 a.e. in V( is also weakly closed in
L q 8 (V), and thus

0GgG1 a.e. in V .(2.32)

Since Ge k
(ue k

(x) )412He k
(ue k

(x)2xn ) with He k
(s)4min(s 1 /e k , 1 ), one has

�
V

Ge k
(ue k

) N(ue k
2xn ) dx4 �

VO[0Gue k (x)2xnGe k ]

(12He k
(ue k

(x)2xn )) N (ue k
(x)2xn ) dx

and

0G�
V

Ge k
(ue k

) N(ue k
2xn ) dxGe k NVN ,

which leads by (2.25)-(2.26) to

04 lim
kK1Q

�
V

Ge k
(ue k

) N(ue k
2xn ) dx4�

V

gN(u2xn ) dx .

So by (2.31)-(2.32), we get

gN(u2xn )40 a.e. in V .(2.33)

Now since we have for a.e. x�G such that

c4xn , B2
e k (x , c2ue k

)4B2
e k (x , xn2ue k

)G0 ,

we deduce that

g(x)G0 for a.e. x�G such that c4xn .(2.34)

Moreover one has c2ue k
Kc2u in L q (G) and B2

e k (x , c2ue k
) �g in L q 8 (G).

Then (see [7], Lemma 1.3, page 42) we have

g(x)�B2 (x , c(x)2u(x) ) for a.e. x�G .(2.35)

Note that since c2ue k
is a test function for (Pe k

), B1
e k (x , N) is nondecreasing and



128 A. LYAGHFOURI [16]

due to (2.15) and (2.20), we derive for some nonnegative constant C

0G�
G

B1
e k (x , c2ue k

) N(c2ue k
) ds(x)GC

which can be written since for a.e. x�G, (u�D(B): B1
e k (x , u)4 (1 /e k ) ((u2b)1

2 (a2u)1 ), with the convention that if a42Q (resp. b41Q), one has
(a2u)140 (resp. (u2b)140)

0G�
G

(min (c2ue k
2a , 0 )1max (c2ue k

2b , 0 ) ) N(c2ue k
) ds(x)Ge k C

and then by letting kK1Q, we obtain by (2.27), (2.29) and the Lebesgue
theorem

�
G

(min (c2u2a , 0 )1max (c2u2b , 0 ) ) N(c2u) ds(x)40 .

Since aG0Gb a.e. in G, one has

min (c2u2a , 0 )(c2u)F0 and max (c2u2b , 0 ) N(c2u)F0 a.e. on G

which leads to

aGc2uGb a.e. on G.

Hence we get

(c2u)(x)�D ( B(x , N) ) for a.e. x�G .

Thus (P) i), ii) and iii) follow. Let us prove (P) iv). First note that any element of
W 1, q (V) is a test function of (Pe k

). Let j�K and note that

B1
e k (x , c2ue k

) N(j2ue k
)F0 a.e. in G .(2.36)

Indeed one has

B1
e k (x , c2ue k

) N(j2ue k
)

4
1

e k

(c2ue k
2b)1 N(j2ue k

)2
1

e k

(a2 (c2ue k
) )1 N(j2ue k

) .

Since c2jFa a.e. in G, then j2ue k
Gc2ue k

2a and 2 (a2 (c2ue k
) )1

N(j2ue k
)F (a2 (c2ue k

) )1 N (a2 (c2ue k
) )F0 a.e. in G.
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Let us distinguish two cases

– cDxn: By definition c4b and c2jGb. So jFc2b which leads
to

(c2ue k
2b)1 N(j2ue k

)F (c2ue k
2b)1 N(c2ue k

2b)F0.

– c4xn: In this case (c2ue k
2b)14 (xn2ue k

2b)140 since ue k
2xnF0

and bF0.

It follows then from (2.36)

(2.37) �
V

( A(x , ˜ue k
)2Ge k

(ue k
) A(x , e) ) N˜(j2ue k

)

1e k (Nue k
Nq22 ue k

2Nxn N
q22 xn ) N(j2ue k

) dx

1�
G

e k (Nue k
Nq 822 ue k

2Nxn N
q 822 xn ) N(j2ue k

) ds(x)

F�
G

B2
e k (x , c2ue k

) N(j2ue k
) ds(x) .

To pass to the limit, we will need the following lemma

L e m m a 2.6. We have

�
V

A(x , ˜u) N˜j dx4�
V

A0 (x) N˜j dx , (j�W 1, q (V) .(2.38)

P r o o f . Since u�K, we deduce from (2.37) by taking j4u

(2.39) �
V

A(x , ˜ue k
) N˜ue k

dxG�
V

A(x , ˜ue k
) N˜u dx

2�
V

e k (Nue k
Nq22 ue k

2Nxn N
q22 xn ) N(ue k

2u) dx

2�
G

e k (Nue k
Nq 822 ue k

2Nxn N
q 822 xn ) N(ue k

2u) ds(x)

1�
V

Ge k
(ue k

) A(x , e) N˜(ue k
2u) dx

1�
G

B2
e k (x , c2ue k

) N(ue k
2u) ds(x) .
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By (2.28) we have

lim
kK1Q

�
V

A(x , ˜ue k
) N˜u dx4�

V

A0 N˜u dx .(2.40)

According to (2.26)-(2.27) and since ue k
is bounded uniformly, the second and

third terms in the right hand side of (2.39) converge to 0 when kK1Q. From
(2.27) and (2.30), we have

lim
kK1Q

�
G

B2
e k (x , c2ue k

) N(ue k
2u) ds(x)40 .(2.41)

Now one can write

(2.42) �
V

Ge k
(ue k

) A(x , e) N˜(ue k
2u) dx

4�
V

Ge k
(ue k

) A(x , e) N˜(ue k
2xn ) dx2�

V

Ge k
(ue k

) A(x , e) N˜(u2xn ) dx .

By (2.25) and (2.33), the second term in the right hand side of (2.42) converges to
0 when kK1Q. For the first term, note that

�
V

Ge k
(ue k

) A(x , e) N˜(ue k
2xn ) dx4�

V

A(x , e) N˜vk dx(2.43)

÷

with vk4 �
0

ue k2xn

(12He k
(s) ) ds. Moreover since Nvk (x)NGe k for a.e. x�V and

Nvk N1, qGC for some constant CD0, it is not difficult to see that vk � 0 weakly in
W 1, q (V) and then we obtain from (2.42)-(2.43)

lim
kK1Q

�
V

Ge k
(ue k

) A(x , e) N˜(ue k
2u) dx40 .(2.44)

Combining (2.39)-(2.41) and (2.44), we conclude that

lim�
V

A(x , ˜ue k
) N˜ue k

dxG�
V

A0 (x) N˜udx .(2.45)



131A UNIFIED FORMULATION FOR THE DAM PROBLEM[19]

Let now v�W 1, q (V). By (1.5), we have

�
V

( A(x , ˜ue k
)2A(x , ˜v) ) N˜(ue k

2v) dxF0 , (k�N

and

(2.46) �
V

A(x , ˜ue k
) N˜ue k

dx2�
V

A(x , ˜ue k
) N˜v dx

2�
V

A(x , ˜v) N˜(ue k
2v) dxF0 , (k�N .

Passing to the limsup in (2.46) and taking into account (2.26), (2.28) and (2.45), we
get

�
V

A0 (x) N˜udx2�
V

A0 (x) N˜v dx2�
V

A(x , ˜v) N˜(u2v) dxF0

or

�
V

( A0 (x)2A(x , ˜v) ) N˜(u2v) dxF0.(2.47)

If we choose v4u6lj with j�W 1, q (V) and l� [0 , 1 ], in (2.47), we obtain by
letting l go to 0 and using (1.2), (1.4) and the Lebesgue theorem

�
V

( A0 (x)2A(x , ˜u) ) N˜j dx40 .

Thus we have proved (2.38). r

Let us now finish the proof of Theorem 2.1. Consider j4u in (2.38), we
get

�
V

A(x , ˜u) N˜u dx4�
V

A0 (x) N˜u dx .(2.48)

Using (2.45) and (2.48), we obtain

lim�
V

A(x , ˜ue k
) N˜ue k

dxG�
V

A(x , ˜u) N˜udx .(2.49)
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Now we have

(2.50) �
V

( A(x , ˜ue k
)2A(x , ˜u) ) N˜(ue k

2u) dx4�
V

A(x , ˜ue k
) N˜ue k

dx

2�
V

A(x , ˜u) N˜ue k
dx2�

V

( A(x , ˜ue k
)2A(x , ˜u) ) N˜u dx .

Combining (2.26), (2.28), (2.48)-(2.50) and the monotonicity of A(x , N), we get

lim
kK1Q

�
V

A(x , ˜ue k
) N˜ue k

dx4�
V

A(x , ˜u) N˜u dx .(2.51)

Letting k go to 1Q in (2.37) and using (2.25)-(2.28), (2.30), (2.38), (2.44), (2.51)
and the fact that ue k

is uniformly bounded, we get

�
V

( A(x , ˜u)2gA(x , e) ) N˜(j2u) dxF�
G

gN(j2u) ds(x) .

This achieves the proof of Theorem 2.1. r

2.2 - Some properties of the solutions

P r o p o s i t i o n 2.7. Let (u , g , g) be a solution of (P). Then we have

0Gu2xnGc1h2xn a.e. in V(2.52)

where c is some nonnegative constant and h is such that

hDmax (max ]xn , (x 8 , xn )�V(, max ]c(x), x�G() .(2.53)

P r o o f . i) Since u2 (u2h)1 is a suitable test function for (P), we have

�
V

( A(x , ˜u)2gA(x , e) ) N˜(u2h)1 dxG�
G

g(u2h)1 ds(x) .(2.54)

Note that by (P) ii) and (2.53) one has gA(x , e) N˜(u2h)140 a.e. in V and by
the monotonicity of B2 (x , N) and (2.53) g(u2h)1G0 a.e. in G . Then we deduce
from (1.3) and (2.54)

�
V

aN˜(u2h)1Nq dxG0
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which leads to ˜(u2h)140 a.e. in V. Thus (u2h)14c for some nonnegative
constant c and the result follows. r

P r o p o s i t i o n 2.8. Let (u , g , g) be a solution of (P). Then we have in the
distributional sense

div ( A(x , ˜u)2gA(x , e) )40 .(2.55)

P r o o f . Let j�D(V). Taking 6j1u as a test function for (P), we get
(2.55). r

R e m a r k 2.9. i) We deduce from (2.55) (see [20, 31]) that u�C 0, a
loc (V) for

some a� (0 , 1 ) and then [uDxn ] is an open set.

ii) We also deduce from (2.55) and (P) ii) that div ( A(x , ˜u) )40 in
D8 ( [uDxn ] ) i.e. u is A-harmonic in [uDxn ]. So if A is sufficiently smooth (for
example if A(x , z)4NzNq22 z with qD1 ), then (see [19, 25]) u�C 1, g

loc ( [uDxn ] )
for some g� (0 , 1 ).

3 - The case of unbounded domains

Let V be an unbounded domain in Rn (nF2) whose boundary G is locally Lip-
schitz. V represents an unbounded porous medium. Assuming that the flow in V

has reached a steady state, we look for the pressure p of the fluid and the saturat-
ed region S of V. We suppose that V%Rn213 (2Q , H), H�R.

As in the bounded case and with the same notations, we have the following
strong formulation

.
`
/
`
´

v
K
42A(x , ˜u) in S ,

div ( v
K

)40 in S ,

uDxn in S and u4xn in S c ,

2 v
K
Nn�B(x , c2u) on G ,

(3.1)

where c4W1xn and W is a nonnegative Lipschitz continuous function in V rep-
resenting the pressure on G. We assume that we have

)H 8�R such that max
x�V

c(x)GH 8 ,(3.2)

A : V3RnKRn is a mapping that satisfies (1.2)-(1.5). B is a multivalued function
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that satisfies (1.9)-(1.12). Moreover, we assume that

)H1DH , H 8 such that B0
2 (N , c2H1 ), B0

2 (N , W)�Lloc
q 8 (G) .(3.3)

Note that (3.3) is satisfied for example if one has

)R0D0, (RFR0 , )CR such that B2 (x , s)% (2CR , CR ),

(s� (2R , R), for a.e. x�G .

Now set for a.e. x�G : c(x)4b(x) if W(x)D0 and c(x)41Q if W(x)40. Then
the weak unified formulation is the following:

(PQ )

.
`
`
`
/
`
`
`
´

Find (u , g , g)�Wloc
1 , q (V)3L Q (V)3L q 8

loc (G), such that

( i ) c(x)2u(x)�D ( B(x , N) ) for a.e. x�G ,

( ii ) uFxn , 0GgG1, gN(u2xn )40 a.e. in V ,

( iii ) g(x)�B2 (x, c(x)2u(x) ) for a.e. x�G

and g(x)G0 for a.e. x�G such that c(x)4xn ,

( iv ) �
V

( A(x , ˜u)2gA(x , e) ) N˜(j2u) dxF�
G

gN(j2u) ds(x) ,

(j�K(u)4]j�Wloc
1 , q (V) /supp (j2u) is bounded

and a(x)Gc(x)2j(x)Gc(x) for a.e. x�G( ,

where supp j denotes the support of the function j.
In [22] G. Gilardi and D. Kröner considered the problem of an unbounded dam

with Linear Darcy’s law and Dirichlet boundary conditions on the bottoms of the
reservoirs. They obtained a result of existence of a solution by regularization. In
[14] we imposed a leaky boundary condition and we obtained a solution as a
monotone limit of a sequence of solutions for bounded subdomains. Here we es-
tablish an existence of a solution as a limit of a sequence of solutions for bounded
subdomains.

3.1 - Existence of a solution of (Pr )

In this paragraph, we introduce an auxilliary problem (Pr ) on a truncated do-
main and we establish an existence of a solution of this problem.
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Let rD1 and let z r�D(Rn ) be such that for some positive constant m

0Gz rG1, N˜z r NGm , z r41 in B(0 , r21),

z r40 in Rn 0B(0 , r), z rGz r 8 (rGr 8 .

Set V r4VOB(0 , r), G r4¯V rO¯V, G r84¯V rOV , W r4Wz r and c r4W r1xn ,
where B(0 , r) is the ball of Rn of center 0 and radius r.

Let us define B for rD0, by

B(x , N)4B(x , N)

B(x , N)4]0(3R

for a.e. x�G r ,

for a.e. x�G r8 ,

then it is clear that B satisfies (1.9)-(1.12) on ¯V r . In particular for a.e.
x�G r8

B1 (x , N)4 B(x , N)4]0(3R and B2 (x , N)4R3]0( .

Thus by (3.3), B satisfies also (1.13). For a.e. x�¯V r , we set:

cr (x)4b(x) if W r (x)D0 and cr (x)41Q if W r (x)40 .

Using the results of the previous section, we know that there exists a solution
(ur , gr , g r ) for the following problem

(Pr )

.
`
`
/
`
`
´

Find (ur , gr , g r )�W 1, q (V r )3L Q (V r )3L q 8 (¯V r ), such that

( i ) c r (x)2ur (x)�D ( B(x , N) ) for a.e. x�¯V r ,

( ii ) urFxn , 0GgrG1, gr N(ur2xn )40 a.e. in V r ,

( iii ) g r (x)� B2 (x , c r (x)2ur (x) ) for a.e. x�¯V r ,

and g r (x)G0 for a.e. x�¯V r such that c r (x)4xn ,

( iv ) �
V r

( A(x , ˜ur )2gr A(x , e) ) N˜(j2ur ) dxF �
¯V r

g r N(j2ur ) ds(x) ,

(j�Kr4]j�W 1, q (V r ) /a(x)Gc r (x)2j(x)Gcr (x) for a.e. x�¯V r( ,
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as a limit when eK0 of the solution of the following approximated problem

(Pe , r )

.
`
`
/
`
`
´

Find ue , r�Vr4]v�W 1, q (V r ) /vN¯V r
�L q 8 (¯V r )( such that

�
V r

e(Nue , r Nq22 ue , r2Nxn Nq22 xn ) Nj1 ( A(x , ˜ue , r )2Ge (ue , r )A(x , e) ) N˜j dx

1 �
¯V r

e(Nue , r N
q 822 ue , r2Nxn N

q 822 xn ) Nj ds(x)

4 �
¯V r

( B1
e (x , c r2ue , r )1B2

e (x , c r2ue , r ) ) Nj ds(x) , (j�Vr

which satisfies for e small enough

xnGue , rGH1 a.e. in V r .(3.4)

In particular

Bi
e (x , N)4Bi

e (x , N) for a.e. x�G r , i41, 2 ,

B1
e (x , u)4

u

e
, B2

e (x , u)40 for a.e. x�G r8 , (u�R .

R e m a r k 3.1. i) Since for a.e. x�G r8, we have D ( B(x , N) )4]0(, we deduce
from (Pr ) i) that ur4c r4xn on G r8 .

ii) Since W r40, c r4xn and cr41Q on G r8 , the condition a(x)Gc r (x)
2j(x)Gcr (x) for a.e. x�G r8 is equivalent to 0Gxn2j(x) for a.e. x�G r8 or jGxn

on G r8 .

iii) For any j�Kr , we have

�
G r8

g r . (j2ur ) ds(x)4 �
G r8

g r . (j2xn ) ds(x)F0

since on G r8, jGxn by ii) and g rG0 by (Pr ) iii).
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iv) It follows then from i), ii) and iii) that any solution (ur , gr , g r ) of (Pr ) is
such that (ur , gr , g rNG r

) is a solution of the following problem

(Pr)

.
`
`
`
/
`
`
`
´

Find (ur , gr , g r )�W 1, q (V r )3L Q (V r )3L q 8 (G r ), such that

i ) ur4xn on G r8 and c r (x)2ur (x)�D ( B(x , N) ) for a.e. x�G r ,

ii ) urFxn , 0GgrG1, gr N(ur2xn )40 a.e. in V r ,

iii ) g r (x)�B2 (x , c r (x)2ur (x) ) for a.e. x�G r

and g r (x)G0 for a.e. x�G r such that c r (x)4xn ,

iv ) �
V r

( A(x , ˜ur )2gr A(x , e) ) N˜(j2ur ) dxF �
G r

g r N(j2ur ) ds(x) ,

(j�Kr4]j�W 1, q (V r ) /a(x)Gc r (x)2j(x)Gcr (x)

for a.e. x�G r and j(x)Gxn for a.e. x�G r8(.

R e m a r k 3.2. i) In the remainder of this paper, we only consider solutions
(ur , gr , g r ) of (Pr ) obtained as a limit when eK0, of

(ue , r , Ge (ue , r ), B2
e (x , c r2ue , r ) ) .

ii) For any solution (ur , gr , g r ) of (Pr ), we shall extend respectively ur and
gr into V0V r by xn and 1. We also extend g r into G0G r by B2

0 (. , W r ) and still de-
notes by ur , gr and g r these extensions.

Then we deduce from (3.4) that

xnGurGH1 a.e. in V ,(3.5)

Ng r (x)NGmax (NB2
0 (x , W r )N , NB2

0 (x , c r2H1 )N ) for a.e. x�G .(3.6)

3.2 - Existence of a solution of (PQ )

We are now able to state our existence result.

T h e o r e m 3.1. Assume that A satisfies (1.2)-(1.5), B satisfies (1.9)-(1.12)
and (3.3). Then there exists a solution to (PQ ).

P r o o f . Let rD0 and let us first prove that for rcr we have Nur N1, q , V r

Gc(r), where c(r) is a constant depending on r only. Consider z r11 which we de-
note by z for simplicity. Since z q (ue , r2c r ) is a suitable test function for the
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problem (Pe , r ), we have by (2.2)

�
V r

e(Nue , r N
q22 ue , r2Nxn N

q22 xn ) Nz q (ue , r2c r ) dx

1 �
V r

( A(x , ˜ue , r )2Ge (ue , r ) A(x , e) ) N˜ (z q (ue , r2c r ) ) dx

1 �
¯V r

e(Nue , r N
q 822 ue , r2Nxn N

q 822 xn ) Nz q (ue , r2c r ) ds(x)

4 �
¯V r

( B1
e (x , c r2ue , r )1B2

e (x , c r2ue , r ) ) Nz q (ue , r2c r ) ds(x)G0 .

Taking into account the fact that z40 on G r84¯V rOV%¯B(0 , r), Bi
e4Be

i on G r ,
supp z%B(0 , r11), c r4c on B(0 , r11) for rcr, the above inequality
becomes

(3.7) �
V r11

e(Nue , r N
q22 ue , r2Nxn N

q22 xn ) Nz q (ue , r2c) dx

1 �
V r11

( A(x , ˜ue , r )2Ge (ue , r ) A(x , e) ) N˜ (z q (ue , r2c) ) dx

1 �
G r11

e(Nue , r N
q 822 ue , r2Nxn N

q 822 xn ) Nz q (ue , r2c) ds(x)G0 .

Using (3.5), it is clear that the first and third integrals of (3.7) are bounded by a
constant depending only on r. This leads to

�
V r11

( A(x , ˜ue , r )2Ge (ue , r ) A(x , e) ) N˜ (z q (ue , r2c) ) dxGc1 (r)

which can be written

(3.8) �
V r11

z q A(x , ˜ue , r ) N˜ue , r dxGc1 (r)2 �
V r11

qz q21 ue , r A(x , ˜ue , r ) N˜z dx

1 �
V r11

z q A(x , ˜ue , r ) N˜c dx1 �
V r11

qz q21 cA(x , ˜ue , r ) N˜z dx
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1 �
V r11

z q Ge (ue , r ) A(x , e) N˜ue , r dx

1 �
V r11

qz q21 (ue , r2c)Ge (ue , r ) A(x , e) N˜z dx2 �
V r11

z q Ge (ue , r ) A(x , e) N˜c dx .

Using (1.4), (3.5) and the Hölder inequality, we derive easily for some constants
ci (r)

N N �
V r11

qz q21 ue , r A(x , ˜ue , r ) N˜z dxNGqb �
V r11

Nue , r NNz˜ue , r N
q21

NN˜zNdx

Gqmb g �
V r11

Nue , r N
q dxh1/qg �

V r11

Nz˜ue , r N
q dxh1/q 8

Gc2 (r) g �
V r11

Nz˜ue , r N
q dxh1/q 8

,

. N �
V r11

z q A(x , ˜ue , r ) N˜c dxNGb �
V r11

Nz˜ue , r N
q21

NN˜cNdx

Gc3 (r) g �
V r11

Nz˜ue , r N
q dxh1/q 8

,

. N �
V r11

qz q21 cA(x , ˜ue , r ) N˜z dxNGqmb �
V r11

Nz˜ue , r N
q21

NNcNdx

Gc4 (r) g �
V r11

Nz˜ue , r N
q dxh1/q 8

,

. N �
V r11

qz q21 (ue , r2c) Ge (ue , r ) A(x , e) N˜z dxNGqmb �
V r11

(Nue , r N1NcN) dxGc5 (r) ,

. N �
V r11

z q Ge (ue , r ) A(x , e) N˜ue , r dxNGb �
V r11

Nz˜ue , r NdxGc6 (r) g �
V r11

Nz˜ue , r N
q dxh1/q

. N �
V r11

z q Ge (ue , r ) A(x , e) N˜c dxNGb �
V r11

N˜cNdxGc7 (r) ,

Moreover by (1.3), we have

�
V r11

Nz˜ue , r N
q dx4 �

V r11

z q N˜ue , r N
q dxG

1

a
�

V r11

z q A(x , ˜ue , r ) N˜ue , r dx .
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So we deduce from (3.8) and the above inequalities, for some constant cr

�
V r11

Nz˜ue , r N
q dxGcrgg �

V r11

Nz˜ue , r N
q dxh1/q 8

1 g �
V r11

Nz˜ue , r N
q dxh1/q

11h .

From this follows, since q , q 8D1

�
V r11

Nz˜ue , r N
q dxGcr .

Hence for some constant also denoted by cr

�
V r

N˜ue , r N
q dx4 �

V r

Nz˜ue , r N
q dxG �

V r11

Nz˜ue , r N
q dxGcr .

Now, since one has when eK0

˜ue , r �˜ur in L q (V r ) ,

we have

g �
V r

N˜ur N
q dxh1/q

G lim inf
eK0 g �

V r

N˜ue , r N
q dxh1/q

and

�
V r

N˜ur N
q dxGcr .

Since ur is locally uniformly bounded, this implies:

Nur N1, q , V r
Gc(r) .(3.9)

Now, by the reflexivity of W 1, q (V r ), L q 8 (V r ), L q 8 (G r ) and Rellich’s theorem,
there exists a subsequence (urk

r , grk
r , g rk

r ) such that:

urk
r �u r weakly in W 1, q (V r ), urk

rKu r strongly in L q (V r ) ,

urk
rKu r a.e. in V r ,

A(N , ˜urk
r ) � A0

r weakly in L q 8 (V r ) ,

grk
r � g r weakly in L q 8 (V r ) ,
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urk
rKu r strongly in L q (G r ), urk

rKu r a.e. in G r ,

g rk
r � g r weakly in L q 8 (G r ) ,

where (u r , A0
r , g r , g r )�W 1, q (V r )3Lq 8 (V r )3L q 8 (V r )3L q 8 (G r ).

By a diagonal process there exist a subsequence also denoted by (urk
, grk

, g rk
)

and (u , A0 , g , g)�Wloc
1 , q (V)3Lloc

q 8 (V)3Lloc
q 8 (V)3Lloc

q 8 (G) such that:

(3.10)

.
`
`
/
`
`
´

urk
�u weakly in Wloc

1 , q (V), urk
Ku strongly in Lloc

q (V) ,

urk
Ku a.e. in V ,

A(N , ˜urk
) � A0 weakly in Lloc

q 8 (V) ,

grk
Kg strongly in Lloc

q 8 (V) ,

grk
� g weakly in L q 8

loc (V) ,

urk
Ku strongly in Lloc

q (G), urk
Ku a.e. in G ,

g rk
� g weakly in Lloc

q 8 (G) .

From (Prk
) we have for rD0 fixed and rkcr by taking into account the fact that

c rk
4c in B(0 , r)

urk
Fxn , grk

N(urk
2xn )40, 0Ggrk

G1 a.e. in V r ,

c(x)2urk
(x)�D ( B(x , N) ) for a.e. x�G r ,

g rk
(x)�B2 (x , c(x)2urk

(x) ) for a.e. x�G r ,

g rk
(x)G0 for a.e. x�G r such that c(x)4xn ,

from which we derive by (3.10) for any rD0

uFxn , gN(u2xn )40, 0GgG1 a.e. in V r ,

c(x)2u(x)�D ( B(x , N) ) for a.e. x�G r ,

g(x)�B2 (x , c(x)2u(x) ) for a.e. x�G r ,

g(x)G0 for a.e. x�G r such that c(x)4xn ,



142 A. LYAGHFOURI [30]

and thus

.
`
/
`
´

uFxn , gN(u2xn )40, 0GgG1 a.e. in V ,

c(x)2u(x)�D ( B(x , N) ) for a.e. x�G ,

g(x)�B2 (x , c(x)2u(x) ) for a.e. x�G ,

g(x)G0 for a.e. x�G such that c(x)4xn .

(3.11)

To pass to the limit, we shall need the following lemma:

L e m m a 3.2. We have

(3.12) (rD0, �
V r

A(x , ˜u) N˜j dx

4 �
V r

A0 (x) N˜j dx (j�W 1, q (V) such that supp (j)%V r ,

(3.13) lim
kK1Q

�
V

uA(x , ˜urk
) N˜urk

dx4�
V

uA(x , ˜u) N˜u dx , (u�D(Rn ) , uF0.

P r o o f . Let rD0 and let u�D(Rn ) such that u40 in Rn 0B(0 , r11) and
uF0. Without loss of generality, we can assume that 0GuG1.

Note that for rkcr, z4uu1 (12u) urk
4urk

2u(urk
2u) is a test function

for (Prk
). Indeed

c rk
2z4c rk

2urk
1uurk

2uu

4u(c rk
2u)1 (12u)(c rk

2urk
)

4u(c2u)1 (12u)(c rk
2urk

)1u(c rk
2c)

4u(c2u)1 (12u)(c rk
2urk

)

since u40 in Rn 0B(0 , r11) and c rk
2c40 in B(0 , r11). Moreover for a.e. x

�G rk
, we have

u(x) a(x)Gu(x)(c2u)(x)Gu(x) c(x)4u(x) crk
(x)

and

(12u)(x) a(x)G (12u)(x)(c rk
2urk

)(x)G (12u)(x) crk
(x)
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so

a(x)G (c rk
2z)(x)Gcrk

(x) .

Then one has

�
V r11

( A(x , ˜urk
)2grk

A(x , e) ) N˜ (u(urk
2u) ) dxG �

G r11

g rk
u(urk

2u) ds(x)

which can be written

(3.14) �
V r11

uA(x , ˜urk
) N˜urk

dxG �
V r11

uA(x , ˜urk
) N˜u dx

2 �
V r11

(urk
2u) A(x , ˜urk

) N˜u dx1 �
V r11

grk
A(x , e) N˜ (u(urk

2u) ) dx

1 �
G r11

g rk
u(urk

2u) ds(x).

Note that

�
V r11

grk
A(x , e) N˜ (u(urk

2u) ) dx4 �
V r11

grk
A(x , e) N˜ (u(urk

2xn ) ) dx

2 �
V r11

grk
A(x , e) N˜ (u(u2xn ) ) dx42 �

V r11

grk
A(x , e) N˜ (u(u2xn ) ) dx

since grk
(urk

2xn )40 a.e. in V rk
. By (3.10), we have

lim
kK1Q

�
V r11

grk
A(x , e) N˜ (u(u2xn ) ) dx4 �

V r11

gA(x , e) N˜ (u(u2xn ) ) dx40

since by (3.11) g(u2xn )40 a.e. in V. So

lim
kK1Q

�
V r11

grk
A(x , e) N˜ (u(urk

2xn ) ) dx40 .(3.15)

Also by (3.10) and (3.14)-(3.15), we conclude that

lim �
V r11

uA(x , ˜urk
) N˜urk

dxG �
V r11

uA0 (x) N˜u dx .(3.16)
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Let now v�Wloc
1 , q (V). By (1.5), we have

�
V r11

u ( A(x , ˜urk
)2A(x , ˜v) ) N˜(urk

2v) dxF0, (k�N

and

(3.17) �
V r11

uA(x , ˜urk
) N˜urk

dx2 �
V r11

uA(x , ˜urk
) N˜v dx

2 �
V r11

uA(x , ˜v) N˜(urk
2v) dxF0 , (k�N .

Passing to the limsup in (3.17) and taking into account (3.10) and (3.16), we
get

�
V r11

uA0 (x) N˜u dx2 �
V r11

uA0 (x) N˜v dx2 �
V r11

uA(x , ˜v) N˜(u2v) dxF0

or

�
V r11

u ( A0 (x)2A(x , ˜v) ) N˜(u2v) dxF0 .(3.18)

If we choose v4u6lj with j�Wloc
1 , q (V) and l� [0 , 1 ] in (3.18), we obtain by let-

ting l go to 0 and using (1.2), (1.4) and the Lebesgue theorem

�
V r11

u ( A0 (x)2A(x , ˜u) ) N˜j dx40 .(3.19)

If moreover, one takes u such that u41 in B(0 , r) and j as in Lemma 3.2, we
obtain

�
V r

( A0 (x)2A(x , ˜u) ) N˜j dx40

which is (3.12).
Let us now prove (3.13). Take j4u in (3.19), we get

�
V

uA(x , ˜u) N˜u dx4�
V

uA0 (x) N˜u dx .(3.20)
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Using (3.16) and (3.20), we obtain

lim�
V

uA(x , ˜urk
) N˜urk

dxG�
V

uA(x , ˜u) N˜u dx .(3.21)

Now we have

(3.22) �
V

uA(x , ˜urk
) N˜urk

dx4�
V

u ( A(x , ˜urk
)2A(x , ˜u) ) N˜(urk

2u) dx

1�
V

uA(x , ˜u) N˜urk
dx1�

V

u ( A(x , ˜urk
)2A(x , ˜u) ) N˜u dx .

Combining (3.10), (3.20)-(3.22) and the monotonicity of A(x , N), we get

lim
kK1Q

�
V

uA(x , ˜urk
) N˜urk

dx4�
V

uA(x , ˜u) N˜u dx . r

Let us now complete the proof of Theorem 3.1. Choose j�K(u). Then for some
rD0 and for rk large enough we have: supp (j2u)%V r%V rk

. Let u�D(Rn )
such that

0GuG1, u41 in B(0 , r), u40 in Rn 0B(0 , r11) .

Set z4uj1 (12u) urk
4urk

1u(j2urk
) and let us verify that z�Krk

. We
have

c rk
2z4c rk

2urk
2uj1uurk

4u(c2j)1 (12u)(c rk
2urk

)1u(c rk
2c)

4u(c2j)1 (12u)(c rk
2urk

)

since u40 in Rn 0B(0 , r11) and c rk
2c40 in B(0 , r11). Then we have

�
V r11

( A(x , ˜urk
)2grk

A(x , e) ) N˜ (u(j2urk
) ) dxF �

G r11

g rk
Nu(j2urk

) ds(x) ,

letting kK1Q, we get by (3.10) and Lemma 3.2

�
V r11

( A(x , ˜u)2gA(x , e) ) N˜ (u(j2u) ) dxF �
G r11

gNu(j2u) ds(x) .
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But since u41 in V r and supp (j2u)%V r , we obtain

�
V r

( A(x , ˜u)2gA(x , e) ) N˜(j2u) dxF �
G r

gN(j2u) ds(x)

which is

�
V

( A(x , ˜u)2gA(x , e) ) N˜(j2u) dxF�
G

gN(j2u) ds(x)

and (u , g , g) is a solution of (PQ ). r

R e m a r k 3.5. Since for any j�D(V), u6j is a well test function for (PQ ),
it is clear that the results of Proposition 2.8 and Remark 2.9 remain true. Hence
u�C 0, a

loc (V) for some a� (0 , 1 ) and the set [uDxn ] is open. Moreover u is
A-harmonic in [uDxn ] and if A is sufficiently smooth, we would have
u�C 1, g

loc ( [uDxn ] ) for some g� (0 , 1 ).
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[10] H. BRÉZIS, Opérateurs maximaux monotones et semi-groupes de contractions
dans les espaces de Hilbert, North Holland 1973.

[11] J. CARRILLO and M. CHIPOT, On the Dam Problem, J. Differential Equations 45
(1982), 234-271.

[12] J. CARRILLO and M. CHIPOT, The Dam Problem with Leaky Boundary condi-
tions, Applied Mathematics and Optimization 28 (1993), 57-85.

[13] J. CARRILLO and A. LYAGHFOURI, The Dam Problem for Nonlinear Darcy’s Law
and Dirichlet Boundary Conditions, To appear in Annali della Scuola Nor-
male Superiore di Pisa.

[14] M. CHIPOT and A. LYAGHFOURI, An Existence Theorem for an Unbounded Dam
with Leaky Boundary Conditions, Proc. European Conference on Elliptic and
Parabolic Problems, Pont-à-Mousson (June 1994), 325, 64-73. Pitman Research
Notes in Mathematics.

[15] M. CHIPOT and A. LYAGHFOURI, On the Uniqueness of the Solution of the Dam
Problem with Leaky Boundary Conditions, Progress in partial differential
equations: the Metz surveys 4 (1996), 175-186. Pitman Research Notes in
Mathematics Series 345.

[16] M. CHIPOT and A. LYAGHFOURI, The Dam Problem for Nonlinear Darcy’s Law
and Leaky Boundary Conditions, Mathematical Methods in the Applied Sci-
ences 20 (1997), 1045-1068.

[17] M. CHIPOT and A. LYAGHFOURI, The Dam Problem for Linear Darcy’s Law and
Nonlinear Leaky Boundary Conditions, Advances in Differential Equations,
3, 1 (1998), 1-50.

[18] J. I. DIAZ, Non linear partial differential equations and free boundaries, Vol I,
Elliptic Equations, Pitman Research Notes in Mathematics (1985).

[19] E. DIBENEDETTO, C 1 Local Regularity of Weak Solutions of Degenerate Elliptic
Equations, Nonlinear Analysis, Theory, Methods & Applications, 7, 8 (1983),
827-850.

[20] L. DUNG, On a class of singular quasilinear Elliptic Equations with general
structures and distributions data, Nonlinear Analysis, Theory, Methods & Ap-
plications, 28, 11 (1997), 1879-1902.

[21] A. FRIEDMAN, Variational Principles and Free-Boundary Problems, Robert E.
Krieger Publishing Compagny. Malabar, Florida 1988.
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A b s t r a c t

In this paper we propose a unified formulation for the stationary dam problem that
includes the cases of linear or nonlinear Darcy’s laws and Dirichlet or leaky boundary
conditions via the theory of maximal monotone graphs. We prove an existence of a sol-
ution both for bounded or unbounded domains.

* * *


