A. BENINI and F. MORINI (*)

On the construction of a class of weakly divisible nearrings (**)

1 - Introduction

Weakly divisible nearrings (wd-nearrings) are first defined and studied in [2]. Among the zerosymmetric wd-nearrings on the cyclic group $(\mathbb{Z}_{p^n}, +)$, p prime, the class \mathcal{M} of those wd-nearrings in which $p\mathbb{Z}_{p^n}$ is the ideal of all the nilpotent elements is characterized and a construction method is provided in [1]. Precisely, if G is a cyclic group of prime power order p^n and Φ is an arbitrary subgroup of Aut(G), all the wd-nearrings of \mathcal{M} are constructible starting from the pair (G, Φ) and from the representatives of orbits of Φ selected in the following way: if p^j , j < n, is the maximal power of p such that any two elements of two orbits belong to the same coset of $p^j\mathbb{Z}_{p^n}$, this belonging must also be preserved between the representatives.

Too many computations are necessary to verify if the above condition holds, even if a computer is used. Therefore, in this paper, using an account of the orbits of an automorphism group of $(\mathbb{Z}_{p^n}, +)$ and calling two orbits *p*-equivalent, when their elements belong to the same cosets of $p\mathbb{Z}_{p^n}$, we prove that the previous condition is automatically guaranteed iff the selected representatives of *p*-equivalent orbits belong to the same coset of $p\mathbb{Z}_{p^n}$ — if $p \neq 2$ or p = 2 and Φ is generated by $g \rightarrow (1 + 2^{n-h})g$ — otherwise they belong to the same coset of $4\mathbb{Z}_{2^n}$. Clearly, it is very easy to select the representatives fulfilling this last condition.

^(*) Dipartimento di Elettronica per l'Automazione, Facoltà di Ingegneria dell'Università degli Studi di Brescia, Via Branze 38, I-25123 Brescia, Italy.

^(**) Received May 5, 1998. AMS classification 16 Y 30. Work carried out on behalf of Italian M.U.R.S.T.

For details about nearrings we refer to the texts by Pilz [6] and Clay [4]. Throughout this paper we always consider left zerosymmetric nearrings. We here summarize the results, terminology and notations from [1] used in the following. At first we recall:

Definition 1. A nearring N is weakly divisible (wd-nearring) if, for each x, y belonging to N, there exists an element $z \in N$ such that xz = y or yz = x.

Definition 2. Let «·» be multiplication (mod m). A Clay function is a function π mapping \mathbb{Z}_m in itself and fulfilling the following condition:

 $\pi(a) \cdot \pi(b) = \pi(a \cdot \pi(b)) \qquad \text{for each } a, b \in \mathbb{Z}_m.$

Hereinafter «·» will be omitted and, when it will be necessary, \hat{a} will denote the residue class (mod p^n) containing $a \in \mathbb{Z}$.

In [3] it is proved that every nearring whose additive group is finite and cyclic arises from a Clay function. In [1] those Clay functions defining wd-nearrings on $(\mathbb{Z}_{p^n}, +)$, whose ideal of all the nilpotent elements coincides with $p\mathbb{Z}_{p^n}$, are investigated. We summarize the construction method of such wd-nearrings here and emphasize that all wd-nearrings of this class are constructed in this way.

To begin with, we need a pair of groups (G, Φ) where G equals $(\mathbb{Z}_{p^n}, +)$ and Φ is an arbitrary subgroup of Aut(G). Hereinafter, K denotes the set $\mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$. For all the orbits $\Phi(k)$, $k \in K$, select representatives e_k such that the following condition holds:

Condition 1. If $e_a - e_b \notin p^j \mathbb{Z}_{p^n}$ (j < n), then $x - y \notin p^j \mathbb{Z}_{p^n}$, for all $x \in \Phi(a)$ and for all $y \in \Phi(b)$.

Fix one of the selected representatives, call it e and denote φ_x the element of Φ such that $\varphi_x(e_x) = x$. Consider the map given by the following:

Definition 3. For every $\hat{a} \in \mathbb{Z}_{p^n}$ define:

$$\pi(\widehat{a}) = \begin{cases} \widehat{0} & \text{if } a = 0\\ p^r \varphi_{ke^r}(e^{-r}) & \text{if } a = kp^r \text{ with } k \in \mathbb{Z}, \ (k, p) = 1 \text{ and } 0 \leq r < n \end{cases}$$

When the fixed representatives fulfill Condition 1, such a map π is a Clay function, therefore it defines a multiplication "*" on \mathbb{Z}_{p^n} by $x * y = \pi(x) y$.

The structure $N = (\mathbb{Z}_{p^n}, +, *)$ is a wd-nearring whose set of the nilpotent

elements coincides with $p\mathbb{Z}_{p^n}$ (Th. 2 of [1]). Moreover, any such wd-nearring can be constructed by the method described above (Th. 3 of [1]).

Now, we are going to describe a method for choosing the representatives of the orbits included in K so that Condition 1 is automatically guaranteed. To our purpose we will use the following:

Definition 4. Let G be a group. Let $H \leq G$ and $\Phi \leq Aut(G)$. For each orbit $\Phi(g)$, $g \in G$, the set of the cosets of H which contain elements of $\Phi(g)$ is called H-class of $\Phi(g)$, denoted by $[\Phi(g)]_{H}$.

Definition 5. Let G be a group. Let $H \leq G$ and $\Phi \leq Aut(G)$. Two orbits $\Phi(g)$ and $\Phi(g')$, $g, g' \in G$, are called H-equivalent if $[\Phi(g)]_H = [\Phi(g')]_H$.

To simplify our notations, when *H* is cyclic we identify *H* with its generator *h* and, so, we essentially say *h*-class (or *h*-equivalent) and write $[\Phi(g)]_h$.

3 - Case $p \neq 2$

In this section *G* denotes the additive group of integers (mod p^n) with $p \neq 2$ and Φ a subgroup of Aut(G). It is well known that $|Aut(G)| = (p-1) p^{n-1}$ and if the order of Φ is tp^h , with (p, t) = 1, then Φ equals the direct product $T \times \Phi_h$, where *T* is a fixed point free automorphism group of order *t* and $\Phi_h = \{\alpha_x : g \to xg | x = bp^{n-h} + 1, 0 \le b \le p^h - 1\}$ has order p^h (see [4] Chapter 2).

Proposition 1. Let $G = (\mathbb{Z}_{p^n}, +)$ with $p \neq 2$.

(1) If β_1 and β_2 are distinct automorphisms of G whose orders divide p-1, then $\beta_1(k) - \beta_2(k) \notin p\mathbb{Z}_{p^n}$, for all $k \in K$;

(2) if ϕ_1 and ϕ_2 are automorphisms of G of orders p^r and p^h , $r \leq h$, respectively, then $\phi_1(k) - \phi_2(k) \in p^{n-h} \mathbb{Z}_{p^n}$, for all $k \in K$.

(1) Suppose $\beta_1(k) - \beta_2(k) \in p\mathbb{Z}_{p^n}$, for some $k \in K$. Then $p^{n-1}\beta_1(k) = p^{n-1}\beta_2(k)$, so $(\beta_2^{-1}\beta_1)(p^{n-1}k) = p^{n-1}k$, but this is excluded because otherwise $p^{n-1}k$ should be a fixed point of $\beta_2^{-1}\beta_1$.

(2) It is well known that ϕ_1 and ϕ_2 are determined by elements of the form $bp^{n-h} + 1$, $0 \le b \le p^h - 1$. Thus, for all $k \in K$, we have $\phi_1(k) = (b_1 p^{n-h} + 1) k$ and $\phi_2(k) = (b_2 p^{n-h} + 1) k$ for suitable b_1 and b_2 , hence $\phi_1(k) - \phi_2(k)$ belongs to $p^{n-h} \mathbb{Z}_{p^n}$.

Corollary 1. Let $G = (\mathbb{Z}_{p^n}, +)$, with $p \neq 2$, and $\Phi = T \times \Phi_h \leq Aut(G)$ of order tp^h , where t divides p - 1.

(1) For every $k \in K$, two elements of $\Phi(k)$ belong to the same coset of $p\mathbb{Z}_{p^n}$ iff they belong to the same coset of $p^{n-h}\mathbb{Z}_{p^n}$;

(2) every orbit $\Phi(k)$, $k \in K$, is the union of t distinct cosets of $p^{n-h} \mathbb{Z}_{p^n}$. Precisely, $\Phi(k) = \bigcup_{i=1}^{t} (\beta_i \alpha(k) + p^{n-h} \mathbb{Z}_{p^n})$, where $T = \{\beta_1, \dots, \beta_t\}$ and $\alpha \in \Phi_h$.

(1) Let $x, y \in \Phi(k)$, that is $x = \beta \alpha(k)$ and $y = \overline{\beta} \overline{\alpha}(k)$, where $\beta, \overline{\beta} \in T$ and $\alpha, \overline{\alpha} \in \Phi_h$. Suppose $x - y \in p\mathbb{Z}_{p^n}$. By Proposition 1(2) $\overline{\alpha}(k) = \alpha(k) + p^{n-h}g$, for some $g \in \mathbb{Z}_{p^n}$, and hence $\beta \alpha(k) - \overline{\beta}(\alpha(k) + p^{n-h}g) = \beta \alpha(k) - \overline{\beta}\alpha(k) - \overline{\beta}(p^{n-h}g)$ belongs to $p\mathbb{Z}_{p^n}$. But, by Proposition 1(1), $\beta \alpha(k) - \overline{\beta}\alpha(k) \in p\mathbb{Z}_{p^n}$ if and only if $\beta = \overline{\beta}$. Now, we can conclude that $x - y = \beta(\alpha(k) - \overline{\alpha}(k)) \in p^{n-h}\mathbb{Z}_{p^n}$.

(2) Suppose $x = \beta_i \overline{\alpha}(k)$ where $\overline{\alpha} \in \Phi_h$ and $\beta_i \in T$. Then, by Proposition 1(2), $\beta_i \alpha(k) - \beta_i \overline{\alpha}(k) = \beta_i (\alpha(k) - \overline{\alpha}(k)) \in p^{n-h} \mathbb{Z}_{p^n}$. It follows that $\Phi(k)$ is included in $\bigcup_{i=1}^{t} (\beta_i \alpha(k) + p^{n-h} \mathbb{Z}_{p^n})$. Since $|\Phi(k)| = |\bigcup_{i=1}^{t} (\beta_i \alpha(k) + p^{n-h} \mathbb{Z}_{p^n})|$ the proof is concluded.

Clearly, from Corollary 1 there is always exactly one orbit having a fixed p^{n-h} -class.

Example 1. Take $G = (\mathbb{Z}_{49}, +)$ and $\Phi \leq Aut(G)$ generated by the automorphism $\alpha_4: g \to 4g$ of order 21. Using the notations of Corollary 1, Φ equals $T \times \Phi_1$, where $T = \langle \alpha_{18} \rangle = \{id_G, \alpha_{18}, \alpha_{30}\}$ and $\Phi_1 = \langle \alpha_{22} \rangle = \{id_G, \alpha_{22}, \alpha_{43}, \alpha_{15}, \alpha_{36}, \alpha_8, \alpha_{29}\}$. Hence, in this case, n = 2, h = 1, t = 3 and the orbits of K are:

 $\Phi(\widehat{1}) = \{\widehat{1}, \widehat{4}, \widehat{16}, \widehat{15}, \widehat{11}, \widehat{44}, \widehat{29}, \widehat{18}, \widehat{23}, \widehat{43}, \widehat{25}, \widehat{2}, \widehat{8}, \widehat{32}, \widehat{30}, \widehat{22}, \widehat{39}, \widehat{9}, \widehat{36}, \widehat{46}, \widehat{37}\},\$

 $\Phi(\widehat{3}) = \{\widehat{3}, \widehat{12}, \widehat{48}, \widehat{45}, \widehat{33}, \widehat{34}, \widehat{38}, \widehat{5}, \widehat{20}, \widehat{31}, \widehat{26}, \widehat{6}, \widehat{24}, \widehat{47}, \widehat{41}, \widehat{17}, \widehat{19}, \widehat{27}, \widehat{10}, \widehat{40}, \widehat{13}\}.$

We can observe that in each of these orbits the elements can be gathered in three distinct cosets of $7\mathbb{Z}_{49}$. Precisely, $\Phi(\hat{1})$ is the union of the following cosets:

$$\begin{aligned} & id_G(\widehat{1}) + 7\mathbb{Z}_{49} = \widehat{1} + 7\mathbb{Z}_{49}, \\ & \alpha_{18}(\widehat{1}) + 7\mathbb{Z}_{49} = \widehat{18} + 7\mathbb{Z}_{49} = \widehat{4} + 7\mathbb{Z}_{49}, \\ & \alpha_{30}(\widehat{1}) + 7\mathbb{Z}_{49} = \widehat{30} + 7\mathbb{Z}_{49} = \widehat{2} + 7\mathbb{Z}_{49}. \end{aligned}$$

Similarly, $\Phi(\hat{3})$ is the union of $(\hat{3} + 7\mathbb{Z}_{49})$, $(\hat{5} + 7\mathbb{Z}_{49})$ and $(\hat{6} + 7\mathbb{Z}_{49})$. Thus $[\Phi(\hat{1})]_7 \neq [\Phi(\hat{3})]_7$, that is $\Phi(\hat{1})$ and $\Phi(\hat{3})$ are not 7-equivalent.

Proposition 2. Let $G = (\mathbb{Z}_{p^n}, +)$, with $p \neq 2$, and $\Phi = T \times \Phi_h \leq Aut(G)$ of order tp^h , where t divides p - 1.

(1) The set $\{ [\Phi(k)]_p | k \in K \}$ of all the p-classes under Φ determines a partition of $(\mathbb{Z}_{p^n}/p\mathbb{Z}_{p^n})^*$ containing s = (p-1)/t blocks;

(2) in K there are (p-1)/t = s orbits non p-equivalent pairwise;

(3) there are exactly p^{n-h-1} orbits p-equivalent to each orbit of Φ included in K.

(1) We show that distinct blocks are disjoint. Suppose $[\Phi(k)]_p \cap [\Phi(l)]_p \neq \emptyset$. From Corollary 1, there exist $\beta_1, \beta_2 \in T$ such that $\beta_1(k) + p\mathbb{Z}_{p^n} = \beta_2(l) + p\mathbb{Z}_{p^n}$, that is $\beta_1(k) - \beta_2(l) \in p\mathbb{Z}_{p^n}$. Consequently, $\beta(\beta_1(k)) - \beta(\beta_2(l)) \in p\mathbb{Z}_{p^n}$, for any $\beta \in T$, thus $[\Phi(k)]_p = [\Phi(l)]_p$. Again from Corollary 1, $[\Phi(k)]_p$ contains exactly t different elements, hence the partition determined by all the p-classes contains exactly (p-1)/t = s blocks.

(2) From (1), in K there are s distinct orbits having disjoint p-classes to each other.

(3) By Proposition 2(1) two orbits $\Phi(l)$, $\Phi(k)$ are *p*-equivalent if and only if $\Phi(l) \cap (k + p\mathbb{Z}_{p^n}) \neq \emptyset$. Let $\beta \in T$, $\alpha \in \Phi_h$, $\alpha(l) = bp^{n-h}l + l$. Then $(\beta\alpha)(l) \in k + p\mathbb{Z}_{p^n}$ if and only if $\beta(bp^{n-h}l + l) - k \in p\mathbb{Z}_{p^n}$. By Proposition 1 β is unique, hence there are p^h choices for *b* which in turn shows that $|\Phi(l) \cap (k + p\mathbb{Z}_{p^n})| = p^h$. Since $|k + p\mathbb{Z}_{p^n}| = p^{n-1}$ it now follows that there are p^{n-h-1} orbits $\Phi(l)$ which are *p*-equivalent to $\Phi(k)$.

Proposition 3. Let $G = (\mathbb{Z}_{p^n}, +)$, with $p \neq 2$, and $\Phi = T \times \Phi_h \leq Aut(G)$ of order tp^h , where t divides p - 1. Let $\Phi(k)$, $\Phi(l)$ be distinct p-equivalent orbits of Φ such that $k - l \in p^j \mathbb{Z}_{p^n}$, (j < n). Two elements of $\Phi(k)$ and $\Phi(l)$, respectively, belong to the same coset of $p\mathbb{Z}_{p^n}$ iff they belong to the same coset of $p^j\mathbb{Z}_{p^n}$.

By Corollary 1(2) $k + p^{n-h} \mathbb{Z}_{p^n}$ is included in $\Phi(k)$ and, by the hypothesis, $l \notin \Phi(k)$ and $l \in k + p^j \mathbb{Z}_{p^n}$, thus j < n-h.

Let $x \in \Phi(k)$ and $y \in \Phi(l)$. Suppose φ is the automorphism of Φ such that $\varphi(x) = k$. If $x - y \in p\mathbb{Z}_{p^n}$ then $\varphi(x) - \varphi(y) \in p\mathbb{Z}_{p^n}$. Hence $\varphi(y) - l = (k - l) - (\varphi(x) - \varphi(y)) \in p\mathbb{Z}_{p^n}$. Therefore, it follows $\varphi(y) - l \in p^j\mathbb{Z}_{p^n}$ (Corollary 1(1)). Thus $\varphi(y) - \varphi(x) = \varphi(y) - k = (\varphi(y) - l) + (l - k) \in p^j\mathbb{Z}_{p^n}$.

The next example shows all the notations and the results presented in this section.

Example 2. Take $G = (\mathbb{Z}_{7^5}, +)$, $T = \{id_G, -id_G\}$ and $\Phi_2 = \langle \alpha_{344} \rangle$. Thus, $\Phi = T \times \Phi_2$ is of order $2 \cdot 7^2$. Here n = 5, h = 2, t = 2, s = 3. Therefore, there are s = 3 orbits non 7-equivalent, for instance $\Phi(\hat{1})$, $\Phi(\hat{2})$ and $\Phi(\hat{3})$, infact $[\Phi(\hat{1})]_7 = \{\hat{1} + 7\mathbb{Z}_{7^5}, \hat{6} + 7\mathbb{Z}_{7^5}\}$, $[\Phi(\hat{2})]_7 = \{\hat{2} + 7\mathbb{Z}_{7^5}, \hat{5} + 7\mathbb{Z}_{7^5}\}$, $[\Phi(\hat{3})]_7 = \{\hat{3} + 7\mathbb{Z}_{7^5}, \hat{4} + 7\mathbb{Z}_{7^5}\}$. Moreover, there are $p^{n-h-1} = 7^2$ orbits 7-equivalent to $\Phi(\hat{1})$, $\Phi(\hat{2})$ and $\Phi(\hat{3})$ respectively. Using [7] it is possible to verify these results and we can also observe that, for example, $\Phi(\hat{1})$ and $\Phi(\widehat{50})$ are 7-equivalent and such that $\hat{1} - \widehat{50} \in 7^2 \mathbb{Z}_{7^5}$, thus, for all $x \in \Phi(\hat{1})$ and for all $y \in \Phi(\widehat{50})$, $x - y \in 7\mathbb{Z}_{7^5}$ implies $x - y \in 7^2 \mathbb{Z}_{7^5}$ (see Proposition 3).

4 - Case p = 2

Let now $G = (\mathbb{Z}_{2^n}, +)$ and $\Phi < Aut(G)$ of order 2^h . The following cases are possible (see [5], Chap. 4)(¹):

(A) $\Phi = \langle a_{1+2^{n-h}} \rangle = \{ a_k : x \to kx | k = 1 + b2^{n-h}, 0 \le b \le 2^h - 1 \}$ with $0 \le h \le n-1$;

(B) $\Phi = \langle \alpha_{-1+2^{n-h}} \rangle = \{ \alpha_k : x \to kx | k = (-1)^b + b2^{n-h}, 0 \le b \le 2^h - 1 \}$ with $0 < h \le n - 1$;

(C) $\Phi = \langle \alpha_{1+2^{n-h+1}}, -id_G \rangle = \{ \alpha_k : x \to kx | k = \pm (1+b2^{n-h+1}), 0 \le b \le 2^{h-1} - 1 \}$ with $0 < h \le n-1$.

Case (A). The orbits in K are described by the following:

Proposition 4. Let $G = (\mathbb{Z}_{2^n}, +)$ and let Φ be a subgroup of Aut(G) having form (A). In K:

- (1) all the orbits of Φ are 2-equivalent pairwise;
- (2) every orbit of Φ equals a coset of $2^{n-h}\mathbb{Z}_{2^n}$;

(3) if $\Phi(k)$, $\Phi(l)$ are distinct orbits such that k and l belong to the same coset of $2^{j}\mathbb{Z}_{2^{n}}$, (j < n), then two elements of $\Phi(k)$ and $\Phi(l)$, respectively, belong to that same coset.

Immediately (1) follows by the definition of 2-equivalent orbits, while the proof

⁽¹⁾ Here id_G denotes the identity map of G and $-id_G$ is defined by $x \to -x$.

of (2) and (3) is analogous to the case $p \neq 2$, because of the form of the elements of Φ .

Cases (B) and (C). The orbits in K are now described by the following:

Proposition 5. Let $G = (\mathbb{Z}_{2^n}, +)$ and let Φ be a nontrivial subgroup of Aut(G) having form (B) or (C). In K:

(1) all the orbits of Φ are 4-equivalent pairwise;

(2) let $\Phi(k)$, $\Phi(l)$ be distinct orbits such that $k - l \in 2^j \mathbb{Z}_{2^n} (1 < j < n)$. Two elements of $\Phi(k)$ and $\Phi(l)$, respectively, belong to the same coset of $4\mathbb{Z}_{2^n}$ iff they belong to the same coset of $2^j \mathbb{Z}_{2^n}$.

(1) It is clear because of the form of elements of Φ .

(2) Let $|\Phi| = 2^h$ and let $x \in \Phi(k)$ and $y \in \Phi(l)$ such that $x - y \in 4\mathbb{Z}_{2^n}$. If j = 2, the statement is clear. Furthermore, since the coset $k + 2^{n-h+1}\mathbb{Z}_{2^n}$ contains 2^{h-1} elements and it is included in $\Phi(k)$, it is sufficient to consider 2 < j < n - h + 1. From the structure of Φ we only have two possibilities.

The first one is $k \pm x$, $l \pm y \in 2^{n-h} \mathbb{Z}_{2^n} \subseteq 2^j \mathbb{Z}_{2^n}$. By the hypothesis $k - l \in 2^j \mathbb{Z}_{2^n}$, we derive that $k \pm x - (l \pm y) = \pm x \mp y + (k - l) \in 2^j \mathbb{Z}_{2^n}$, and in any case $x - y \in 2^j \mathbb{Z}_{2^n}$.

Otherwise $k \pm x$, $l \mp y \in 2^{n-h} \mathbb{Z}_{2^n}$. Analogously, we obtain $\pm x \pm y \in 2^j \mathbb{Z}_{2^n}$. Keeping in mind that $x - y \in 4 \mathbb{Z}_{2^n}$ we have $x + x \in 4 \mathbb{Z}_{2^n}$, but this is false.

5 - Conclusion

We are now able to prove a necessary and sufficient condition about the choice of the representatives of the orbits so that π of Definition 3 can be a Clay function.

Theorem 1. Let $G = (\mathbb{Z}_{p^n}, +)$, p any prime, let Φ be a subgroup of Aut (G) and π as in Definition 3. Condition 1 is fulfilled iff the selected representatives of p-equivalent orbits in K belong:

 $\begin{cases} \text{to the same coset of } p\mathbb{Z}_{p^n} & \text{if } p \neq 2 \text{ or } p = 2 \text{ and } \Phi = \langle \alpha_{1+2^{n-h}} \rangle, \\ \text{to the same coset of } 4\mathbb{Z}_{2^n} & \text{otherwise}. \end{cases}$

Suppose that Condition 1 is satisfied, that is π of Definition 3 is a Clay function by Prop. 8 of [1].

Assume $p \neq 2$ or p = 2 and $\Phi = \langle \alpha_{1+2^{n-h}} \rangle$.

Let e_k and $e_{k'}$ be the selected representatives of two *p*-equivalent orbits in *K* and let $k \in \Phi(e_k)$, $k' \in \Phi(e_{k'})$ such that $k - k' \in p\mathbb{Z}_{p^n}$. Clearly, $p^{n-1}(k - k') = 0$, thus the element $a = e^{-(n-1)}kp^{n-1}$ equals $a' = e^{-(n-1)}k'p^{n-1}$. Since π is a function, we have $\pi(a) = \pi(a')$, that is $e^{-(n-1)}p^{n-1}\varphi_k(\widehat{1}) = e^{-(n-1)}p^{n-1}\varphi_{k'}(\widehat{1})$. From the last equality $\varphi_k(\widehat{1}) - \varphi_{k'}(\widehat{1})$ is in $p\mathbb{Z}_{p^n}$, thus $e'_k(\varphi_k(\widehat{1}) - \varphi_{k'}(\widehat{1})) = e_{k'}\varphi_k(\widehat{1}) - k' \in p\mathbb{Z}_{p^n}$. Consequently, $e_{k'}\varphi_k(\widehat{1}) - e_k\varphi_k(\widehat{1}) = e_{k'}\varphi_k(\widehat{1}) - k \in p\mathbb{Z}_{p^n}$. Since $\varphi_k(\widehat{1}) \notin p\mathbb{Z}_{p^n}$, it follows $e_{k'} - e_k \in p\mathbb{Z}_{p^n}$.

Assume p = 2 and $\Phi = \langle \alpha_{-1+2^{n-h}} \rangle$ or $\Phi = \langle \alpha_{1+2^{n-h+1}}, -id_G \rangle$.

Since all the orbits have the same 4-class, any two of them contain respectively elements which belong to the same coset of $4\mathbb{Z}_{2^n}$, hence Condition 1 implies that all representatives of the orbits belong to the same coset of $4\mathbb{Z}_{2^n}$.

We can now turn to the converse. Suppose $p \neq 2$ and $\Phi(k)$, $\Phi(k')$ are two distinct orbits in K. If $\Phi(k)$ and $\Phi(k')$ are p-equivalent then $e_k - e_{k'} \in p\mathbb{Z}_{p^n}$. Thus, by Proposition 3, $x - y \in p^j\mathbb{Z}_{p^n}$, for some $x \in \Phi(k)$ and $y \in \Phi(k')$, implies $e_k - e_{k'} \in p^j\mathbb{Z}_{p^n}$ and Condition 1 is fulfilled. If $\Phi(k)$ and $\Phi(k')$ are not p-equivalent, then there are not any $x \in \Phi(k)$, $y \in \Phi(k')$ such that $x - y \in p\mathbb{Z}_{p^n}$ (Proposition 2(1)) and so Condition 1 clearly holds. Finally, if p = 2 the converse arises analogously from Propositions 4(3) and 5(2).

An application of the above theorem is shown in the following:

Example 3. Take $G = (\mathbb{Z}_{49}, +)$ and $\Phi = \langle \alpha_{18} \rangle = \{id_G, \alpha_{18}, \alpha_{30}\}$. The 7-class of $\Phi(\hat{1}), \Phi(\hat{2}), \Phi(\hat{4}), \Phi(\hat{8}), \Phi(\hat{9}), \Phi(\hat{16})$ and $\Phi(\hat{29})$ is $\{\hat{1}+7\mathbb{Z}_{49}, \hat{2}+7\mathbb{Z}_{49}, \hat{4}+7\mathbb{Z}_{49}\}$. The 7-class of $\Phi(\hat{3}), \Phi(\hat{6}), \Phi(\hat{12}), \Phi(\hat{13}), \Phi(\hat{19}), \Phi(\hat{24})$ and $\Phi(\hat{26})$ is $\{\hat{3}+7\mathbb{Z}_{49}, \hat{5}+7\mathbb{Z}_{49}, \hat{6}+7\mathbb{Z}_{49}\}$. Thus, in *K* there are s = 2 orbits non 7-equivalent, for instance $\Phi(\hat{1})$ and $\Phi(\hat{3})$. There are exactly 7 orbits 7-equivalent to $\Phi(\hat{1})$ and by Theorem 1 their representatives must be chosen in the same coset of $7\mathbb{Z}_{49}$: choose $\hat{18}, \hat{11}, \hat{4}, \hat{46}, \hat{25}, \hat{39}, \hat{28}$. There are exactly 7 orbits 7-equivalent to $\Phi(\hat{3})$ and, for the same reason, their representatives have to be selected in the same coset of $7\mathbb{Z}_{49}$: choose $\hat{3}, \hat{10}, \hat{17}, \hat{18}, \hat{37}, \hat{24}, \hat{45}$. Fix arbitrarily $e = \hat{46}$ among the selected representatives and define:

$$\pi(\hat{a}) = \begin{cases} 0 & \text{if } a = 0\\ 7^r \varphi_{ke^r}(e^{-r}) & \text{if } a = k7^r \text{ with } (k, 7) = 1 \text{ and } 0 \le r < n \end{cases}$$

Because of the choice of the representatives, Theorem 1 and Prop. 8 [1] guarantee that π is a Clay function and the structure (\mathbb{Z}_{49} , +, *), where «*» is defined by $x * y = \pi(x)y$, turns out a wd-nearring with $Q = 7\mathbb{Z}_{49}$.

References

- [1] A. BENINI and F. MORINI, Weakly divisible nearrings on the group of integers (mod p^n)), Riv. Mat. Univ. Parma (6) 1 (1998), 1-11.
- [2] A. BENINI and S. PELLEGRINI, *Weakly Divisible Nearrings*, Discrete Math. (to appear).
- [3] J. R. CLAY, The near-rings on a finite cyclic group, Amer. Math. Monthly 71 (1964), 47-50.
- [4] J. R. CLAY, Nearrings: Geneses and Applications, Oxford University Press, New York 1992.
- [5] W. J. LEVEQUE, Fundamentals of Number Theory, Addison-Wesley Publishing Company, Philippines 1977.
- [6] G. PILZ, Near-rings, 23 (Revised edition), North Holland Math. Studies, Amsterdam 1983.
- [7] The SONATA Team, SONATA Systems Of Nearrings And Their Applications, Version 1, Institut f
 ür Algebra, Stochastik und wissenbasierte mathematische Systeme, University of Linz, Austria 1997.

Abstract

A nearring N is called weakly divisible (wd-nearring) if, for each $x, y \in N$, there exists an element $z \in N$ such that xz = y or yz = x. A method to generate all the zerosymmetric wd-nearrings on the cyclic group $(\mathbb{Z}_{p^n}, +)$ whose set of the nilpotent elements equals $p\mathbb{Z}_{p^n}$ is already known. In this paper we give an account of the orbits of a subgroup of the automorphism group of $(\mathbb{Z}_{p^n}, +)$ to provide the guide for improving the construction method of such wd-nearrings.

* * *