A. Benini and F. Morini (*)

On the construction of a class of weakly divisible nearrings (**)

1-Introduction

Weakly divisible nearrings (wd-nearrings) are first defined and studied in [2]. Among the zerosymmetric wd-nearrings on the cyclic group ($\mathbb{Z}_{p^{n}},+$), p prime, the class \mathfrak{N} of those wd-nearrings in which $p Z_{p^{n}}$ is the ideal of all the nilpotent elements is characterized and a construction method is provided in [1]. Precisely, if G is a cyclic group of prime power order p^{n} and Φ is an arbitrary subgroup of Aut (G), all the wd-nearrings of \mathscr{M} are constructible starting from the pair (G, Φ) and from the representatives of orbits of Φ selected in the following way: if p^{j}, $j<n$, is the maximal power of p such that any two elements of two orbits belong to the same coset of $p^{j} Z_{p^{n}}$, this belonging must also be preserved between the representatives.

Too many computations are necessary to verify if the above condition holds, even if a computer is used. Therefore, in this paper, using an account of the orbits of an automorphism group of $\left(\mathbb{Z}_{p^{n}},+\right)$ and calling two orbits p-equivalent, when their elements belong to the same cosets of $p Z_{p^{n}}$, we prove that the previous condition is automatically guaranteed iff the selected representatives of p-equivalent orbits belong to the same coset of $p Z_{p^{n}}$ - if $p \neq 2$ or $p=2$ and Φ is generated by $g \rightarrow\left(1+2^{n-h}\right) g$ - otherwise they belong to the same coset of $4 \mathbb{Z}_{2^{n}}$. Clearly, it is very easy to select the representatives fulfilling this last condition.

[^0]
2-Preliminaries and notations

For details about nearrings we refer to the texts by Pilz [6] and Clay [4]. Throughout this paper we always consider left zerosymmetric nearrings. We here summarize the results, terminology and notations from [1] used in the following. At first we recall:

Definition 1. A nearring N is weakly divisible (wd-nearring) if, for each x, y belonging to N, there exists an element $z \in N$ such that $x z=y$ or $y z=x$.

Definition 2. Let «•» be multiplication $(\bmod m)$. A Clay function is a function π mapping \mathbb{Z}_{m} in itself and fulfilling the following condition:

$$
\pi(a) \cdot \pi(b)=\pi(a \cdot \pi(b)) \quad \text { for each } a, b \in \mathbb{Z}_{m}
$$

Hereinafter «» will be omitted and, when it will be necessary, \widehat{a} will denote the residue class $\left(\bmod p^{n}\right)$ containing $a \in \mathbb{Z}$.

In [3] it is proved that every nearring whose additive group is finite and cyclic arises from a Clay function. In [1] those Clay functions defining wd-nearrings on $\left(\mathbb{Z}_{p^{n}},+\right)$, whose ideal of all the nilpotent elements coincides with $p Z_{p^{n}}$, are investigated. We summarize the construction method of such wd-nearrings here and emphasize that all wd-nearrings of this class are constructed in this way.

To begin with, we need a pair of groups (G, Φ) where G equals $\left(\mathbb{Z}_{p^{n}},+\right)$ and Φ is an arbitrary subgroup of $A u t(G)$. Hereinafter, K denotes the set $\mathbb{Z}_{p^{n}} \backslash p Z_{p^{n}}$. For all the orbits $\Phi(k), k \in K$, select representatives e_{k} such that the following condition holds:

Condition 1. If $e_{a}-e_{b} \notin p^{j} Z_{p^{n}}(j<n)$, then $x-y \notin p^{j} Z_{p^{n}}$, for all $x \in \Phi(a)$ and for all $y \in \Phi(b)$.

Fix one of the selected representatives, call it e and denote φ_{x} the element of Φ such that $\varphi_{x}\left(e_{x}\right)=x$. Consider the map given by the following:

Definition 3. For every $\widehat{a} \in \mathbb{Z}_{p^{n}}$ define:

$$
\pi(\widehat{a})= \begin{cases}\widehat{0} & \text { if } a=0 \\ p^{r} \varphi_{k e^{r}}\left(e^{-r}\right) & \text { if } a=k p^{r} \text { with } k \in \mathbb{Z},(k, p)=1 \text { and } 0 \leqslant r<n\end{cases}
$$

When the fixed representatives fulfill Condition 1, such a map π is a Clay function, therefore it defines a multiplication $« * »$ on $Z_{p^{n}}$ by $x * y=\pi(x) y$.

The structure $N=\left(\mathbb{Z}_{p^{n}},+, *\right)$ is a wd-nearring whose set of the nilpotent
elements coincides with $p^{2} Z_{p^{n}}$ (Th. 2 of [1]). Moreover, any such wd-nearring can be constructed by the method described above (Th. 3 of [1]).

Now, we are going to describe a method for choosing the representatives of the orbits included in K so that Condition 1 is automatically guaranteed. To our purpose we will use the following:

Definition 4. Let G be a group. Let $H \leqslant G$ and $\Phi \leqslant A u t(G)$. For each orbit $\Phi(g), g \in G$, the set of the cosets of H which contain elements of $\Phi(g)$ is called H-class of $\Phi(g)$, denoted by $[\Phi(g)]_{H}$.

Definition 5. Let G be a group. Let $H \leqslant G$ and $\Phi \leqslant A u t(G)$. Two orbits $\Phi(g)$ and $\Phi\left(g^{\prime}\right), g, g^{\prime} \in G$, are called H-equivalent if $[\Phi(g)]_{H}=\left[\Phi\left(g^{\prime}\right)\right]_{H}$.

To simplify our notations, when H is cyclic we identify H with its generator h and, so, we essentially say h-class (or h-equivalent) and write $[\Phi(g)]_{h}$.

3 - Case $p \neq 2$

In this section G denotes the additive group of integers $\left(\bmod p^{n}\right)$ with $p \neq 2$ and Φ a subgroup of $A u t(G)$. It is well known that $|A u t(G)|=(p-1) p^{n-1}$ and if the order of Φ is $t p^{h}$, with $(p, t)=1$, then Φ equals the direct product $T \times \Phi_{h}$, where T is a fixed point free automorphism group of order t and $\Phi_{h}=\left\{\alpha_{x}: g \rightarrow x g \mid x=b p^{n-h}+1,0 \leqslant b \leqslant p^{h}-1\right\}$ has order p^{h} (see [4] Chapter 2).

Proposition 1. Let $G=\left(\mathbb{Z}_{p^{n}},+\right)$ with $p \neq 2$.
(1) If β_{1} and β_{2} are distinct automorphisms of G whose orders divide $p-1$, then $\beta_{1}(k)-\beta_{2}(k) \notin p Z_{p^{n}}$, for all $k \in K$;
(2) if ϕ_{1} and ϕ_{2} are automorphisms of G of orders p^{r} and $p^{h}, r \leqslant h$, respectively, then $\phi_{1}(k)-\phi_{2}(k) \in p^{n-h} Z_{p^{n}}$, for all $k \in K$.
(1) Suppose $\beta_{1}(k)-\beta_{2}(k) \in p \mathbb{Z}_{p^{n}}$, for some $k \in K$. Then $p^{n-1} \beta_{1}(k)$ $=p^{n-1} \beta_{2}(k)$, so $\left(\beta_{2}^{-1} \beta_{1}\right)\left(p^{n-1} k\right)=p^{n-1} k$, but this is excluded because otherwise $p^{n-1} k$ should be a fixed point of $\beta_{2}^{-1} \beta_{1}$.
(2) It is well known that ϕ_{1} and ϕ_{2} are determined by elements of the form $b p^{n-h}+1,0 \leqslant b \leqslant p^{h}-1$. Thus, for all $k \in K$, we have $\phi_{1}(k)=\left(b_{1} p^{n-h}+1\right) k$ and $\phi_{2}(k)=\left(b_{2} p^{n-h}+1\right) k$ for suitable b_{1} and b_{2}, hence $\phi_{1}(k)-\phi_{2}(k)$ belongs to $p^{n-h} Z_{p^{n}}$.

Corollary 1. Let $G=\left(\mathbb{Z}_{p^{n}},+\right)$, with $p \neq 2$, and $\Phi=T \times \Phi_{h} \leqslant A u t(G)$ of order $t p^{h}$, where t divides $p-1$.
(1) For every $k \in K$, two elements of $\Phi(k)$ belong to the same coset of $p Z_{p^{n}}$ iff they belong to the same coset of $p^{n-h} Z_{p^{n}}$;
(2) every orbit $\Phi(k), k \in K$, is the union of t distinct cosets of $p^{n-h} Z_{p^{n}}$. Precisely, $\quad \Phi(k)=\bigcup_{i=1}^{t}\left(\beta_{i} \alpha(k)+p^{n-h} Z_{p^{n}}\right)$, where $\quad T=\left\{\beta_{1}, \ldots, \beta_{t}\right\} \quad$ and $\alpha \in \Phi_{h}$.
(1) Let $x, y \in \Phi(k)$, that is $x=\beta \alpha(k)$ and $y=\bar{\beta} \bar{\alpha}(k)$, where $\beta, \bar{\beta} \in T$ and $\alpha, \bar{\alpha} \in \Phi_{h}$. Suppose $x-y \in p Z_{p^{n}}$. By Proposition 1(2) $\bar{\alpha}(k)=\alpha(k)+p^{n-h} g$, for some $g \in \mathbb{Z}_{p^{n}}$, and hence $\beta \alpha(k)-\bar{\beta}\left(\alpha(k)+p^{n-h} g\right)=\beta \alpha(k)-\bar{\beta} \alpha(k)-\bar{\beta}\left(p^{n-h} g\right)$ belongs to $p Z_{p^{n}}$. But, by Proposition 1(1), $\beta \alpha(k)-\bar{\beta} \alpha(k) \in p Z_{p^{n}}$ if and only if $\beta=\bar{\beta}$. Now, we can conclude that $x-y=\beta(\alpha(k)-\bar{\alpha}(k)) \in p^{n-h} Z_{p^{n}}$.
(2) Suppose $x=\beta_{i} \bar{\alpha}(k)$ where $\bar{\alpha} \in \Phi_{h}$ and $\beta_{i} \in T$. Then, by Proposition 1(2), $\beta_{i} \alpha(k)-\beta_{i} \bar{\alpha}(k)=\beta_{i}(\alpha(k)-\bar{\alpha}(k)) \in p^{n-h} Z_{p^{n}}$. It follows that $\Phi(k)$ is included in $\bigcup_{i=1}^{t}\left(\beta_{i} \alpha(k)+p^{n-h} Z_{p^{n}}\right)$. Since $|\Phi(k)|=\left|\bigcup_{i=1}^{t}\left(\beta_{i} \alpha(k)+p^{n-h} Z_{p^{n}}\right)\right|$ the proof is concluded.

Clearly, from Corollary 1 there is always exactly one orbit having a fixed p^{n-h}-class.

Example 1. Take $G=\left(Z_{49},+\right)$ and $\Phi \leqslant A u t(G)$ generated by the automorphism $\alpha_{4}: g \rightarrow 4 g$ of order 21. Using the notations of Corollary $1, \Phi$ equals $T \times \Phi_{1}, \quad$ where $\quad T=\left\langle\alpha_{18}\right\rangle=\left\{i d_{G}, \alpha_{18}, \alpha_{30}\right\} \quad$ and $\quad \Phi_{1}=\left\langle\alpha_{22}\right\rangle$ $=\left\{i d_{G}, \alpha_{22}, \alpha_{43}, \alpha_{15}, \alpha_{36}, \alpha_{8}, \alpha_{29}\right\}$. Hence, in this case, $n=2, h=1, t=3$ and the orbits of K are:
$\Phi(\widehat{1})=\{\hat{1}, \widehat{4}, \widehat{16}, \widehat{15}, \widehat{11}, \widehat{44}, \widehat{29}, \widehat{18}, \widehat{23}, \widehat{43}, \widehat{25}, \widehat{2}, \widehat{8}, \widehat{32}, \widehat{30}, \widehat{22}, \widehat{39}, \widehat{9}, \widehat{36}, \widehat{46}, \widehat{37}\}$,
$\Phi(\widehat{3})=\{\widehat{3}, \widehat{12}, \widehat{48}, \widehat{45}, \widehat{33}, \widehat{34}, \widehat{38}, \widehat{5}, \widehat{20}, \widehat{31}, \widehat{26}, \widehat{6}, \widehat{24}, \widehat{47}, \widehat{41}, \widehat{17}, \widehat{19}, \widehat{27}, \widehat{10}, \widehat{40}, \widehat{13}\}$.
We can observe that in each of these orbits the elements can be gathered in three distinct cosets of $7 Z_{49}$. Precisely, $\Phi(\widehat{1})$ is the union of the following cosets:

$$
\begin{aligned}
& i d_{G}(\widehat{1})+7 Z_{49}=\widehat{1}+7 Z_{49}, \\
& \alpha_{18}(\widehat{1})+7 Z_{49}=\widehat{18}+7 Z_{49}=\widehat{4}+7 Z_{49}, \\
& \alpha_{30}(\widehat{1})+7 Z_{49}=\widehat{30}+7 Z_{49}=\widehat{2}+7 Z_{49} .
\end{aligned}
$$

Similarly, $\Phi(\widehat{3})$ is the union of $\left(\widehat{3}+7 Z_{49}\right),\left(\hat{5}+7 Z_{49}\right)$ and $\left(\widehat{6}+7 Z_{49}\right)$. Thus $[\Phi(\hat{1})]_{7}$ $\neq[\Phi(\widehat{3})]_{7}$, that is $\Phi(\widehat{1})$ and $\Phi(\widehat{3})$ are not 7-equivalent.

Proposition 2. Let $G=\left(\mathbb{Z}_{p^{n}},+\right)$, with $p \neq 2$, and $\Phi=T \times \Phi_{h} \leqslant A u t(G)$ of order $t p^{h}$, where t divides $p-1$.
(1) The set $\left\{[\Phi(k)]_{p} \mid k \in K\right\}$ of all the p-classes under Φ determines a partition of $\left(\mathbb{Z}_{p^{n}} / p \mathbb{Z}_{p^{n}}\right)^{*}$ containing $s=(p-1) / t$ blocks;
(2) in K there are $(p-1) / t=s$ orbits non p-equivalent pairwise;
(3) there are exactly p^{n-h-1} orbits p-equivalent to each orbit of Φ included in K.
(1) We show that distinct blocks are disjoint. Suppose $[\Phi(k)]_{p} \cap[\Phi(l)]_{p} \neq \emptyset$. From Corollary 1, there exist $\beta_{1}, \beta_{2} \in T$ such that $\beta_{1}(k)+p Z_{p^{n}}=\beta_{2}(l)+p Z_{p^{n}}$, that is $\beta_{1}(k)-\beta_{2}(l) \in p Z_{p^{n}}$. Consequently, $\beta\left(\beta_{1}(k)\right)-\beta\left(\beta_{2}(l)\right) \in p Z_{p^{n}}$, for any $\beta \in T$, thus $[\Phi(k)]_{p}=[\Phi(l)]_{p}$. Again from Corollary $1,[\Phi(k)]_{p}$ contains exactly t different elements, hence the partition determined by all the p-classes contains exactly $(p-1) / t=s$ blocks.
(2) From (1), in K there are s distinct orbits having disjoint p-classes to each other.
(3) By Proposition 2(1) two orbits $\Phi(l), \Phi(k)$ are p-equivalent if and only if $\Phi(l) \cap\left(k+p Z_{p^{n}}\right) \neq \emptyset$. Let $\beta \in T, \quad \alpha \in \Phi_{h}, \alpha(l)=b p^{n-h} l+l$. Then $(\beta \alpha)(l) \in k+p Z_{p^{n}}$ if and only if $\beta\left(b p^{n-h} l+l\right)-k \in p Z_{p^{n}}$. By Proposition 1β is unique, hence there are p^{h} choices for b which in turn shows that $\left|\Phi(l) \cap\left(k+p Z_{p^{n}}\right)\right|=p^{h}$. Since $\left|k+p Z_{p^{n}}\right|=p^{n-1}$ it now follows that there are p^{n-h-1} orbits $\Phi(l)$ which are p-equivalent to $\Phi(k)$.

Proposition 3. Let $G=\left(\mathbb{Z}_{p^{n}},+\right)$, with $p \neq 2$, and $\Phi=T \times \Phi_{h} \leqslant A u t(G)$ of order $t p^{h}$, where t divides $p-1$. Let $\Phi(k), \Phi(l)$ be distinct p-equivalent orbits of Φ such that $k-l \in p^{j} Z_{p^{n}},(j<n)$. Two elements of $\Phi(k)$ and $\Phi(l)$, respectively, belong to the same coset of $p Z_{p^{n}}$ iff they belong to the same coset of $p^{j} Z_{p^{n}}$.

By Corollary 1 (2) $k+p^{n-h} Z_{p^{n}}$ is included in $\Phi(k)$ and, by the hypothesis, $l \notin \Phi(k)$ and $l \in k+p^{j} Z_{p^{n}}$, thus $j<n-h$.

Let $x \in \Phi(k)$ and $y \in \Phi(l)$. Suppose φ is the automorphism of Φ such that $\varphi(x)=k$. If $x-y \in p \mathbb{Z}_{p^{n}}$ then $\varphi(x)-\varphi(y) \in p \mathbb{Z}_{p^{n}}$. Hence $\varphi(y)-l=(k-l)-(\varphi(x)-\varphi(y)) \in p Z_{p^{n}}$. Therefore, it follows $\varphi(y)-l \in p^{j} \mathbb{Z}_{p^{n}}$ (Corollary 1(1)). Thus $\varphi(y)-\varphi(x)=\varphi(y)-k=(\varphi(y)-l)+(l-k) \in p^{j} Z_{p^{n}}$.

The next example shows all the notations and the results presented in this section.

Example 2. Take $G=\left(\mathbb{Z}_{7^{5}},+\right), T=\left\{i d_{G},-i d_{G}\right\}$ and $\Phi_{2}=\left\langle\alpha_{344}\right\rangle$. Thus, $\Phi=T \times \Phi_{2}$ is of order $2 \cdot 7^{2}$. Here $n=5, h=2, t=2, s=3$. Therefore, there are $s=3$ orbits non 7 -equivalent, for instance $\Phi(\widehat{1}), \Phi(\widehat{2})$ and $\Phi(\widehat{3})$, infact $[\Phi(\widehat{1})]_{7}=\left\{\widehat{1}+7 Z_{7^{5}}, \widehat{6}+7 \mathbb{Z}_{7^{5}}\right\}, \quad[\Phi(\widehat{2})]_{7}=\left\{\widehat{2}+7 Z_{77^{5}}, \widehat{5}+7 Z_{7^{5}}\right\}, \quad[\Phi(\widehat{3})]_{7}=\left\{\widehat{3}+7 Z_{7^{5}}\right.$, $\left.\widehat{4}+7 Z_{7^{5}}\right\}$. Moreover, there are $p^{n-h-1}=7^{2}$ orbits 7 -equivalent to $\Phi(\hat{1}), \Phi(\widehat{2})$ and $\Phi(\widehat{3})$ respectively. Using [7] it is possible to verify these results and we can also observe that, for example, $\Phi(\widehat{1})$ and $\Phi(\widehat{50})$ are 7 -equivalent and such that $\widehat{1}-\widehat{50} \in 7^{2} \mathbb{Z}_{7^{5}}$, thus, for all $x \in \Phi(\widehat{1})$ and for all $y \in \Phi(\widehat{50}), x-y \in 7 \mathbb{Z}_{7^{5}}$ implies $x-y \in 7^{2} Z_{7^{5}}$ (see Proposition 3).

4-Case $p=2$

Let now $G=\left(\mathbb{Z}_{2^{n}},+\right)$ and $\Phi<\operatorname{Aut}(G)$ of order 2^{h}. The following cases are possible (see [5], Chap. 4) ${ }^{1}$):
(A) $\Phi=\left\langle\alpha_{1+2^{n-h}}\right\rangle=\left\{\alpha_{k}: x \rightarrow k x \mid k=1+b 2^{n-h}, 0 \leqslant b \leqslant 2^{h}-1\right\}$ with $0 \leqslant h \leqslant n-1$;
(B) $\Phi=\left\langle\alpha_{-1+2^{n-h}}\right\rangle=\left\{\alpha_{k}: x \rightarrow k x \mid k=(-1)^{b}+b 2^{n-h}, 0 \leqslant b \leqslant 2^{h}-1\right\}$
with $0<h \leqslant n-1$;
(C) $\Phi=\left\langle\alpha_{1+2^{n-h+1}},-i d_{G}\right\rangle=\left\{\alpha_{k}: x \rightarrow k x \mid k= \pm\left(1+b 2^{n-h+1}\right), 0 \leqslant b \leqslant 2^{h-1}-1\right\}$ with $0<h \leqslant n-1$.

Case (A). The orbits in K are described by the following:

Proposition 4. Let $G=\left(\mathbb{Z}_{2^{n}},+\right)$ and let Φ be a subgroup of $\operatorname{Aut}(G)$ having form (A). In K :
(1) all the orbits of Φ are 2-equivalent pairwise;
(2) every orbit of Φ equals a coset of $2^{n-h} \mathbb{Z}_{2^{n}}$;
(3) if $\Phi(k), \Phi(l)$ are distinct orbits such that k and l belong to the same coset of $2^{j} Z_{2^{n}},(j<n)$, then two elements of $\Phi(k)$ and $\Phi(l)$, respectively, belong to that same coset.

Immediately (1) follows by the definition of 2-equivalent orbits, while the proof
$\left.{ }^{(}{ }^{1}\right)$ Here $i d_{G}$ denotes the identity map of G and $-i d_{G}$ is defined by $x \rightarrow-x$.
of (2) and (3) is analogous to the case $p \neq 2$, because of the form of the elements of Φ.

Cases (B) and (C). The orbits in K are now described by the following:
Proposition 5. Let $G=\left(\mathbb{Z}_{2^{n}},+\right)$ and let Φ be a nontrivial subgroup of Aut (G) having form (B) or (C). In K :
(1) all the orbits of Φ are 4-equivalent pairwise;
(2) let $\Phi(k), \Phi(l)$ be distinct orbits such that $k-l \in 2^{j} Z_{2^{n}}(1<j<n)$. Two elements of $\Phi(k)$ and $\Phi(l)$, respectively, belong to the same coset of $4 Z_{2^{n}}$ iff they belong to the same coset of $2^{j} Z_{2^{n}}$.
(1) It is clear because of the form of elements of Φ.
(2) Let $|\Phi|=2^{h}$ and let $x \in \Phi(k)$ and $y \in \Phi(l)$ such that $x-y \in 4 Z_{2^{n}}$. If $j=2$, the statement is clear. Furthermore, since the coset $k+2^{n-h+1} Z_{2^{n}}$ contains 2^{h-1} elements and it is included in $\Phi(k)$, it is sufficient to consider $2<j<n-h+1$. From the structure of Φ we only have two possibilities.

The first one is $k \pm x, l \pm y \in 2^{n-h} Z_{2^{n}} \subseteq 2^{j} Z_{2^{n}}$. By the hypothesis $k-l \in 2^{j} Z_{2^{n}}$, we derive that $k \pm x-(l \pm y)= \pm x \mp y+(k-l) \in 2^{j} Z_{2^{n}}$, and in any case $x-y \in 2^{j} Z_{2^{n}}$.

Otherwise $k \pm x, l \mp y \in 2^{n-h} \mathbb{Z}_{2^{n}}$. Analogously, we obtain $\pm x \pm y \in 2^{j} Z_{2^{n}}$. Keeping in mind that $x-y \in 4 Z_{2^{n}}$ we have $x+x \in 4 Z_{2^{n}}$, but this is false.

5 - Conclusion

We are now able to prove a necessary and sufficient condition about the choice of the representatives of the orbits so that π of Definition 3 can be a Clay function.

Theorem 1. Let $G=\left(\mathbb{Z}_{p^{n}},+\right)$, p any prime, let Φ be a subgroup of A ut (G) and π as in Definition 3. Condition 1 is fulfilled iff the selected representatives of p-equivalent orbits in K belong:

$$
\begin{cases}\text { to the same coset of } p Z_{p^{n}} & \text { if } p \neq 2 \text { or } p=2 \text { and } \Phi=\left\langle\alpha_{1+2^{n-h}}\right\rangle \\ \text { to the same coset of } 4 Z_{2^{n}} & \text { otherwise }\end{cases}
$$

Suppose that Condition 1 is satisfied, that is π of Definition 3 is a Clay function by Prop. 8 of [1].

Assume $p \neq 2$ or $p=2$ and $\Phi=\left\langle\alpha_{1+2^{n-h}}\right\rangle$.
Let e_{k} and $e_{k^{\prime}}$ be the selected representatives of two p-equivalent orbits in K and let $k \in \Phi\left(e_{k}\right), k^{\prime} \in \Phi\left(e_{k^{\prime}}\right)$ such that $k-k^{\prime} \in p_{Z_{p^{n}}}$. Clearly, $p^{n-1}\left(k-k^{\prime}\right)=0$, thus the element $a=e^{-(n-1)} k p^{n-1}$ equals $a^{\prime}=e^{-(n-1)} k^{\prime} p^{n-1}$. Since π is a function, we have $\pi(a)=\pi\left(a^{\prime}\right)$, that is $e^{-(n-1)} p^{n-1} \varphi_{k}(\widehat{1})=e^{-(n-1)} p^{n-1} \varphi_{k^{\prime}}(\widehat{1})$. From the last equality $\varphi_{k}(\widehat{1})-\varphi_{k^{\prime}}(\widehat{1})$ is in $p Z_{p^{n}}$, thus $e_{k}^{\prime}\left(\varphi_{k}(\widehat{1})-\varphi_{k^{\prime}}(\hat{1})\right)$ $=e_{k^{\prime}} \varphi_{k}(\widehat{1})-k^{\prime} \in p^{2} Z_{p^{n}} . \quad$ Consequently, $\quad e_{k^{\prime}} \varphi_{k}(\widehat{1})-e_{k} \varphi_{k}(\widehat{1})=e_{k^{\prime}} \varphi_{k}(\widehat{1})-k$ $=\left(e_{k^{\prime}} \varphi_{k}(\widehat{1})-k^{\prime}\right)+\left(k^{\prime}-k\right) \in p^{\prime} \mathbb{Z}_{p^{n}}$. Since $\varphi_{k}(\widehat{1}) \notin p Z_{p^{n}}$, it follows $e_{k^{\prime}}-e_{k}$ $\in p \mathbb{Z}_{p^{n}}$.

Assume $p=2$ and $\Phi=\left\langle\alpha_{\left.-1+2^{n-h}\right\rangle}\right.$ or $\Phi=\left\langle\alpha_{1+2^{n-h+1}},-i d_{G}\right\rangle$.
Since all the orbits have the same 4-class, any two of them contain respectively elements which belong to the same coset of $4 \mathbb{Z}_{2^{n}}$, hence Condition 1 implies that all representatives of the orbits belong to the same coset of $4 Z_{2^{n}}$.

We can now turn to the converse. Suppose $p \neq 2$ and $\Phi(k), \Phi\left(k^{\prime}\right)$ are two distinct orbits in K. If $\Phi(k)$ and $\Phi\left(k^{\prime}\right)$ are p-equivalent then $e_{k}-e_{k^{\prime}} \in p Z_{p^{n}}$. Thus, by Proposition $3, x-y \in p^{j} \mathbb{Z}_{p^{n}}$, for some $x \in \Phi(k)$ and $y \in \Phi\left(k^{\prime}\right)$, implies $e_{k}-e_{k^{\prime}} \in p^{j} \mathbb{Z}_{p^{n}}$ and Condition 1 is fulfilled. If $\Phi(k)$ and $\Phi\left(k^{\prime}\right)$ are not p-equivalent, then there are not any $x \in \Phi(k), y \in \Phi\left(k^{\prime}\right)$ such that $x-y \in p Z_{p^{n}}$ (Proposition 2(1)) and so Condition 1 clearly holds. Finally, if $p=2$ the converse arises analogously from Propositions 4(3) and 5(2).

An application of the above theorem is shown in the following:
Example 3. Take $\quad G=\left(\mathbb{Z}_{49},+\right) \quad$ and $\quad \Phi=\left\langle\alpha_{18}\right\rangle=\left\{i d_{G}, \alpha_{18}, \alpha_{30}\right\}$. The 7 -class of $\Phi(\widehat{1}), \quad \Phi(\widehat{2}), \quad \Phi(\widehat{4}), \quad \Phi(\widehat{8}), \quad \Phi(\widehat{9}), \quad \Phi(\widehat{16})$ and $\quad \Phi(\widehat{29})$ is $\left\{\widehat{1}+7 Z_{49}, \widehat{2}+7 Z_{49}, \widehat{4}+7 Z_{49}\right\}$. The 7 -class of $\Phi(\widehat{3}), \Phi(\widehat{6}), \Phi(\widehat{12}), \Phi(\widehat{13}), \Phi(\widehat{19})$, $\Phi(\widehat{24})$ and $\Phi(\widehat{26})$ is $\left\{\widehat{3}+7 \mathbb{Z}_{49}, \widehat{5}+7 Z_{49}, \widehat{6}+7 Z_{49}\right\}$. Thus, in K there are $s=2$ orbits non 7 -equivalent, for instance $\Phi(\widehat{1})$ and $\Phi(\widehat{3})$. There are exactly 7 orbits 7 equivalent to $\Phi(\hat{1})$ and by Theorem 1 their representatives must be chosen in the same coset of $7 Z_{49}$: choose $\widehat{18}, \widehat{11}, \widehat{4}, \widehat{46}, \widehat{25}, \widehat{39}, \widehat{28}$. There are exactly 7 orbits 7 equivalent to $\Phi(\widehat{3})$ and, for the same reason, their representatives have to be selected in the same coset of $7 Z_{49}$: choose $\widehat{3}, \widehat{10}, \widehat{17}, \widehat{18}, \widehat{37}, \widehat{24}, \widehat{45}$. Fix arbitrarily e $=\widehat{46}$ among the selected representatives and define:

$$
\pi(\widehat{a})= \begin{cases}\widehat{0} & \text { if } a=0 \\ 7^{r} \varphi_{k e^{r}}\left(e^{-r}\right) & \text { if } a=k 7^{r} \text { with }(k, 7)=1 \text { and } 0 \leqslant r<n\end{cases}
$$

Because of the choice of the representatives, Theorem 1 and Prop. 8 [1] guarantee that π is a Clay function and the structure ($\left.\mathbb{Z}_{49},+, *\right)$, where $<*$ » is defined by $x * y=\pi(x) y$, turns out a wd-nearring with $Q=7 \mathbb{Z}_{49}$.

References

[1] A. Benini and F. Morini, Weakly divisible nearrings on the group of integers $\left.\left(\bmod p^{n}\right)\right)$, Riv. Mat. Univ. Parma (6) 1 (1998), 1-11.
[2] A. Benini and S. Pellegrini, Weakly Divisible Nearrings, Discrete Math. (to appear).
[3] J. R. Clay, The near-rings on a finite cyclic group, Amer. Math. Monthly 71 (1964), 47-50.
[4] J. R. Clay, Nearrings: Geneses and Applications, Oxford University Press, New York 1992.
[5] W. J. LeVeque, Fundamentals of Number Theory, Addison-Wesley Publishing Company, Philippines 1977.
[6] G. Pilz, Near-rings, 23 (Revised edition), North Holland Math. Studies, Amsterdam 1983.
[7] The Sonata Team, SONATA - Systems Of Nearrings And Their Applications, Version 1, Institut für Algebra, Stochastik und wissenbasierte mathematische Systeme, University of Linz, Austria 1997.

Abstract

A nearring N is called weakly divisible (wd-nearring) if, for each $x, y \in N$, there exists an element $z \in N$ such that $x z=y$ or $y z=x$. A method to generate all the zerosymmetric wd-nearrings on the cyclic group $\left(\mathbb{Z}_{p^{n}},+\right)$ whose set of the nilpotent elements equals $p Z_{p^{n}}$ is already known. In this paper we give an account of the orbits of a subgroup of the automorphism group of $\left(\mathbb{Z}_{p^{n}},+\right)$ to provide the guide for improving the construction method of such wd-nearrings.

[^0]: (*) Dipartimento di Elettronica per l'Automazione, Facoltà di Ingegneria dell'Università degli Studi di Brescia, Via Branze 38, I-25123 Brescia, Italy.
 (**) Received May 5, 1998. AMS classification 16 Y 30. Work carried out on behalf of Italian M.U.R.S.T.

