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A. BE N I N I and F. MO R I N I (*)

On the construction of a class

of weakly divisible nearrings (**)

1 - Introduction

Weakly divisible nearrings (wd-nearrings) are first defined and studied in [2].
Among the zerosymmetric wd-nearrings on the cyclic group (Zp n , 1), p prime,
the class M of those wd-nearrings in which pZp n is the ideal of all the nilpotent
elements is characterized and a construction method is provided in [1]. Precisely,
if G is a cyclic group of prime power order p n and F is an arbitrary subgroup of
Aut (G), all the wd-nearrings of M are constructible starting from the pair (G , F)
and from the representatives of orbits of F selected in the following way: if p j,
jEn, is the maximal power of p such that any two elements of two orbits belong
to the same coset of p jZp n, this belonging must also be preserved between the
representatives.

Too many computations are necessary to verify if the above condition holds,
even if a computer is used. Therefore, in this paper, using an account of the orbits
of an automorphism group of (Zp n , 1) and calling two orbits p-equivalent, when
their elements belong to the same cosets of pZp n, we prove that the previous con-
dition is automatically guaranteed iff the selected representatives of p-equivalent
orbits belong to the same coset of pZp n — if pc2 or p42 and F is generated by
gK (112n2h )g — otherwise they belong to the same coset of 4Z2n. Clearly, it is
very easy to select the representatives fulfilling this last condition.

(*) Dipartimento di Elettronica per l’Automazione, Facoltà di Ingegneria dell’Universi-
tà degli Studi di Brescia, Via Branze 38, I-25123 Brescia, Italy.

(**) Received May 5, 1998. AMS classification 16 Y 30. Work carried out on behalf of
Italian M.U.R.S.T.
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2 - Preliminaries and notations

For details about nearrings we refer to the texts by Pilz [6] and Clay [4].
Throughout this paper we always consider left zerosymmetric nearrings. We here
summarize the results, terminology and notations from [1] used in the following.
At first we recall:

D e f i n i t i o n 1. A nearring N is weakly divisible (wd-nearring) if, for each
x , y belonging to N, there exists an element z�N such that xz4y or yz4x.

D e f i n i t i o n 2. Let «Q» be multiplication (mod m). A Clay function is a
function p mapping Zm in itself and fulfilling the following condition:

p(a) Qp(b)4p (a Qp(b) ) for each a , b�Zm .

Hereinafter «Q» will be omitted and, when it will be necessary, a× will denote
the residue class (mod p n) containing a�Z.

In [3] it is proved that every nearring whose additive group is finite and cyclic
arises from a Clay function. In [1] those Clay functions defining wd-nearrings on
(Zp n , 1), whose ideal of all the nilpotent elements coincides with pZp n , are inves-
tigated. We summarize the construction method of such wd-nearrings here and
emphasize that all wd-nearrings of this class are constructed in this way.

To begin with, we need a pair of groups (G , F) where G equals (Zp n , 1) and
F is an arbitrary subgroup of Aut (G). Hereinafter, K denotes the set Zp n 0pZp n .
For all the orbits F(k), k�K, select representatives ek such that the following
condition holds:

C o n d i t i o n 1. If ea2eb�p jZp n ( jEn), then x2y�p jZp n , for all x�F(a)
and for all y�F(b).

Fix one of the selected representatives, call it e and denote W x the element of
F such that W x (ex )4x. Consider the map given by the following:

D e f i n i t i o n 3. For every a×�Zp n define:

p(a×)4
.
/
´

0×

p r W ke r (e 2r )

if a40

if a4kp r with k�Z , (k , p)41 and 0GrEn

When the fixed representatives fulfill Condition 1, such a map p is a Clay function,
therefore it defines a multiplication «˜» on Zp n by x˜y4p(x) y.

The structure N4 (Zp n , 1 , ˜) is a wd-nearring whose set of the nilpotent
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elements coincides with pZp n (Th. 2 of [1]). Moreover, any such wd-nearring can
be constructed by the method described above (Th. 3 of [1]).

Now, we are going to describe a method for choosing the representatives of
the orbits included in K so that Condition 1 is automatically guaranteed. To our
purpose we will use the following:

D e f i n i t i o n 4. Let G be a group. Let HGG and FGAut (G). For each or-
bit F(g), g�G, the set of the cosets of H which contain elements of F(g) is called
H-class of F(g), denoted by [F(g) ]H .

D e f i n i t i o n 5. Let G be a group. Let HGG and FGAut (G). Two orbits
F(g) and F(g 8 ), g , g 8�G, are called H-equivalent if [F(g) ]H4 [F(g 8 ) ]H .

To simplify our notations, when H is cyclic we identify H with its generator h
and, so, we essentially say h-class (or h-equivalent) and write [F(g) ]h .

3 - Case pc2

In this section G denotes the additive group of integers (mod p n ) with pc2
and F a subgroup of Aut (G). It is well known that NAut (G)N4 (p21) p n21 and
if the order of F is tp h, with (p , t)41, then F equals the direct product T3Fh ,
where T is a fixed point free automorphism group of order t and
Fh4]a x : gKxgNx4bp n2h11, 0GbGp h21( has order p h (see [4] Chap-
ter 2).

P r o p o s i t i o n 1. Let G4 (Zp n , 1) with pc2.
(1) If b 1 and b 2 are distinct automorphisms of G whose orders divide

p21, then b 1 (k)2b 2 (k)�pZp n , for all k�K;
(2) if f 1 and f 2 are automorphisms of G of orders p r and p h, rGh, re-

spectively, then f 1 (k)2f 2 (k)�p n2h Zp n , for all k�K.

(1) Suppose b 1 (k)2b 2 (k)�pZp n , for some k�K. Then p n21 b 1 (k)
4p n21 b 2 (k), so (b 2

21 b 1 )(p n21 k)4p n21 k, but this is excluded because other-
wise p n21 k should be a fixed point of b 2

21 b 1 .
(2) It is well known that f 1 and f 2 are determined by elements of the form

bp n2h11, 0GbGp h21. Thus, for all k�K, we have f 1 (k)4 (b1 p n2h11) k
and f 2 (k)4 (b2 p n2h11) k for suitable b1 and b2 , hence f 1 (k)2f 2 (k) belongs
to p n2h Zp n. r



106 A. BENINI and F. MORINI [4]

C o r o l l a r y 1. Let G4 (Zp n , 1), with pc2, and F4T3FhGAut (G) of
order tp h, where t divides p21.

(1) For every k�K, two elements of F(k) belong to the same coset of pZp n

iff they belong to the same coset of p n2h Zp n ;

(2) every orbit F(k), k�K, is the union of t distinct cosets of p n2h Zp n . Pre-

cisely, F(k)4 0
i41

t

(b i a(k)1p n2h Zp n ), where T4]b 1 , R , b t( and a�Fh .

(1) Let x , y�F(k), that is x4ba(k) and y4 ba(k), where b , b�T and
a , a�Fh . Suppose x2y�pZp n . By Proposition 1(2) a(k)4a(k)1p n2h g, for
some g�Zp n , and hence ba(k)2b (a(k)1p n2h g )4ba(k)2ba(k)2b(p n2h g)
belongs to pZp n . But, by Proposition 1(1), ba(k)2ba(k)�pZp n if and only if
b4 b. Now, we can conclude that x2y4b (a(k)2a(k) )�p n2h Zp n .

(2) Suppose x4b i a(k) where a�Fh and b i�T. Then, by Proposition 1(2),
b i a(k)2b i a(k)4b i (a(k)2a(k) )�p n2h Zp n . It follows that F(k) is included in

0
i41

t

(b i a(k)1p n2h Zp n ). Since NF(k)N4N 0
i41

t

(b i a(k)1p n2h Zp n )N the proof is
concluded. r

Clearly, from Corollary 1 there is always exactly one orbit having a fixed
p n2h-class.

E x a m p l e 1. Take G4 (Z49 , 1) and FGAut (G) generated by the
automorphism a 4 : gK4g of order 21. Using the notations of Corollary 1, F

equals T3F1 , where T4 aa 18 b4]idG , a 18 , a 30( and F14 aa 22 b
4]idG , a 22 , a 43 , a 15 , a 36 , a 8 , a 29(. Hence, in this case, n42, h41, t43 and
the orbits of K are:

F(1×)4]1×, 4×, 16×, 15×, 11×, 44×, 29×, 18×, 23×, 43×, 25×, 2×, 8×, 32×, 30×, 22×, 39×, 9×, 36×, 46×, 37×( ,

F(3×)4]3×, 12×, 48×, 45×, 33×, 34×, 38×, 5×, 20×, 31×, 26×, 6×, 24×, 47×, 41×, 17×, 19×, 27×, 10×, 40×, 13×( .

We can observe that in each of these orbits the elements can be gathered in three
distinct cosets of 7Z49 . Precisely, F(1×) is the union of the following cosets:

idG (1×)17Z494 1×17Z49 ,

a 18 (1×)17Z494 18×17Z494 4×17Z49 ,

a 30 (1×)17Z494 30×17Z494 2×17Z49 .

Similarly, F(3×) is the union of (3×17Z49 ), (5×17Z49 ) and (6×17Z49 ). Thus [F(1×) ]7

c [F(3×) ]7 , that is F(1×) and F(3×) are not 7-equivalent.
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P r o p o s i t i o n 2. Let G4 (Zp n , 1), with pc2, and F4T3FhGAut (G) of
order tp h, where t divides p21.

(1) The set ][F(k) ]pNk�K( of all the p-classes under F determines a par-
tition of (Zp n OpZp n )* containing s4 (p21) /t blocks;

(2) in K there are (p21) /t4s orbits non p-equivalent pairwise;

(3) there are exactly p n2h21 orbits p-equivalent to each orbit of F included
in K.

(1) We show that distinct blocks are disjoint. Suppose [F(k) ]pO [F(l) ]pc¯.
From Corollary 1, there exist b 1 , b 2�T such that b 1 (k)1pZp n4b 2 (l)1pZp n ,
that is b 1 (k)2b 2 (l)�pZp n . Consequently, b (b 1 (k) )2b (b 2 (l) )�pZp n , for any
b�T, thus [F(k) ]p4 [F(l) ]p . Again from Corollary 1, [F(k) ]p contains exactly t
different elements, hence the partition determined by all the p-classes contains
exactly (p21) /t4s blocks.

(2) From (1), in K there are s distinct orbits having disjoint p-classes to
each other.

(3) By Proposition 2(1) two orbits F(l), F(k) are p-equivalent if and
only if F(l)O (k1pZp n )c¯. Let b�T, a�Fh , a(l)4bp n2h l1 l. Then
(ba)(l)�k1pZp n if and only if b(bp n2h l1 l)2k�pZp n . By Proposition 1 b is
unique, hence there are p h choices for b which in turn shows that
NF(l)O (k1pZp n )N4p h. Since Nk1pZp n N4p n21 it now follows that there are
p n2h21 orbits F(l) which are p-equivalent to F(k). r

P r o p o s i t i o n 3. Let G4 (Zp n , 1), with pc2, and F4T3FhGAut (G) of
order tp h, where t divides p21. Let F(k), F(l) be distinct p-equivalent orbits of
F such that k2 l�p jZp n , (jEn). Two elements of F(k) and F(l), respectively,
belong to the same coset of pZp n iff they belong to the same coset of p jZp n .

By Corollary 1(2) k1p n2h Zp n is included in F(k) and, by the hypothesis,
l�F(k) and l�k1p jZp n , thus jEn2h.

Let x�F(k) and y�F(l). Suppose W is the automorphism of F such
that W(x)4k. If x2y�pZp n then W(x)2W(y)�pZp n . Hence
W(y)2 l4 (k2 l)2 (W(x)2W(y) )�pZp n . Therefore, it follows W(y)2 l�p jZp n

(Corollary 1(1)). Thus W(y)2W(x)4W(y)2k4(W(y)2l)1(l2k)�p jZp n . r

The next example shows all the notations and the results presented in this
section.
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E x a m p l e 2. Take G4 (Z75 , 1), T4]idG , 2idG( and F24 aa 344 b. Thus,
F4T3F2 is of order 2 Q72. Here n45, h42, t42, s43. Therefore, there
are s43 orbits non 7-equivalent, for instance F(1×), F(2×) and F(3×), infact
[F(1×) ]74]1×17Z75 , 6×17Z75(, [F(2×) ]74]2×17Z75 , 5×17Z75(, [F(3×) ]74]3×17Z75 ,
4×17Z75(. Moreover, there are p n2h21472 orbits 7-equivalent to F(1×), F(2×)
and F(3×) respectively. Using [7] it is possible to verify these results and we
can also observe that, for example, F(1×) and F(50×) are 7-equivalent and such that
1×250×�72 Z75, thus, for all x�F(1×) and for all y�F(50×), x2y�7Z75 implies
x2y�72 Z75 (see Proposition 3).

4 - Case p42

Let now G4 (Z2n , 1) and FEAut (G) of order 2h. The following cases are
possible (see [5], Chap. 4) (1):

(A) F4aa 112n2h b4]a k : xKkxNk411b2n2h , 0GbG2h21( with 0GhGn21;

(B) F4 aa 2112n2h b4]a k : xKkxNk4 (21)b1b2n2h , 0GbG2h21(
with 0EhGn21;

(C) F4aa 112n2h11 , 2idG b4]a k : xKkxNk46(11b2n2h11 ), 0GbG2h2121(
with 0EhGn21.

Case (A). The orbits in K are described by the following:

P r o p o s i t i o n 4. Let G4 (Z2n , 1) and let F be a subgroup of Aut (G) hav-
ing form (A). In K :

(1) all the orbits of F are 2-equivalent pairwise;

(2) every orbit of F equals a coset of 2n2h Z2n ;

(3) if F(k), F(l) are distinct orbits such that k and l belong to the same
coset of 2 jZ2n, ( jEn), then two elements of F(k) and F(l), respectively, belong to
that same coset.

Immediately (1) follows by the definition of 2-equivalent orbits, while the proof

(1) Here idG denotes the identity map of G and 2idG is defined by xK2x .
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of (2) and (3) is analogous to the case pc2, because of the form of the elements
of F. r

Cases (B) and (C). The orbits in K are now described by the following:

P r o p o s i t i o n 5. Let G4 (Z2n , 1) and let F be a nontrivial subgroup of
Aut (G) having form (B) or (C). In K:

(1) all the orbits of F are 4-equivalent pairwise;

(2) let F(k), F(l) be distinct orbits such that k2 l�2 jZ2n (1E jEn). Two
elements of F(k) and F(l), respectively, belong to the same coset of 4Z2n iff they
belong to the same coset of 2 jZ2n .

(1) It is clear because of the form of elements of F.

(2) Let NFN42h and let x�F(k) and y�F(l) such that x2y�4Z2n . If j42,
the statement is clear. Furthermore, since the coset k12n2h11 Z2n contains 2h21

elements and it is included in F(k), it is sufficient to consider 2E jEn2h11.
From the structure of F we only have two possibilities.

The first one is k6x , l6y�2n2h Z2n’2 jZ2n . By the hypothesis k2 l�2 jZ2n ,
we derive that k6x2 (l6y)46xZy1 (k2 l)�2 jZ2n , and in any case
x2y�2 jZ2n .

Otherwise k6x , lZy�2n2h Z2n . Analogously, we obtain 6x6y�2 jZ2n .
Keeping in mind that x2y�4Z2n we have x1x�4Z2n , but this is
false. r

5 - Conclusion

We are now able to prove a necessary and sufficient condition about the choice
of the representatives of the orbits so that p of Definition 3 can be a Clay
function.

T h e o r e m 1. Let G4 (Zp n , 1), p any prime, let F be a subgroup of Aut (G)
and p as in Definition 3. Condition 1 is fulfilled iff the selected representatives
of p-equivalent orbits in K belong:

.
/
´

to the same coset of pZp n

to the same coset of 4Z2n

if pc2 or p42 and F4 aa 112n2h b ,

otherwise .

Suppose that Condition 1 is satisfied, that is p of Definition 3 is a Clay function
by Prop. 8 of [1].
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Assume pc2 or p42 and F4 aa 112n2h b.
Let ek and ek 8 be the selected representatives of two p-equivalent orbits in K

and let k�F(ek ), k 8�F(ek 8 ) such that k2k 8�pZp n . Clearly, p n21 (k2k 8 )40,
thus the element a4e 2(n21) kp n21 equals a 84e 2(n21) k 8 p n21. Since p is a func-
tion, we have p(a)4p(a 8 ), that is e 2(n21) p n21 W k (1×)4e 2(n21) p n21 W k 8 (1×).
From the last equality W k (1×)2W k 8 (1×) is in pZp n , thus ek8 (W k (1×)2W k 8 (1×) )
4ek 8 W k (1×)2k 8�pZp n . Consequently, ek 8 W k (1×)2ek W k (1×)4ek 8 W k (1×)2k
4 (ek 8 W k (1×)2k 8 )1 (k 82k)�pZp n . Since W k (1×)�pZp n , it follows ek 82ek

�pZp n .
Assume p42 and F4 aa 2112n2h b or F4 aa 112n2h11 , 2idG b.
Since all the orbits have the same 4-class, any two of them contain respectively

elements which belong to the same coset of 4Z2n , hence Condition 1 implies that
all representatives of the orbits belong to the same coset of 4Z2n .

We can now turn to the converse. Suppose pc2 and F(k), F(k 8 ) are two
distinct orbits in K. If F(k) and F(k 8 ) are p-equivalent then ek2ek 8�pZp n .
Thus, by Proposition 3, x2y�p jZp n , for some x�F(k) and y�F(k 8 ), implies
ek2ek 8�p jZp n and Condition 1 is fulfilled. If F(k) and F(k 8 ) are not p-equiva-
lent, then there are not any x�F(k), y�F(k 8 ) such that x2y�pZp n (Proposi-
tion 2(1)) and so Condition 1 clearly holds. Finally, if p42 the converse arises
analogously from Propositions 4(3) and 5(2). r

An application of the above theorem is shown in the following:

E x a m p l e 3. Take G4 (Z49 , 1) and F4 aa 18 b4]idG , a 18 , a 30(.
The 7-class of F(1×), F(2×), F(4×), F(8×), F(9×), F(16×) and F(29×) is
]1×17Z49 , 2×17Z49 , 4×17Z49(. The 7-class of F(3×), F(6×), F(12×), F(13×), F(19×),
F(24×) and F(26×) is ]3×17Z49 , 5×17Z49 , 6×17Z49(. Thus, in K there are s42 or-
bits non 7-equivalent, for instance F(1×) and F(3×). There are exactly 7 orbits 7-
equivalent to F(1×) and by Theorem 1 their representatives must be chosen in the
same coset of 7Z49 : choose 18×, 11×, 4×, 46×, 25×, 39×, 28×. There are exactly 7 orbits 7-
equivalent to F(3×) and, for the same reason, their representatives have to be se-
lected in the same coset of 7Z49 : choose 3×, 10×, 17×, 18×, 37×, 24×, 45×. Fix arbitrarily e
4 46× among the selected representatives and define:

p(a×)4
.
/
´

0×

7r W ke r (e 2r )

if a40

if a4k7r with (k , 7 )41 and 0GrEn

Because of the choice of the representatives, Theorem 1 and Prop. 8 [1] guarantee
that p is a Clay function and the structure (Z49 , 1 , ˜), where «˜» is defined by
x˜y4p(x)y, turns out a wd-nearring with Q47Z49 .
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A b s t r a c t

A nearring N is called weakly divisible (wd-nearring) if, for each x , y�N, there
exists an element z�N such that xz4y or yz4x. A method to generate all the zerosym-
metric wd-nearrings on the cyclic group (Zp n , 1) whose set of the nilpotent elements
equals pZp n is already known. In this paper we give an account of the orbits of a sub-
group of the automorphism group of (Zp n , 1) to provide the guide for improving the con-
struction method of such wd-nearrings.

* * *


