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1 - Introduction

Inelastic phenomena have recently been given some attention in kinetic theory
[1], [2], [3]. As pointed out in [4], there are several similarities with the allied field
of electron transport in semiconductors, in which several interesting results have
been obtained in a recent past [5], [6], [7]. One of the crucial problem, ever, is the
so called hydrodynamic limit, namely an approximate equation, at a macroscopic
level, but still properly describing the phenomenon, which could be consistently
derived as asymptotic limit when the Knudsen number tends to zero [8]. In this
respect a rigorous procedure, called «compressed Chapman-Enskog expansion»
has been proposed by Mika and Banasiak, allowing an error estimate of the ap-
proximate versus the exact solution. Such a procedure has been successfully ap-
plied to several standard problems (thus, with elastic scattering only) of kinetic
and transport theory (see [9] and the bibliography therein). The modified asymp-
totic expansion has been extended later to the transport of test particles in a fixed
background of inelastically scattering field particles at equilibrium. There are
physical situations in which a collision with a test particle may lead in fact to exci-
tation (de-excitation) of the field particle, and the relevant energy jump enters the
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overall energy conservation, leading to a loss (gain) of the total kinetic energy,
and, in this sense, to an inelastic down-scattering (up-scattering) collision. When,
for some reason, the excited field particles play a negligible role and may be con-
sidered as non-participating (as it occurs, for instance, if the background is in
equilibrium at low temperature), up-scattering can be disregarded, and this im-
plies a progressive loss of kinetic energy for the mixture of participating species
(field particles in the ground state and test particles). A model problem and a sim-
plified version relevant to negligible up-scattering have already been examined
[10], [11], while the additional mathematical difficulties related to the presence of
up-scattering are still under investigation [12], [13].

All previous inelastic work is relevant to the Lorentz gas model [14], which
corresponds to the limiting case of vanishing ratio between the masses of test and
field particles. Consequently, the energy jump in an inelastic scattering affects
now only the kinetic energy of test particles, and, in particular, down-scattering
slows them down by a fixed amount of energy at each collision. This case raises
interesting mathematical questions due to the fact that energy gets partitioned in
equivalence classes which are closed with respect to scattering [3] and thus equi-
libria are not uniquely determined (see also [5]). This peculiar situation breaks
easily down when more than one excited energy level becomes significant for field
particles. This generalization is also scheduled as future work.

The present note is aimed at studying, in the previous frame, the combined ef-
fects of elastic and inelastic scattering on the asymptotic limit, still under the sim-
plifying assumption that down-scattering is the only effective inelastic mechanism.
Indeed, it is well known that the standard diffusion approximation is recovered in
the elastic case [9], whereas a limiting equation of the streaming type was ob-
tained in [11] in the inelastic case. Three physical situations will be examined in
this paper, according to whether elastic and inelastic terms are equally important
or only one of them is dominant. All situations are relevant to collision dominated
processes and then to small values of the proper Knudsen number. After deriva-
tion and discussion of the governing transport equation, all necessary mathemat-
ical properties are investigated and the compressed asymptotic expansion is ap-
plied to the three different scalings, and worked out up to a first order accuracy
in the small parameter, including initial layer analysis.

2 - The physical problem

We consider the transport equation for the distribution function R of a rarefied
gas of test particles interacting with a given bath of heavy field particles by three
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types of binary collisions: elastic scattering, inelastic scattering, and absorption.
For simplicity, all independent microscopic differential collision frequencies n are
taken to be constant with respect to both relative speed and deflection angle, and
only two energy levels are allowed to field particles, separated by a fixed gap
DED0. Particles in the ground and excited states (labeled by subscripts 1 and 2,
respectively) are assumed to be in equilibrium at a given temperature T, thus with
densities related by the Boltzmann factor

n2

n1

4exp g2 DE

kT
hE1(1)

where k is the Boltzmann constant.
The (linear) Boltzmann transport equation to be dealt with reads as

¯R

¯t
1vV Q

¯R

¯x
4Je [R]1Ji [R]1Ja [R](2)

where indices e, i, and a denote elastic scattering, inelastic scattering, and absorp-
tion, respectively. Omitting all dependences except on speed v� (0 , 1Q) and di-
rection V�S 2, the collision terms J, in the limit when the ratio of t.p. mass to f.p.
mass m14m2 tends to zero, are given by [1], [3]

Je [R]4 �
S 2

(n1 n 111n2 n 22 ) R(vV 8 ) dV 82R(vV) �
S 2

(n1 n 111n2 n 22 ) dV 8

Ji [R]4 �
S 2

kn1
v1

v
n 12 R(v1 V 8 )1n2 U(v2d) n 12 R(v2 V 8 )l dV 8

2R(vV) �
S 2

kn1 U(v2d) n 121n2
v1

v
n 12l dV 8

Ja [R]42 R(vV) �
S 2

(n1 n 1a1n2 n 2a ) dV 8

(3)

where U stands for the unit step function and

v64 [v 26d 2 ]1/2 , d 242 DE/m .(4)

The collision frequency n 21 for the f.p. transition from the excited to the ground
state (yielding up-scattering for t.p.) has been eliminated from (3) by using the mi-
croreversibility condition. After introducing the dimensionless energy variable
j4v 2 /d 2 and the corresponding new dependent variable f (proportional to the
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scalar flux vR), it is convenient to measure distances and time in units of a typical
macroscopic length L and of the related characteristic time L/d, to get

(5)
¯f

¯t
1j 1/2 V Q

¯f

¯x

4
n1n 11L

d
F(j)1

n1n 12L

d
F(j11)1

n2n 12L

d
g j

j21
h1/2

U(j21) F(j21)1
n2n 22L

d
F(j)

2
4pL

d
f (j,V) yn1n 111n1n 12U(j21)1n2n 12g j11

j
h1/2

1n2n 221n1n 1a1n2n 2az

with

F(x , j , t)4 �
S 2

f (x , j , V , t) dV .(6)

Since the absorption term is deleted from the transport equation by simply re-
placing f exp (2ht) for f, with h44pL(n1 n 1a1n2 n 2a ) /d, we shall consider from
now on, without loss of generality, the case h40.

The dimensionless factors appearing in (5) represent several possible inverse
Knudsen numbers, measuring the collisionality relevant to the different events.
They are in fact the ratio of the macroscopic characteristic time L/d to a mean col-
lision time of the kind (ni n ij )21 or (nj n ij )21, relevant to elastic (i4 j ) or inelastic
(ic j ) collisions. Their order of magnitude is crucial as a label of the importance
of the underlying physical process and associated collision operator. Bearing in
mind also the ratios between different collision frequencies and between the f.p.
populations n2 and n1, several small parameters could be singled out. In the se-
quel we shall confine ourselves to the case of n2 negligible with respect to n1

(thermal energy kT small enough, if compared to the jump DE) and examine the
various options, arising according to the mutual relationship between n 11 and n 12,
which give rise to different asymptotic scalings.

We refer to the discussion in [11] for the implications of the presence of down-
scattering only in the inelastic part: in particular, we shall take again a bounded
energy interval (as it occurs in any slowing down problem), which means that, for
some integer N, the initial distribution f vanishes for any jFN11.

Specifically, we will examine in this paper the following three physical
cases.



17ON THE SMALL MEAN FREE PATH ASYMPTOTICS...[5]

i. If n 11 and n 12 are of the same order, it is appropriate to introduce as small
parameter a global Knudsen number accounting for all scattering collisions

e4
d

4pn1 (n 111n 12 ) L
.(7)

Upon introducing the fraction of inelastic contribution, a4n 12 /(n 111n 12 ), 0Ea

E1, the transport equation reads as

¯f

¯t
1j 1/2 V Q

¯f

¯x
4

1

e
C[ f ] , C[ f ]4aCi [ f ]1 (12a) Ce [ f ] ,(8)

(9) Ci[ f ]4
1

4p
U(N2j) F(j11)2U(j21) f (j,V) , Ce[ f ]4

1

4p
F(j)2f (j,V) .

If one introduces now the equivalence relation connecting each energy j to those
that can be reached by scattering from it, it is immediately seen that the equiva-
lence class (which is constituted by all allowed energies j6k, k positive integer)
is closed with respect to scattering. By taking quotient, it is sufficient to consider
the interval j� [0 , 1 ) and to define, for n40, 1 , 2R,

fn (x , j , V , t)4 f (x , j1n , V , t), j� [0 , 1 ) .(10)

In this way, j� [0 , 1 ) becomes only a parameter in the governing equation, and
different values of j in such an interval remain uncorrelated during the whole
evolution. As physically expected, it is matter of simple calculation to verify that
the quantity

r(x , j , t)4
1

4p
!

k40

N

�
S 2

fk (x , j , V , t) dV , j� [0 , 1 )(11)

is conserved under scattering, namely it is a first integral of (8) in the absence of
spatial gradients. Scattering, the dominant interaction, amounts to slowing down
t.p. below the threshold j41 and to isotropizing directions.

ii. If n 11cn 12 , it is convenient to define as small parameter a Knudsen num-
ber relevant to elastic collision only

e4
d

4pn1 n 11 L
.(12)

Under the assumption that the inverse Knudsen number for inelastic collision,
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b i44pn1 n 12 L/d, is of order unity, the transport equation takes the form

¯f

¯t
1j 1/2 V Q

¯f

¯x
2b i Ci [ f ]4

1

e
Ce [ f ] .(13)

Now elastic scattering is the dominant event and it leaves energy unchanged, its
effect being only isotropization. The equivalence class of any j� [0 , N11), de-
fined as before but with only elastic collisions, is constituted only by j itself. The
quantity which is conserved under elastic scattering is

r(x , j , t)4
1

4p
�

S 2

f (x , j , V , t) dV , j� [0 , N11) ,(14)

whereas a first integral of (13) in space homogeneous conditions (under all colli-
sions) is given by (11) again: of course, the different mechanism of energy ex-
change, and the corresponding different structure of the equivalence classes,
make the variable j appearing in (11) and (14) not comparable.

iii. If finally n 11bn 12 , a proper small parameter is given by the Knudsen
number restricted to inelastic collisions

e4
d

4pn1 n 12 L
.(15)

Now, under the assumption that the inverse Knudsen number for elastic collision,
b e44pn1 n 11 L/d, is of order unity, the transport equation may be written as

¯f

¯t
1j 1/2 V Q

¯f

¯x
2b e Ce [ f ]4

1

e
Ci [ f ] .(16)

The dominant collision operator moves down energy by a unit step at each inter-
action and isotropizes directions, but it leaves unscattered all t.p. which have en-
ergy below the threshold j41. The equivalence classes as above, but relevant
only to inelastic collisions, are now the same as for problem (8), and j may be re-
stricted to the interval [0, 1). Here the quantity which is conserved under inelastic
scattering is

r(x , j , V , t)4 f0 (x , j , V , t)1
1

4p
!

k41

N

�
S 2

fk (x , j , V , t) dV , j� [0 , 1 )(17)

as it is easily verified from (16) itself, with neither spatial gradients nor elastic



19ON THE SMALL MEAN FREE PATH ASYMPTOTICS...[7]

scattering. There is here an angle dependence in the conserved quantity, due to
the fact that particles with energy jE1 remain uncollided for ever.

The asymptotic analysis, with respect to the small parameter e, of the prob-
lems (8), (13) and (16) will be the object of the following Sections.

3 - Mathematical setting

Let X be the Banach space L1 (R 33 (0 , N11)3S 2 ) with the usual norm.
Define the operator

Sf42 j 1/2 V Q
¯f

¯x
, D(S)4] f : f�X , Sf�X( .(18)

Each of the equations (8), (13), and (16) can be cast in abstract form as

df

dt
4Sf1g i Ci [ f ]1g e Ce [ f ](19)

for suitable g e and g i , with initial condition f (0)4 f 0�X, f 0F0. By standard
methods from the theory of semigroups [15], it is easily verified that S1g i Ci

1g e Ce generates a positive semigroup of contractions, and then existence and
uniqueness of a nonnegative solution for the Cauchy problem in the L1-setting can
be readily inferred.

It is clear that in all problems (8), (13), and (16), the t.p. evolution, after group-
ing together those which have the same energy j modulo 1 at time t40, is gov-
erned by an integrodifferential equation with respect to the independent variables
x , V , t, containing j only as a parameter. It seems thus appropriate, according to
the discussion in the previous Section, to introduce as new unknown function the
(N11)-dimensional vector f4 ( f0 , f1 , R , fN ) depending on a parameter j. We
are led consequently to change the mathematical setting and to consider all evolu-
tion problems in the Banach space Y4 [L1 (R 33S 2 ) ]N11 ; the collision operators
will be accordingly considered as acting on the Banach space Z4 [L1 (S 2 ) ]N11.
From now on, it is then implicitly understood that the symbols S , Ce , Ci denote
the matrix form of the streaming and collision operators previously defined. No-
tice that the new setting avoids nonuniqueness of collision equilibria [5], [3], since
j dependence has been eliminated from the unknowns, and evolution problems
relevant to different values of the parameter j are uncorrelated.

One of the crucial points of the compressed asymptotic method [9] is the deter-
mination, for any fixed value of the parameter j, of the null space of the dominant
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operator, and the corresponding spectral decomposition of the pertinent Banach
space Z. We have:

L e m m a 3.1. For any value of j� [0 , 1 ), l40 is isolated eigenvalue of
multiplicity one of the operator C4aCi1 (12a) Ce , and the corresponding
eigenspace consists of all elements f�Z that are of the form (f0 , 0 , R , 0 ), with
constant f0 .

P r o o f . For the determination of N(C) it is sufficient to solve sequential-
ly

[ (12d n0 ) a112a] fn (V)4
12a

4p
Fn1(12d nN )

a

4p
Fn11 , n40, 1 , R , N(20)

with fixed j� [0 , 1 ), which yields directly f0 (V)4
1

4p
F0, fn (V)40 (nD0, F0

independent of V and arbitrary. As regards the spectrum of C, lengthy but stan-
dard calculations show that, for given g�Z, the equation lf2C[f]4g, or,
componentwise,

(l112ad n0 ) fn (V)4
12a

4p
Fn1 (12d nN )

a

4p
Fn111gn (V) ,(21)

as a degenerate Fredholm integral equation, is uniquely solvable in Z for any l in
the complex plane, except for the set ]0, 2a , 2(12a), 21(, which makes up
the point spectrum of C. The resolvent (lI2C)21 is implicitly given by (21) itself
plus

F04
1

l
!

k40

N g a

l1a
hk

Gk , Fn4
1

l1a
!

k4n

N g a

l1a
hk2n

Gk , n41, 2 , R , N ,(22)

where, like in (6),

Gk4 �
S 2

gk (V) dV .

It should be noted that, in the standard setting L1 [ (0 , N11)3S 2 ], the
eigenspace of l40 would be infinite dimensional, due to the presence of an arbit-
rary function of j� [0 , 1 ), which is a consequence of the absence of correlation
among energies in that range. Thus, taking sections with respect to the former
variable j yields instead a simple leading eigenvalue on each section, as expressed
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in the previous formulae by the presence of only a multiplicative constant F0 in
the eigenfunction.

Due to the simplicity of l40, we immediately have the spectral decomposition
[9]

Z4N(C)5R(C)(23)

where R(C) is the range of C. There results in addition:

L e m m a 3.2. The projection P onto N(C) along R(C) is given by

(Pf)04
1

4p
!

k40

N

�
S 2

fk (V) dV , (Pf)n40 n41, R , N ,(24)

again for any value of the parameter j� [0 , 1 ).

P r o o f . The proof is straightforward, with VPV41, P 24P , PC4CP40.
For the sake of completeness, we report also on the mathematical properties

of the other operators which play the dominant role in the considered problems,
referring to the quoted bibliography for the proofs. Actually, all quoted results
are relevant to only one space dimension, thus with a directional variable
m� [21, 1 ] instead of V�S 2, but the generalization does not present any difficul-
ty. It is then omitted here.

In the case of Ce , energies are actually uncorrelated at all, the parameters j

ranges thus all over [0,N11), and it is proper to consider the operator on the Ba-
nach space L1 (S 2 ). The matter has been widely dealt with in the literature [9].
The conclusions are summarized by:

L e m m a 3.3. l40 is an isolated eigenvalue of multiplicity one of the oper-
ator Ce , and the corresponding eigenspace N(Ce ) consists of the functions in
L1 (S 2 ) which are constant. The spectral decomposition L1 (S 2 )4N(Ce )5R(Ce )
holds and the projection P onto N(C) is given by

Pf4
1

4p
�

S 2

f (V) dV .(25)

In the case of Ci , the situation gets more complicated because l40, still iso-
lated eigenvalue of Ci , has infinite dimensional eigenspace also in the present set-
ting. However, the spectral decomposition can be proved, upon introducing the
adjoint operator Ci* and showing that the range of Ci is closed [11]. Here again
j� [0 , 1 ) and Z4 [L1 (S 2 ) ]N11. We have:
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L e m m a 3.4. l40 is an isolated eigenvalue of the operator Ci , and the cor-
responding eigenspace consists of the elements of Z of the form ( f0 , 0 , R , 0 ),
with f0 arbitrary (summable) function of V. The spectral decomposition
Z4N(Ci )5R(Ci ) holds and the projection P onto N(Ci ) is given by

(Pf)04 f0 (V)1
1

4p
!

k41

N

�
S 2

fk (V 8 ) dV 8 , (Pf)n40 n41, R , N .(26)

The connection between the projections (24), (25), (26) on one side, and the null
spaces and first integrals (11), (14), (17) on the other, is apparent from the above
formulae.

Now the compressed asymptotic expansion [9] resorts to the spectral decom-
position (23) by introducing, for the unknown f, hydrodynamic and kinetic
parts

W4Pf , c4Qf(27)

with Q4I2P and f4W1c; both projections P and Q are applied then to the
pertinent evolution equation and initial condition. Each unknown is further sepa-
rated into a bulk and an initial layer contribution

W (t)4W (t)1WA(t) , c (t)4c (t)1c
A (t) , t4 t/e ,(28)

where the hydrodynamic bulk part W is left unexpanded, whereas all other parts
are expanded into asymptotic power series with respect to e, of the kind

c (t)4 !
i40

Q

ci (t) e i .(29)

The initial layer contributions depend on the stretched variable t and are corre-
spondingly expanded. Initial conditions reads as

W (0)4Pf 04u , c (0)4Qf 04w .(30)

Initial conditions to be applied to the limiting asymptotic equation are determined
by the initial layer analysis.

4 - Asymptotic analysis of equation (8)

We begin with case i.), in which elastic and inelastic scattering are equally im-
portant, the quantity (11) is conserved by collisions, and Lemmas 3.1 and 3.2 hold.
For the components of the unknown vector f the governing equation, for any fixed
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j� [0 , 1 ), reads as

¯fn

¯t
42 (j1n)1/2 V Q

¯fn

¯x
1

12a

4pe
Fn1 (12d nN )

a

4pe
Fn112

12ad n0

e
fn .(31)

The system for the hydrodynamic and kinetic parts takes the form

¯W

¯t
4PSPW1PSQc

¯c

¯t
4QSPW1QSQc1

1

e
QCQc

(32)

with P given by eq. (24). The same system is in order for the bulk parts W and c

and, when the latter is expanded up to the first order in e, there follows readily,
since QCQ is invertible in R(C),

c040 , c142 (QCQ)21 QSPW ,(33)

and thus, apart from O(e 2 ) corrections,

¯W

¯t
4PSPW2ePSQ(QCQ)21 QSPW ,(34)

where it is easy to check that PSP40. This is clearly a scalar equation since the
elements of N(C) have all vanishing components, but the first. More precisely,
some manipulations yield

(QSPg)042
1

4p
j 1/2 V Q

¯

¯x
!

k40

N

Gk ,

(PSQg)042
1

4p
!

k40

N

(j1k)1/2�
S 2

V Q
¯gk

¯x
dV ,

(QSPg)n40 , nD0

(PSQg)n40 , nD0

and, for g�R(C),

[ (QCQ)21 g]042
1

12a
g01

1

12a

1

4p
G01

1

a

1

4p
!

k41

N

kGk

[ (QCQ)21 g]n42 gn2
12a

a

1

4p
Gn2

1

a

1

4p
!

k4n11

N

Gk .
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The only component of interest in (34) is thus

(35) 2[PSQ(QCQ)21QSPW]04
j

(12a) 4p
!

i,j41

3 ¯2W0

¯xi¯xj

�
S 2

V iV jdV4
j

3(12a)
˜2W0,

and the limiting first order asymptotic equation is given by the diffusive
approximation

¯W0

¯t
4

e

3

j

12a
˜2 W0(36)

where the dependent variable W0 is easily seen to represent the bulk part of the
quantity r in (11), conserved under scattering. The diffusion coefficient depends
(linearly) on the parameter j� [0 , 1 ) and on a� (0 , 1 ). It still makes sense in the
limit aK0, but it degenerates in the opposite limiting case aK1, since, in the lat-
ter, elastic scattering would vanish, and isotropization as well, changing the struc-
ture of the spectral decomposition.

Upon resorting to the decompositions (27) and (30), and again to the first or-
der approximation, initial conditions can be cast as

W (0)4u2WA0 (0)2eWA1 (0) ,

c
A0 (0)4w , c

A1 (0)4 (QCQ)21 QSPW (0) ,
(37)

where eq. (33), specialized at t40, has been taken into account. The initial layer
equations

¯WA

¯t
4ePSQc

A

¯c
A

¯t
4eQSPWA1eQSQc

A
1QCQc

A
(38)

have to be solved by equating equal powers of e, with vanishing limit conditions
for tK1Q. This yields sequentially

WA040,
¯WA1

¯t
4PSQc

A0 ,
¯c
A0

¯t
4QCQc

A0 ,
¯c
A1

¯t
4QSQc

A01QCQc
A1

and then, if G *(t) denotes the bounded exponentially decaying semigroup gener-
ated by QCQ on R(C) (its explicit expression is omitted for brevity), we may write
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c
A04G *(t) w and, by standard properties of semigroups,

WA14�
0

t

PSQG *(t8) w dt 842�
t

Q

PSQG *(t 8 ) w dt 84PSQ(QCQ)21 G *(t) w

c
A14G *(t)(QCQ)21 QSPW(0)1�

0

t

G *(t2t 8 ) QSQG *(t8 ) w dt 8 .

What we are mainly interested in is the first of (37), namely

W(0)4u2ePSQ(QCQ)21 w ,(39)

which provides the initial condition for the hydrodynamic bulk part in (36) in
terms of the hydrodynamic and kinetic parts of the actual initial condition. Again
(39), as any equation in N(C), has only one nontrivial scalar component, for which
it gives, after some algebra,

W 0 (0)4u02
e

4p
y 1

12a
j 1/2�

S 2

V Q
¯w0

¯x
dV1 !

k41

N

(j1k)1/2�
S 2

V Q
¯wk

¯x
dVz .(40)

To first order accuracy, the asymptotic limit to the Cauchy problem (8) is thus the
diffusion equation (36), with initial condition (40), for the bulk part of the hydrody-
namic quantity r given by (11).

5 - Asymptotic analysis of equation (13)

We are dealing here with case ii, in which elastic scattering is dominant over
all other terms, including inelastic scattering, of the governing equation. Now the
quantity conserved by the dominant events is given by (14), and the spectral de-
composition is described by Lemma 3.3. Besides, Z is replaced by L1 (S 2 ), the un-
known is a scalar quantity, and j ranges all over [0, N11). With Ci and Ce de-
fined by (9), the set of hydrodynamic and kinetic equations takes the form

¯W

¯t
4PSPW1PSQc1b i PCi PW1b i PCi Qc

¯c

¯t
4QSPW1QSQc1b i QCi PW1b i QCi Qc1

1

e
QCe Qc ,

(41)

where P is defined now by (25) and the cross terms PCi Q and QCi P also vanish.
Repeating the same steps as in the previous Section, we obtain for the hydrody-
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namic contributions, apart from O(e 2 ) corrections,

c42 e(QCe Q)21 QSPW ,(42)

where now (QCe Q)2142 I on R(Ce ), and once more PSP40. Therefore, we are
simply left with

¯W

¯t
4ePSQQSPW1b i PCi PW(43)

where W�N(Ce ) is the bulk contribution to the quantity r defined by (14) which is
conserved by elastic scattering. Since

PCi Pg4
1

4p
U(N2j) G(j11)2

1

4p
U(j21) G(j)

QSPg42
1

4p
j 1/2 V Q

¯G

¯x

PSQg42
1

4p
j 1/2�

S 2

V Q
¯g

¯x
dV ,

the same steps as in (35) lead to the diffusive approximation

¯W

¯t
4

e

3
j˜2 W1b i U(N2j) W12b i U(j21) W ,(44)

with W4W(x , t ; j) and W14W(x , t ; j11). Thus the diffusion coefficient is O(e),
as expected, but there is a O(1) interaction term due to inelastic scattering (the
non-dominant one), which links the unknown W relevant to the chosen value of the
parameter j to the unknown relevant to the value j11, and thus to all other
values which are equal to it modulo 1. In other words, the previously introduced
equivalence class enters the picture now, after performing the asymptotic proce-
dure independently of it, since it did not affect the dominant operator Ce .

Notice that, on using the definition (10), summation of (44) with all other equa-
tions relevant to the same equivalence class eliminates inelastic scattering, and
yields a global balance equation that, however, is not self-consistent for

W*(x , t ; j)4 !
k40

N

Wk (x , t ; j) , j� [0 , 1 )(45)

where W* is the bulk part of the quantity r defined by (11), which is conserved un-
der all kinds of scattering also for the present problem.
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Regarding the initial layer analysis, it proceeds in the same manner as before.
From the initial layer equations

¯WA

¯t
4ePSQc

A1eb i PCi PWA

¯c
A

¯t
4eQSPWA1eQSQc

A1eb i QCi Qc
A1QCe Qc

A ,

(46)

linear expansions with respect to e yield

WA040 , c
A04Ge (t) w , WA14PSQ(QCe Q)21 Ge (t) w

where Ge is the semigroup generated by QCe Q on R(Ce ), and c
A0 (0)4w. The in-

itial condition for the hydrodynamic bulk part turns out to be

W(0)4u2ePSQ(QCe Q)21 w4u2
e

4p
j 1/2�

S 2

V Q
¯w

¯x
dV(47)

and provides O(e) correction to the hydrodynamic part u of the actual initial con-
dition in terms of its kinetic part w. The approximate first order asymptotic
Cauchy problem is given by (44)+(47), and involves the bulk part of the hydrody-
namic quantity (14), via a set of diffusion equations which couple together param-
eters j that are equal modulo 1.

6 - Asymptotic analysis of equation (16)

We consider finally the case iii, in which inelastic scattering is the leading
event, the quantity (17) is conserved by the dominant collisions, and Lemma 3.4
holds. We are back to the Banach space Z and to a parameter j ranging in [0, 1),
with Ci as dominant operator. With P given by (26), we have

¯W

¯t
4PSPW1PSQc1b e PCe PW

¯c

¯t
4QSQc1b e QCe Qc1

1

e
QCi Qc

(48)

where account has been given to the identities

QSP4PCe Q4QCe P40 .(49)

In spite of its complexity, this problem exhibits the simplifying feature that the
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second equation in (48) is decoupled from the first and allows an easy solution,
after the usual linear expansion in e. Since QCi Q is invertible on R(Ci ), we get at
once c040 and then c140. With c40, the first equation is self-consistent and
reads as

¯W

¯t
4PSPW1b e PCe PW .(50)

This is equivalent again to a scalar equation and, after some manipulations, we
end up with the explicit form

¯W0

¯t
42j 1/2 V Q

¯W0

¯x
1

b e

4p
�

S 2

W0 dV2b e W0(51)

which is independent of e, and involves the bulk part of the quantity r defined by
(17), conserved by inelastic scattering. The unknown W0 depends on the variable
V, in addition to x and t, as it occurred in [11]; along with the streaming process,
which is O(1), elastic scattering is present with contributions that are O(1) as
well. Indeed, these are the processes undergone by test particles, after the fast
transient in which inelastic scattering slows them down below the energy thresh-
old j41.

The initial layer analysis goes through the same steps as before. The relation-
ships (37) still hold, and the set (48) is valid also for the initial layer contributions

provided t is replaced by t and the left hand sides are multiplied by
1

e
. Expand-

ing both WA and c
A, we get

WA040 , c
A04Gi (t) w , WA14PSQ(QCi Q)21 Gi (t) w

where Gi is the semigroup generated by QCi Q on R(Ci ). There follows

W(0)4u2ePSQ(QCi Q)21 w ,(52)

with the usual kinetic O(e) correction to the hydrodynamic part of the given initial
condition. Again (52) corresponds to a scalar equation, which represents the initial
condition to be applied to the hydrodynamic limit (51). Bearing in mind that

(PSQg)04
1

4p
!

k41

N yj 1/2 V Q
¯Gk

¯x
2 (j1k)1/2�

S 2

V Q
¯gk

¯x
dVz , (PSQg)n40 , nD0
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and, for g�R(Ci ),

[ (QCi Q)21 g]04
1

4p
!

k41

N

kGk , [ (QCi Q)21 g]n42 gn2
1

4p
!

k4n11

N

Gk , nD0 ,

we conclude that

W0 (0)4u01
e

4p
!

k41

N yj 1/2 V Q
¯

¯x gk�
S 2

wk dVh2 (j1k)1/2�
S 2

V Q
¯wk

¯x
dVz .(53)

The asymptotic limit here is thus the non diffusive equation (51), describing
streaming plus elastic scattering, with initial condition (53), for the bulk part of
the hydrodynamic quantity (17), which depends here on direction V. Notice that
integration of (51) over S 2 with respect to V eliminates elastic scattering, but it
does not leave a self-consistent equation for the variable �

S 2

W0 dV (it is, indeed, the
continuity equation).
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A b s t r a c t

The asymptotic analysis of the linear Boltzmann equation with inelastic scattering is
performed with respect to the proper Knudsen number for three physical situations char-
acterized by different mutual relationships between elastic and inelastic collision terms
and by negligible up-scattering. After establishing all necessary mathematical properties,
the compressed asymptotic method by Mika and Banasiak is used to derive the first order
approximate limiting equation, which does not always turn out to be of diffusive
type.

* * *


