A. Benini and F. Morini (*)

Weakly divisible nearrings on the group of integers $\left(\bmod p^{n}\right)(* *)$

1- Introduction

In some papers written from 1964 to 1970 (see [3], [5]), James Clay began to work on the construction of nearrings on given additive groups. The problem, which was later developed by various authors (see [7], [8], [11], [1]), remains substantially open. In fact, except for some general theorems, a method explicitly describing a construction of nearrings on given additive groups is available only for certain specific classes of groups (see [7], [8], [9], [10]). This paper, according to Ferrero's work (see [7], [6]), generalises the method provided in [2] for the construction of weakly divisible nearrings, which are left nearrings N fulfilling the following:

$$
\forall x, y \in N, \quad \exists z \in N \mid x z=y \text { or } y z=x .
$$

Here we deal with wd-nearrings on a cyclic additive group. Since it has been proved that the residue class rings of order m are wd-rings if, and only if, m is a prime-power, in Section 4 we study and construct wd-nearrings on ($\mathbb{Z}_{p^{n}},+$). Our construction allows the characterisation of all zerosymmetric wd-nearrings on the $\operatorname{group}\left(\mathbb{Z}_{p^{n}},+\right)$ of integers $\left(\bmod p^{n}\right), p$ prime, in which $p Z_{p^{n}}$ is the ideal Q of all the nilpotent elements. Even when the order of the additive group is not a primepower or $p Z_{p^{n}}$ is different from Q, it is possible to construct wd-nearrings on $\left(Z_{p^{n}},+\right)$ and we have some examples. The characterisation of such cases will be object of further research.

[^0]
2-Preliminaries and notations

Let $(H,+)$ be a finite group and Φ a subgroup of $\operatorname{Aut}(H,+)$. Let e be a selected representative of any orbit of Φ. For every h belonging to $\Phi(e), \varphi_{h}$ will denote an automorphism of Φ such that $\varphi_{h}(e)=h$. Obviously φ_{h} exists for every $h \in H^{*}$, and, if the automorphisms of Φ are fixed point free, it is the only one.

In the following we refer to zerosymmetric left nearrings, without any explicit recall. For the notations we refer to [12]. Here we recall that γ_{a} denotes the left translation defined by a, for $a \in N$, that is $\gamma_{a}(x)=a x$, for every $x \in N$. Also recall that γ_{a} is an endomorphism of N^{+}and it turns out to be an automorphism if, and only if, a is a left cancellable element of N. If H is a subset of $N, \Gamma(H)$ denotes the set of the left translations defined by the elements of H. The identity of Aut $(N,+)$ is denoted by $i d_{N}$.

From Prop. 9 and Th. 6 of [2] we know that a finite wd-nearring N is the disjoint union of the nil radical Q (hereinafter simply called radical), equal to the prime and the Jacobson radicals, and the multiplicative semigroup C of the left cancellable elements. Moreover, by Th. 8 of [2], C is the disjoint union of maximal multiplicative subgroups of C, isomorphic to each other.

As in [2], in the following, the maximal subgroup of C containing a will be denoted by B_{a} and 1_{a} will be its identity. So $N=Q \cup C, C=\bigcup_{a \in C} B_{a}$ where $B_{a}=\left\{x \in C \mid x 1_{a}=x\right\}$. We recall here that the identities of the $B_{a} \mathrm{~S}(a \in C)$ are the left identities of N and the only idempotent elements of N. Moreover, every $B_{a}(a \in C)$ contains only one idempotent element (Th. 7, [2]).

3-Finite wd-nearrings

We now show some further properties of a finite wd-nearring.
Proposition 1. Let N be a finite wd-nearring and q a nilpotent element of N. The set of the right identities of q is a multiplicative subsemigroup of C which contains at least one idempotent element.

Let q be a non trivial nilpotent element of N. From Prop. 1 of [2] the set $R(q)$ of the right identities of q is a subset of C. Furthermore, $R(q)$ is closed with respect to the multiplication, hence it is a multiplicative semigroup of left cancellable elements. Since each left cancellable element has a power which is a left identity of N ([2], Th. 8(b)), $R(q)$ obviously contains some idempotent elements.

Proposition 2. Let N be a finite wd-nearring.
(1) The set $\Gamma(C)$ is a group o f automorphisms of N^{+}.
(2) For each $a \in C, \Gamma(C)=\Gamma\left(B_{a}\right)$.
(3) For each $a \in C, B_{a}=\Gamma(a)$, where $\Gamma(a)$ denotes the orbit of $\Gamma(C)$ containing the element a.
(4) Let $c \in C$ with $\gamma_{c} \neq i d_{N}$. The fixed points of γ_{c} are nilpotent and form an N-subgroup of N.
(1) Obviously, $\Gamma(C)$ is a semigroup of automorphisms of N^{+}. Furthermore, from Th. 8(b) of [2], for each $c \in C$ there is a power c^{t} which is a left identity of N. Thus $i d_{N}=\gamma_{c^{t}}$ belongs to $\Gamma(C)$ and $\gamma_{c}^{t-1}=\gamma_{c^{t-1}}$ is the inverse of γ_{c}.
(2) For all $a, b \in C, \Gamma\left(B_{a}\right)=\Gamma\left(B_{b}\right)$. In fact, for every $h \in B_{a}, \gamma_{h}(x)=h x$ $=h\left(1_{b} x\right)=\left(h 1_{b}\right) x=\gamma_{h 1_{b}}(x)$. From $h 1_{b} \in B_{b}$ it follows that $\gamma_{h} \in \Gamma\left(B_{b}\right) \forall h \in B_{a}$. In the same way we obtain $\gamma_{k} \in \Gamma\left(B_{a}\right) \forall k \in B_{b}$.
(3) Clearly, $\quad B_{a}=\left\{x \in C \mid x 1_{a}=x\right\}=\left\{x \in C \mid \gamma_{x}\left(1_{a}\right)=x\right\}=\left\{\gamma_{x}\left(1_{a}\right) \mid x \in C\right\}$ $=\left\{\gamma_{x}\left(1_{a}\right) \mid \gamma_{x} \in \Gamma(C)\right\}=\Gamma\left(1_{a}\right)$. Since $a \in B_{a}, a$ also belongs to $\Gamma\left(1_{a}\right)$, hence $\Gamma\left(1_{a}\right)=\Gamma(a)$.
(4) Let $c \in C$ and $\gamma_{c} \neq i d_{N}$. Let h be a fixed point of γ_{c}, that is $c h=h$. If h is left cancellable, there is a power h^{t} which is a left identity of N. From $c h^{t}=h^{t}$, we obtain $\operatorname{ch}^{t} x=h^{t} x$, for all $x \in N$, and this implies $c x=x$, now excluded. Therefore h is nilpotent. It is routine to verify that $S(c)=\left\{x \in N \mid \gamma_{c}(x)=x\right\}$ is an N-subgroup of N.

4-Wd-nearrings on $\left(\mathbb{Z}_{p^{n}},+\right)$
The particular additive structure of a nearring N on the group of integers $\left(\bmod p^{n}\right)$ acts very strongly to determine the multiplicative structure. For instance, we know that, for any x and y in $N, x \circ y=y \cdot(x \circ 1)$, where «०» and «•» denote the multiplications in N and in the ring of integers $\left(\bmod p^{n}\right)$ respectively (see [3]). As usual, «॰» will be omitted. In the following \widehat{a} will denote the residue class $\left(\bmod p^{n}\right)$ containing $a \in \mathbb{Z}$ and $x^{(t)}, x^{t}$ the powers of $x \in \mathbb{Z}_{p^{n}}$ with respect to «o» and «•». We recall here that every automorphism α_{k} of $\left(\mathbb{Z}_{p^{n}},+\right)$ is of the form $\alpha_{k}: x \rightarrow k x, k$ relatively prime to p. The automorphism group of $\left(\mathbb{Z}_{p^{n}},+\right)$ is a well known group of order $p^{n-1}(p-1)$ whose subgroups containing only fixed point free automorphisms have order t which divides $p-1$ (see [4] Chapter 2).

The following propositions describe some further properties of wd-nearrings with the additive group $G=\left(\mathbb{Z}_{p^{n}},+\right)$.

Proposition 3. Let N be a wd-nearring on $G=\left(\mathbb{Z}_{p^{n}}\right.$, +). If p divides the order of $\Gamma(C)$ then \widehat{p} is nilpotent.

From Sylow's Theorem if p divides the order of the group $\Gamma(C)$ (Proposition 2(1)), then there exists an element of order p in $\Gamma(C)$: let γ_{c} be, for some $c \in C$.

Let $p \neq 2$. The elements of $A u t(G)$ of order p are those automorphisms of G defined by elements of the form $h p^{n-1}+1$, with $1 \leqslant h \leqslant p-1$, so $\gamma_{c}(\widehat{p})=$ $\left(h p^{n-1}+1\right) \hat{p}=\widehat{p}$. From Proposition 2(3) it follows that \hat{p} is nilpotent.

Let $p=2$. It is well-known that the elements of $A u t(G)$ of order 2 are the automorphisms $\alpha_{a_{i}}(i=1,2,3)$ defined by the elements $a_{1}=1+2^{n-1}, a_{2}=-1, a_{3}$ $=-1+2^{n-1}$. Obviously, $|\Gamma(C)| \neq 2$ or $|\Gamma(C)|=2$; when $|\Gamma(C)|=2$, it results either $\Gamma(C)=\left\{\mathrm{id}_{N}, \alpha_{a_{1}}\right\}$ or $\Gamma(C)=\left\{\mathrm{id}_{N}, \alpha_{a_{2}}\right\}$ or $\Gamma(C)=\left\{\mathrm{id}_{N}, \alpha_{a_{3}}\right\}$, thus we have to examine the following complementary cases:
(1) $|\Gamma(C)|>2$;
(2) $\Gamma(C)=\left\{\mathrm{id}_{N}, \alpha_{a_{1}}\right\}$;
(3) $\Gamma(C)=\left\{\mathrm{id}_{N}, \alpha_{a_{2}}\right\}$;
(4) $\Gamma(C)=\left\{\operatorname{id}_{N}, \alpha_{a_{3}}\right\}$.

Cases (1) and (2). Now $\alpha_{a_{1}}$ belongs to $\Gamma(C)$, hence $\widehat{2}$ is nilpotent because it is fixed by $\alpha_{a_{1}}$.

Case (3). If $\Gamma(C)=\left\{\operatorname{id}_{N}, \alpha_{a_{2}}\right\}$ and we suppose $\hat{2}$ is left cancellable, then $\gamma_{\hat{2}} \in \Gamma(C)$ and, hence, it must be $\widehat{2} \circ \hat{1}=\gamma_{\hat{2}}(\widehat{1})= \pm \widehat{1}$. In both cases, it cannot be $\widehat{2}^{n-1} \circ \widehat{1}=\widehat{2}^{n-1}$, otherwise $\widehat{2}^{n-1}= \pm \widehat{2}^{n-1}=\widehat{2}^{n-1} \circ(\pm \widehat{1})=\widehat{2}^{n-1} \circ(\widehat{2} \circ \widehat{1})$ $=\left(\widehat{2}^{n-1} \circ \widehat{2}\right) \circ \widehat{1}=\left[\widehat{2}\left(\widehat{2}^{n-1} \circ \widehat{1}\right)\right] \circ \widehat{1}=\widehat{0}$, and this is absurd. So $\widehat{2}^{n-1} \circ \widehat{1} \neq \widehat{2}^{n-1}$.

Nevertheless, $\widehat{2}^{n-1}$ is always nilpotent, because it is a fixed point of each element of $A u t(G)$, hence $\widehat{2}^{n-1} \circ \widehat{1}$ is nilpotent too. Since $Q \subseteq p Z_{p^{n}}, \widehat{2}^{n-1} \circ \widehat{1}=\widehat{2}^{k} \widehat{b}$ with $(b, 2)=1$ and $1<k<n-1$. A direct verification shows that $\widehat{2}^{n-1-k}$ is a right identity of $\widehat{2}^{n-1}$ and, therefore, it is a left cancellable element of N (see Prop. 1 [2]), hence $\gamma_{\hat{2}^{n-1-k}} \in \Gamma(C)$ and thus $\widehat{2}^{n-1-k} \circ \widehat{1}=\gamma_{\widehat{2}^{n-1-k}}(\widehat{1})= \pm \widehat{1}$. We examine the two possibilities separately.

Suppose $\widehat{2}^{n-1-k} \circ \widehat{1}=\widehat{1}$. Since $B_{\widehat{2}^{n-1-k}}=\left\{\widehat{2}^{n-1-k},-\widehat{2}^{n-1-k}\right\}$, it follows that $\left(-\widehat{2}^{n-1-k}\right) \circ \widehat{1}=-\widehat{1}$. Thus

$$
\begin{aligned}
\widehat{2}^{k} \widehat{b} & =\widehat{2}^{n-1} \circ \widehat{1}=\left(-\widehat{2}^{n-1}\right) \circ \widehat{1}=\left[-\left(\widehat{2}^{n-1} \circ \widehat{2}^{n-1-k}\right)\right] \circ \widehat{1}=\left[\widehat{2}^{n-1} \circ\left(-\widehat{2}^{n-1-k}\right)\right] \circ \widehat{1} \\
& =\widehat{2}^{n-1} \circ\left[\left(-\widehat{2}^{n-1-k} \circ \widehat{1}\right)\right]=\widehat{2}^{n-1} \circ(-\widehat{1})=-\left(\widehat{2}^{n-1} \circ \widehat{1}\right)=-\widehat{2}^{k} \widehat{b},
\end{aligned}
$$

that is $\widehat{2}^{k} \widehat{b}=-\widehat{2}^{k} \widehat{b}$, but now this is excluded because of $k<n-1$. Thus $\widehat{2}$ is nilpotent.

Suppose $\widehat{2}^{n-1-k} \circ \widehat{1}=-\widehat{1}$. We have again $B_{\widehat{2}^{n-1-k}}=\left\{\widehat{2}^{n-1-k},-\widehat{2}^{n-1-k}\right\}$, but now $\left(-\widehat{2}^{n-1-k}\right) \circ \widehat{1}=\widehat{1}$. As above, it results $-\widehat{2}^{k} \widehat{b}=\widehat{2}^{k} \widehat{b}$ which is absurd.

Case (4). If $\Gamma(C)=\left\{i d_{N}, \alpha_{a_{3}}\right\}$, the statement arises analogously to case (3).

Proposition 4. Let N be a wd-nearring on $G=\left(\mathbb{Z}_{p^{n}}\right.$, +). The following statements are equivalent:
(1) \widehat{p} is a nilpotent element;
(2) $p Z_{p^{n}}$ is the radical Q;
(3) the right identities of \widehat{p} belong to $\mathbb{Z}_{p^{n}} \backslash p Z_{p^{n}}$.
$(1) \Rightarrow(2)$ If \widehat{p} belongs to the subnearring Q, obviously $p Z_{p^{n}}$ is included in Q. But $p Z_{p^{n}}$ is a maximal subgroup of $\left(\mathbb{Z}_{p^{n}},+\right)$, so $Q=p Z_{p^{n}}$.
$(2) \Rightarrow(3)$ The right identities of \widehat{p} are left cancellable (see Proposition 1) and if $Q=p Z_{p^{n}}$, the left cancellable elements of N are in $Z_{p^{n}} \backslash p Z_{p^{n}}$.
$(3) \Rightarrow(1)$ Let \widehat{g} be a right identity of \widehat{p}. Since g is relatively prime to p, then \widehat{g} is one of the generators of ($\mathbb{Z}_{p^{n}},+$), hence, for some k in \mathbb{Z}, it follows that \widehat{p} $=k \widehat{g}$, where p divides k because p and g are relatively prime. By induction, we can show that $\widehat{p}^{(t)}=k^{t-1} \widehat{p}$. In particular, we obtain $\widehat{p}^{(n)}=k^{n-1} \widehat{p}=\widehat{0}$ because k is a multiple of p, hence \widehat{p} is nilpotent.

Using Propositions 3 and 4, recalling that $\Gamma(C)$ is the group of the left translations defined by the left cancellable elements, we can derive the following:

Theorem 1. If N is a wd-nearring on $G=\left(\mathbb{Z}_{p^{n}},+\right)$ and p divides the order of $\Gamma(C)$, then the set Q of the nilpotent elements coincides with $p Z_{p^{n}}$.

Thus all wd-nearrings on $\left(\mathbb{Z}_{2^{n}},+\right)$ have $Q=2 Z_{2^{n}}$, while, if $p \neq 2$, there exist wd-nearrings on ($\mathbb{Z}_{p^{n}}$, +) with $Q=p Z_{p^{n}}$ and also with $Q \neq p Z_{p^{n}}$, when p does not divide the order of $\Gamma(C)$. That is shown by the following example.

Example 1. Let $G=\left(Z_{81},+\right)$ and define on Z_{81} the following multiplications: for all $\widehat{a}, x \in \mathbb{Z}_{81}$

$$
\widehat{a} \circ x= \begin{cases}\hat{0} & \text { if } a=0 \\ x & \text { if } a \equiv_{3} 1 \text { or } a=3 k \text { with } k \equiv_{3} 1 \\ 80 x & \text { if } a \equiv_{3} 2 \text { or } a=3 k \text { with } k \equiv_{3} 2 \\ 9 x & \text { if } a=27 \text { or } a=9 k \text { with } k \equiv_{3} 1 \\ 72 x & \text { if } a=54 \text { or } a=9 k \text { with } k \equiv_{3} 2\end{cases}
$$

$$
\widehat{a} \circ^{\prime} x= \begin{cases}\hat{0} & \text { if } a=0 \\ x & \text { if } a \equiv_{3} 1 \\ 80 x & \text { if } a \equiv_{3} 2 \\ 3 x & \text { if } \mathrm{a}=3 \mathrm{k} \text { with } k \equiv_{3} 1 \\ 78 x & \text { if } a=3 k \text { with } k \equiv_{3} 2 \\ 9 x & \text { if } a=9 k \text { with } k \equiv_{3} 1 \\ 72 x & \text { if } a=9 k \text { with } k \equiv_{3} 2 \\ 27 x & \text { if } a=27 \\ 54 x & \text { if } a=54\end{cases}
$$

then $\left(Z_{81},+, \circ^{\prime}\right)$ turns out to be a wd-nearring with $Q=3 Z_{81}$, while $\left(Z_{81},+, \circ\right)$ results a wd-nearring with $Q \neq 3 Z_{81}$. Both these constructions are possible, because $p=3$ does not divide the order of $\Gamma(C)=\left\{i d_{G},-i d_{G}\right\}$, in according to Theorem 1.

Case $Q=p Z_{p^{n}}$.
In this paragraph we collect some further properties about wd-nearrings on ($Z_{p^{n}},+$) with $Q=p Z_{p^{n}}$.

Proposition 5. Let $N=\left(\mathbb{Z}_{p^{n}},+\right.$, o) be a wd-nearring with $Q=p \mathbb{Z}_{p^{n}}$. For every $k \in \mathbb{Z}$, it is $k \widehat{p}^{t} \circ \widehat{1}=p^{t} e^{-t}\left(k e^{t} \circ \widehat{1}\right)$, where $1 \leqslant t<n$ and e is an idempotent right identity of \hat{p}.

From the hypothesis and Proposition 4, we have $\widehat{p} \circ e=\widehat{p}$ with $e \in \mathbb{Z}_{p^{n}} \backslash p Z_{p^{n}}$, hence e is an invertible element of the ring ($\left.Z_{p^{n}},+, \cdot\right)$ so $\widehat{p} \circ \widehat{1}=e^{-1} \widehat{p}$. Consequently, $k \widehat{p}=k(\widehat{p} \circ e)=\widehat{p} \circ k e$ and also $\widehat{p}^{(2)}=p^{2} e^{-1}$. By induction we can prove $k \widehat{p}^{t}=\widehat{p}^{(t)} \circ k e^{t}$ and also $\widehat{p}^{(t)} \circ \widehat{1}=p^{t} e^{-t}$. Thus, $k \widehat{p}^{t} \circ \widehat{1}=\widehat{p}^{(t)} \circ k e^{t} \circ \widehat{1}$ $=\left(k e^{t} \circ \hat{1}\right)\left(\widehat{p}^{(t)} \circ \hat{1}\right)=p^{t} e^{-t}\left(k e^{t} \circ \widehat{1}\right)$.

We now establish a congruence between the identities 1_{a} of the maximal subgroups B_{a} of C.

Proposition 6. Let $N=\left(\mathbb{Z}_{p^{n}},+, \circ\right)$ be a wd-nearring with $Q=p \mathbb{Z}_{p^{n}}$. Let $B_{x}, B_{y}(x, y \in C)$ be two maximal multiplicative subgroups of C. If $\widehat{a} \in B_{x}, \widehat{b} \in B_{y}$ and $\widehat{a}-\widehat{b} \in p^{j} Z_{p^{n}},(j<n)$, then it is also $1_{\widehat{a}}-1_{\hat{b}} \in p^{j} Z_{p^{n}}$.

Let \hat{e} be an idempotent right identity of \hat{p}. From $\widehat{a}-\widehat{b} \in p^{j} Z_{p^{n}}$ it derives $p^{n-j} \widehat{a}=p^{n-j} \hat{b}$ and hence $p^{n-j} e^{-(n-j)} \widehat{a}=p^{n-j} e^{-(n-j)} \hat{b}$. Clearly, we can also say that $a e^{-(n-j)} \hat{p}^{n-j} \circ \hat{1}=b e^{-(n-j)} \widehat{p}^{n-j} \circ \hat{1}$. Using Proposition 5 we obtain
$p^{n-j} \widehat{e}^{-(n-j)}\left(a e^{-(n-j)} \hat{e}^{-(n-j)} \circ \hat{1}\right)=p^{n-j} \widehat{e}^{-(n-j)}\left(b e^{-(n-j)} \hat{e}^{-(n-j)} \circ \hat{1}\right)$. It follows $p^{n-j}(\widehat{a} \circ \widehat{1})=p^{n-j}(\widehat{b} \circ \hat{1})$ and $(\widehat{a} \circ \widehat{1})-(\widehat{b} \circ \widehat{1}) \in p^{j} \mathbb{Z}_{p^{n}}$, hence $(\widehat{a} \circ \widehat{1})^{-1}-(\hat{b} \circ \hat{1})^{-1}$ belongs to $p^{j} Z_{p^{n}}$. Keeping in mind that $1_{\widehat{a}}=(\widehat{a} \circ \widehat{1})^{-1} \widehat{a}$ and $1_{\hat{b}}=(\widehat{b} \circ \widehat{1})^{-1} \widehat{b}$, the statement is clear.

In [3], necessary and sufficient conditions are given to construct all the nearrings whose additive group is finite and cyclic. Precisely, Clay proved that a function π of \mathbb{Z}_{m} in itself such that $\pi(a) \pi(b)=\pi(a \pi(b))$, for all $a, b \in \mathbb{Z}_{m}$, (hereinafter called Clay function), defines a multiplication «*» on ($\mathbb{Z}_{m},+$) by $a * b$ $=\pi(a) b$ and $\left(\mathbb{Z}_{m},+, *\right)$ turns out to be a nearring. Conversely, if $« \circ »$ is the multiplication of a nearring $N=\left(\mathbb{Z}_{m},+, \circ\right)$, then the map π of \mathbb{Z}_{m} in itself defined by $\pi(\alpha)=a \circ \widehat{1}$ is a Clay function. Clearly, this last function π defines a multiplication which equals «o» of N.

Using these previous results we can prove the following:
Proposition 7. Let $N=\left(\mathbb{Z}_{p^{n}}\right.$, + , ○) be a wd-nearring with $Q=p \mathbb{Z}_{p^{n}}$. Suppose e is an idempotent right identity of the element \widehat{p}. The Clay function π defining the product «o» of N is such that:
for each $\widehat{a} \in \mathbb{Z}_{p^{n}}, a=k p^{t}$, with $k \in \mathbb{Z}$ and $(k, p)=1$

$$
\pi(\widehat{a})=p^{t} \gamma_{k e^{t}}\left(e^{-t}\right)
$$

where $\gamma_{k e^{t}}$ is the left translation defined by $k e^{t}$.
By [3] $\pi(\widehat{a})=\widehat{a} \circ \widehat{1}, \widehat{a} \in \mathbb{Z}_{p^{n}}$, defines the Clay function related to the product of N. Therefore, we have to prove that $\widehat{a} \circ \hat{1}=p^{t} \gamma_{k e^{t}}\left(e^{-t}\right)$, for each $a=k p^{t} \in \mathbb{Z}$, $(k, p)=1$. From Proposition 5, $\widehat{a} \circ \widehat{1}=k \widehat{p}^{t} \circ \widehat{1}=p^{t} e^{-t}\left(k e^{t} \circ \widehat{1}\right)=p^{t} e^{-t} \gamma_{k e^{t}}(\widehat{1})$ $=p^{t} \gamma_{k e^{t}}\left(e^{-t}\right)$.

Construction.

In [7] Giovanni Ferrero shows how to construct, in the finite case, strongly monogenic nearrings, starting from an additive group G and a subgroup Φ of Aut (G). With a suitable choice of Φ, in [8], the author can build a particular class of strongly monogenic nearrings, the planar and specifically integral planar nearrings. It is exactly in [8] that the (G, Φ) pair is introduced, where G is an additive group and Φ is a subgroup of $A u t(G)$ which only includes fixed point free automorphisms. This pair (G, Φ) is known in literature as Ferrero pair.

Even if according to Ferrero's work, the construction described in this paper starts from a pair (G, Φ) which is not necessarily a Ferrero pair, in fact G equals $\left(\mathbb{Z}_{p^{n}},+\right)$ and Φ is any subgroup of not necessarily fixed point free automor-
phisms of G. Beginning with such a pair (G, Φ), now we are able to define a Clay function on $\mathbb{Z}_{p^{n}}$. The derived nearring results a wd-nearring with $Q=p \mathbb{Z}_{p^{n}}$, thus, it is non integral nearring but with a trivial left annihilator, therefore, in particular, non integral planar nearring and not even strongly monogenic.

Definition 1. Let $G=\left(\mathbb{Z}_{p^{n}},+\right)$ and let Φ be a subgroup of $A u t(G)$. Two elements a and b of G are called α-associate if the following condition holds:

$$
\text { if } a-b \notin p^{j} \mathbb{Z}_{p^{n}}, \quad(j<n), \text { then for all } x \in \Phi(a)
$$

and for all $y \in \Phi(b)$ it is $x-y \notin p^{j} \mathbb{Z}_{p^{n}}$.
A set of representatives of the orbits included in $\mathbb{Z}_{p^{n}} \backslash p Z_{p^{n}}$ is called α-set if its elements are α-associate to each other. A subgroup Φ of A ut (G) with an α-set R_{α} will be denoted by $\left\langle\Phi, R_{\alpha}\right\rangle$.

Definition 2. Let $G=\left(\mathbb{Z}_{p^{n}},+\right)$ and $\left\langle\Phi, R_{\alpha}\right\rangle$ be a subgroup of $A u t(G)$ with an α-set. Let e be a selected element of R_{α}. For every $\widehat{a} \in \mathbb{Z}_{p^{n}}$ define ${ }^{(1)}$:

$$
\pi(\widehat{a})= \begin{cases}\widehat{0} & \text { if } a=0, \\ p^{r} \varphi_{k e^{r}}\left(e^{-r}\right) & \text { if } a=k p^{r} \text { with } k \in \mathbb{Z},(k, p)=1 \text { and } 0 \leqslant r<n\end{cases}
$$

Proposition 8. Let $G,\left\langle\Phi, R_{\alpha}\right\rangle$ and π be as in Definition 2. Then π is a Clay function.

First of all, we prove that π is a function. Clearly, for every $\widehat{a} \in \mathbb{Z}_{p^{n}}, \pi(\widehat{a})$ exists. Hence it is sufficient to show that $\widehat{a}=\widehat{b}$ implies $\pi(\widehat{a})=\pi(\widehat{b})$.

If $\widehat{a}, \widehat{b} \in \mathbb{Z}_{p^{n}} \backslash p \mathbb{Z}_{p^{n}}$ the statement is clear.
If $\widehat{a} \in p Z_{p^{n}}$ then $\hat{b} \in p Z_{p^{n}}$ too. Denote $a=k p^{r}$ and $b=\left(k+t p^{n-r}\right) p^{r}$, for some $t \in \mathbb{Z}$, with $(k, p)=1$ and $0 \leqslant r<n$. It follows:

$$
\begin{aligned}
& (\beta) \quad \pi(\widehat{a})=p^{r} \varphi_{k e^{r}\left(e^{-r}\right)=p^{r} e^{-r} \varphi_{k e^{r}}(\widehat{1}),}^{(\gamma)} \quad \pi(\widehat{b})=p^{r} \varphi_{\left(k+t p^{n-r}\right) e^{r}\left(e^{-r}\right)=p^{r} e^{-r} \varphi_{\left(k+t p^{n-r}\right) e^{r}(\widehat{1})}} .
\end{aligned}
$$

Comparing (β) and (γ), we can see that our statement is true if $\varphi_{k e^{r}}(\widehat{1})$ and

[^1] representatives of $\Phi\left(k e^{r}\right)$ and $\Phi\left(\left(k+t p^{n-r}\right) e^{r}\right)$ respectively, by the hypothesis e_{1} and e_{2} are α-associate, it follows that $e_{1}-e_{2}$ belongs to $p^{n-r} \mathbb{Z}_{p^{n}}$, and this is true for $\varphi_{\left(k+t p^{n-r}\right) e^{r} r}\left(e_{1}\right)-\varphi_{\left(k+t p^{n-r}\right) e^{r}}\left(e_{2}\right)$ too. But $\varphi_{\left(k+t p^{n-r}\right)_{e} r}\left(e_{2}\right)$ equals $\left(k+t p^{n-r}\right) e^{r}$ which, clearly, belongs to the coset $k e^{r}+p^{n-r} Z_{p^{n}}$, called S. Final-
 Thus, since $e_{1} \in \mathbb{Z}_{p^{n}} \backslash p \mathbb{Z}_{p^{n}}$, the proof is complete.

We now show that π is a Clay function, that is π fulfils the following condition $\pi(a) \pi(b)=\pi(a \pi(b))$, for all $a, b \in G$.

Take $\widehat{a}, \widehat{b} \in \mathbb{Z}_{p^{n}}$ with $a=h p^{r}, b=k p^{s}$, where h, k are relatively prime to p and $0 \leqslant r, s<n$. We have:

$$
\begin{aligned}
\pi(\widehat{a}) \pi(\widehat{b}) & =p^{r} \varphi_{h e^{r}}\left(e^{-r}\right) p^{s} \varphi_{k e^{s}}\left(e^{-s}\right)= \\
& =p^{r+s} e^{-(r+s)} \varphi_{h e^{r}}(\widehat{1}) \varphi_{k e^{s}}(\hat{1})=p^{r+s} e^{-(r+s)} \varphi_{k e^{s}}\left(\varphi_{h e^{r}}(\hat{1})\right), \\
\pi(\widehat{a} \pi(\widehat{b})) & =\pi\left(h p^{r+s} \varphi_{k e^{s}}\left(e^{-s}\right)\right)=p^{r+s} \varphi_{h \varphi_{k e^{s}\left(e^{-s}\right)} e^{r+s}\left(e^{-(r+s)}\right)=} \\
= & p^{r+s} e^{-(r+s)} \varphi_{h e^{r} \varphi_{h e^{s}(\widehat{1})}(\widehat{1})=p^{r+s} e^{-(r+s)} \varphi_{\varphi_{h e^{s}}\left(h e^{r}\right)}(\widehat{1}) .} .
\end{aligned}
$$

Because $\varphi_{\varphi_{x(y)}}=\varphi_{x} \circ \varphi_{y}$, for each $x, y \in \mathbb{Z}_{p^{n}} \backslash p \mathbb{Z}_{p^{n}}$, then the proof is complete.

In the next example we can see that the choice of the representatives of the orbits included in $\mathbb{Z}_{p^{n}} \backslash p Z_{p^{n}}$ is essential in order to make π a function.

Example 2. Let $G=\left(\mathbb{Z}_{16},+\right)$ and $\Phi=\left\{i d_{G}, \alpha_{7}, \alpha_{9}, \alpha_{15}\right\}$. Since $|\Phi|=4$, there are exactly two orbits of $B: \Phi(\widehat{1})=\{\widehat{1}, \widehat{7}, \widehat{9}, \widehat{15}\}$ and $\Phi(\widehat{3})=\{\widehat{3}, \widehat{5}, \widehat{11}, \widehat{13}\}$. Let $\hat{7}$ and $\widehat{5}$ be the selected representatives of $\Phi(\widehat{1})$ and $\Phi(\widehat{3})$, respectively. Choose $e=\widehat{7}$. In this case, for instance, $\pi(\widehat{4})=4 \varphi_{e^{2}}\left(e^{-2}\right)=4 \varphi_{\hat{1}}(\widehat{1})=\widehat{12}$ while $\pi(\widehat{5 \cdot 4})$ $=4 \varphi_{5 e^{2}}\left(e^{-2}\right)=4 \varphi_{\widehat{5}}(\widehat{1})=\widehat{4}$, hence π is not a function. In fact, $\widehat{7}$ and $\widehat{5}$ are not α-associate.

Theorem 2. Let $G,\left\langle\Phi, R_{\alpha}\right\rangle$ and π be as in Definition 2.
Define $x * y=\pi(x) y$, for all $x, y \in G$. The structure $N=\left(Z_{p^{n}},+, *\right)$ is a wdnearring whose radical Q is $p Z_{p^{n}}$.

From Th. II of [3] and Proposition 7, N is a (left) nearring. Now we have to verify that ($\mathbb{Z}_{p^{n}},+, *$) is weakly divisible. Assume $\widehat{x}, \widehat{y} \in N$, with $x=h p^{r}$ and $y=k p^{s}$ and suppose $s \leqslant r$. Take $g=h p^{r-s}\left(\varphi_{k e^{s}}\left(e^{-s}\right)\right)^{-1}$, it results $\widehat{y} * g=\widehat{x}$. In the same way we can proceed when $r \leqslant s$. Finally, from Proposition 4, to prove
$Q=p Z_{p^{n}}$ can be reduced to show that \widehat{p} is nilpotent. Applying the induction principle we can show that $\widehat{p}^{(t)}=p^{t}\left[\varphi_{e}\left(e^{-1}\right)\right]^{t-1}$. From this it follows $\widehat{p}^{(n)}=\widehat{0}$, hence \widehat{p} is nilpotent.

Example 3. Let $G=\left(Z_{16},+\right) \quad$ and $\quad\left\langle\Phi, R_{\alpha}\right\rangle=\left(\left\{i d_{G}, \alpha_{7}, \alpha_{9}, \alpha_{15}\right\}\right.$, $\{\hat{7}, \widehat{11}\}$). Choose $e=\widehat{7}$. Definition 2 provides the following Clay function on G :

$$
\pi:\left(\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
0 & 7 & 14 & 9 & 12 & 15 & 2 & 1 & 8 & 15 & 14 & 1 & 4 & 7 & 2 & 9
\end{array}\right)
$$

and this defines a multiplication «*» on \mathbb{Z}_{16} by $x * y=\pi(x) y$.
Now $N=\left(Z_{16},+, *\right)$ turns out to be a nearring and, in particular, a wd-nearring with $Q=2 Z_{16}$. Thus N is a nearring of order 16 , non integral, without non trivial left annihilators, and, therefore, non planar and not strongly monogenic.

Theorem 2 summarizes the construction method of wd-nearrings on $\left(Z_{p^{n}},+\right)$ with $Q=p Z_{p^{n}}$ and the following theorem emphasizes that all such wd-nearrings are constructed in this way.

Theorem 3. Every wd-nearring $N=\left(\mathbb{Z}_{p^{n}},+, \circ\right)$ with $Q=p Z_{p^{n}}$ is constructible as in Theorem 2 taking:
(1) $G=\left(\mathbb{Z}_{p^{n}},+\right)$;
(2) $\Phi=\Gamma(C)$;
(3) the idempotent elements of N as α-set of Φ;
(4) e equals an idempotent right identity of \hat{p}.

From Proposition 2(1), Proposition 6 and Proposition 1, $\left\langle\Phi, R_{a}\right\rangle$ and e of the hypothesis are suitable to apply Definition 2, that is to define the Clay function π (Proposition 8):

In this case, for all $k \in \mathbb{Z}, 1 \leqslant r<n$, the automorphism $\varphi_{k e^{r} \in \Gamma(C)}$ such that $\varphi_{k e^{r}}\left(e_{k e^{r}}\right)=k e^{r}$ turns out to be the left translation $\gamma_{k e^{r}}$ defined by $k e^{r}$, in fact, from the hypothesis, $\gamma_{k e^{r}}\left(1_{k e^{r}}\right)=k e^{r}$ and $1_{k e^{r}}$ is the fixed representative of $\Gamma\left(k e^{r}\right)$ $=B_{k e^{r}}$. Therefore, from Proposition 7, the Clay function defining «o» equals the Clay function π here constructed. Thus, clearly, the multiplication «o» of N and the one defined by π coincide.

References

[1] A. Benini, Near-rings on certain groups, Riv. Mat. Univ. Parma (4) 15 (1989), 149-158.
[2] A. Benini and S. Pellegrini, Weakly Divisible Nearrings, Discrete Math. (to appear).
[3] J. R. Clay, The near-rings on a finite cyclic group, Amer. Math. Monthly, 71 (1964), 47-50.
[4] J. R. Clay, Nearrings: Geneses and Applications, Oxford University Press, New York 1992.
[5] J. R. Clay and J. J. Malone jr., The near-rings with identities on certain finite groups, Math. Scand., 19 (1966), 146-150.
[6] C. Cotti Ferrero and G. Ferrero, Quasi-anelli con particolari semigruppi di Clay, Matematiche vol. LI suppl. (1996), 81-89.
[7] G. Ferrero, Classificazione e costruzione degli stems p-singolari, Istit. Lombardo Accad. Sci. Lett. Rend. A, 102 (1968), 597-613.
[8] G. Ferrero, Stems planari e BIB-Disegni, Riv. Mat. Univ. Parma (2) 11 (1970), 79-96.
[9] G. Gallina, Generalizzazioni di quasi-anelli fortemente monogeni, Riv. Mat. Univ. Parma (4) 12 (1986), 31-34.
[10] S. Pellegrini, Φ-sums: medial, permutable and LRD-near-rings, Near-rings and Near-fields: Proc. of a Conference held at the Math. Forschungsinstitut, Oberwolfach, 1989, G. Betsch et al. eds., 1995, 152-169.
[11] G. Pilz, A construction method for near-rings, Acta Math. Acad. Sci. Hungar. 24 (1973), 97-105.
[12] G. Pilz, Near-rings 23 (Revised edition) North Holland Math. Studies, Amsterdam 1983.

Abstract

A nearring N is weakly divisible (wd-nearring) if, for each $x, y \in N$, there exists an element $z \in N$ such that $x z=y$ or $y z=x$. In this paper we characterise and construct all zerosymmetric $w d$-nearrings on the group $\left(\mathbb{Z}_{p^{n}},+\right)$ of integers $\left(\bmod p^{n}\right)$, p prime, in which $p Z_{p^{n}}$ is the set of all the nilpotent elements.

[^0]: (*) Dipartimento di Elettronica per l'Automazione, Facoltà di Ingegneria dell'Università degli Studi di Brescia, Via Branze 38, I-25123 Brescia, Italy.
 (**) Received March 16, 1998. AMS classification 16 Y 30. Work carried out on behalf of Italian M.U.R.S.T.

[^1]: $\left.{ }^{(}{ }^{1}\right)$ We recall that φ_{x} denotes the automorphism of Φ such that $\varphi_{x}\left(e_{x}\right)=x$, where e_{x} is the selected representative of $\Phi(x)$.

