A. BENINI and F. MORINI (*)

Weakly divisible nearrings on the group of integers $(\mod p^n)$ (**)

1 - Introduction

In some papers written from 1964 to 1970 (see [3], [5]), James Clay began to work on the construction of nearrings on given additive groups. The problem, which was later developed by various authors (see [7], [8], [11], [1]), remains substantially open. In fact, except for some general theorems, a method explicitly describing a construction of nearrings on given additive groups is available only for certain specific classes of groups (see [7], [8], [9], [10]). This paper, according to Ferrero's work (see [7], [6]), generalises the method provided in [2] for the construction of weakly divisible nearrings, which are left nearrings N fulfilling the following:

$\forall x, y \in N, \quad \exists z \in N | xz = y \text{ or } yz = x.$

Here we deal with wd-nearrings on a cyclic additive group. Since it has been proved that the residue class rings of order m are wd-rings if, and only if, m is a prime-power, in Section 4 we study and construct wd-nearrings on $(\mathbb{Z}_{p^n}, +)$. Our construction allows the characterisation of all zerosymmetric wd-nearrings on the group $(\mathbb{Z}_{p^n}, +)$ of integers $(\mod p^n)$, p prime, in which $p\mathbb{Z}_{p^n}$ is the ideal Q of all the nilpotent elements. Even when the order of the additive group is not a primepower or $p\mathbb{Z}_{p^n}$ is different from Q, it is possible to construct wd-nearrings on $(\mathbb{Z}_{p^n}, +)$ and we have some examples. The characterisation of such cases will be object of further research.

^(*) Dipartimento di Elettronica per l'Automazione, Facoltà di Ingegneria dell'Università degli Studi di Brescia, Via Branze 38, I-25123 Brescia, Italy.

^(**) Received March 16, 1998. AMS classification 16 Y 30. Work carried out on behalf of Italian M.U.R.S.T.

2 - Preliminaries and notations

Let (H, +) be a finite group and Φ a subgroup of Aut(H, +). Let e be a selected representative of any orbit of Φ . For every h belonging to $\Phi(e)$, φ_h will denote an automorphism of Φ such that $\varphi_h(e) = h$. Obviously φ_h exists for every $h \in H^*$, and, if the automorphisms of Φ are fixed point free, it is the only one.

In the following we refer to zerosymmetric left nearrings, without any explicit recall. For the notations we refer to [12]. Here we recall that γ_a denotes the left translation defined by a, for $a \in N$, that is $\gamma_a(x) = ax$, for every $x \in N$. Also recall that γ_a is an endomorphism of N^+ and it turns out to be an automorphism if, and only if, a is a left cancellable element of N. If H is a subset of N, $\Gamma(H)$ denotes the set of the left translations defined by the elements of H. The identity of Aut(N, +) is denoted by id_N .

From Prop. 9 and Th. 6 of [2] we know that a finite wd-nearring N is the disjoint union of the nil radical Q (hereinafter simply called *radical*), equal to the prime and the Jacobson radicals, and the multiplicative semigroup C of the left cancellable elements. Moreover, by Th. 8 of [2], C is the disjoint union of maximal multiplicative subgroups of C, isomorphic to each other.

As in [2], in the following, the maximal subgroup of C containing a will be denoted by B_a and 1_a will be its identity. So $N = Q \cup C$, $C = \bigcup_{a \in C} B_a$ where $B_a = \{x \in C \mid x 1_a = x\}$. We recall here that the identities of the B_a s $(a \in C)$ are the left identities of N and the only idempotent elements of N. Moreover, every B_a $(a \in C)$ contains only one idempotent element (Th. 7, [2]).

3 - Finite wd-nearrings

We now show some further properties of a finite wd-nearring.

Proposition 1. Let N be a finite wd-nearring and q a nilpotent element of N. The set of the right identities of q is a multiplicative subsemigroup of C which contains at least one idempotent element.

Let q be a non trivial nilpotent element of N. From Prop. 1 of [2] the set R(q) of the right identities of q is a subset of C. Furthermore, R(q) is closed with respect to the multiplication, hence it is a multiplicative semigroup of left cancellable elements. Since each left cancellable element has a power which is a left identity of N ([2], Th. 8(b)), R(q) obviously contains some idempotent elements.

Proposition 2. Let N be a finite wd-nearring.

(2) For each $a \in C$, $\Gamma(C) = \Gamma(B_a)$.

(3) For each $a \in C$, $B_a = \Gamma(a)$, where $\Gamma(a)$ denotes the orbit of $\Gamma(C)$ containing the element a.

3

(4) Let $c \in C$ with $\gamma_c \neq id_N$. The fixed points of γ_c are nilpotent and form an *N*-subgroup of *N*.

(1) Obviously, $\Gamma(C)$ is a semigroup of automorphisms of N^+ . Furthermore, from Th. 8(b) of [2], for each $c \in C$ there is a power c^t which is a left identity of N. Thus $id_N = \gamma_{c^t}$ belongs to $\Gamma(C)$ and $\gamma_c^{t-1} = \gamma_{c^{t-1}}$ is the inverse of γ_c .

(2) For all $a, b \in C$, $\Gamma(B_a) = \Gamma(B_b)$. In fact, for every $h \in B_a$, $\gamma_h(x) = hx = h(1_b x) = (h1_b)x = \gamma_{h1_b}(x)$. From $h1_b \in B_b$ it follows that $\gamma_h \in \Gamma(B_b) \ \forall h \in B_a$. In the same way we obtain $\gamma_k \in \Gamma(B_a) \ \forall k \in B_b$.

(3) Clearly, $B_a = \{x \in C | x \mathbf{1}_a = x\} = \{x \in C | \gamma_x(\mathbf{1}_a) = x\} = \{\gamma_x(\mathbf{1}_a) | x \in C\}$ = $\{\gamma_x(\mathbf{1}_a) | \gamma_x \in \Gamma(C)\} = \Gamma(\mathbf{1}_a)$. Since $a \in B_a$, a also belongs to $\Gamma(\mathbf{1}_a)$, hence $\Gamma(\mathbf{1}_a) = \Gamma(a)$.

(4) Let $c \in C$ and $\gamma_c \neq id_N$. Let *h* be a fixed point of γ_c , that is ch = h. If *h* is left cancellable, there is a power h^t which is a left identity of *N*. From $ch^t = h^t$, we obtain $ch^t x = h^t x$, for all $x \in N$, and this implies cx = x, now excluded. Therefore *h* is nilpotent. It is routine to verify that $S(c) = \{x \in N | \gamma_c(x) = x\}$ is an *N*-subgroup of *N*.

4 - Wd-nearrings on $(\mathbb{Z}_{p^n}, +)$

The particular additive structure of a nearring N on the group of integers $(\mod p^n)$ acts very strongly to determine the multiplicative structure. For instance, we know that, for any x and y in N, $x \circ y = y \cdot (x \circ 1)$, where $\langle \circ \rangle$ and $\langle \cdot \rangle$ denote the multiplications in N and in the ring of integers $(\mod p^n)$ respectively (see [3]). As usual, $\langle \cdot \rangle$ will be omitted. In the following \hat{a} will denote the residue class $(\mod p^n)$ containing $a \in \mathbb{Z}$ and $x^{(t)}$, x^t the powers of $x \in \mathbb{Z}_{p^n}$ with respect to $\langle \circ \rangle$ and $\langle \cdot \rangle$. We recall here that every automorphism a_k of $(\mathbb{Z}_{p^n}, +)$ is of the form $a_k \colon x \to kx, k$ relatively prime to p. The automorphism group of $(\mathbb{Z}_{p^n}, +)$ is a well known group of order $p^{n-1}(p-1)$ whose subgroups containing only fixed point free automorphisms have order t which divides p-1 (see [4] Chapter 2).

The following propositions describe some further properties of wd-nearrings with the additive group $G = (\mathbb{Z}_{p^n}, +)$.

Proposition 3. Let N be a wd-nearring on $G = (\mathbb{Z}_{p^n}, +)$. If p divides the order of $\Gamma(C)$ then \hat{p} is nilpotent.

From Sylow's Theorem if p divides the order of the group $\Gamma(C)$ (Proposition 2(1)), then there exists an element of order p in $\Gamma(C)$: let γ_c be, for some $c \in C$.

Let $p \neq 2$. The elements of Aut(G) of order p are those automorphisms of G defined by elements of the form $hp^{n-1} + 1$, with $1 \leq h \leq p-1$, so $\gamma_c(\hat{p}) = (hp^{n-1} + 1)\hat{p} = \hat{p}$. From Proposition 2(3) it follows that \hat{p} is nilpotent.

Let p = 2. It is well-known that the elements of Aut(G) of order 2 are the automorphisms $\alpha_{a_i}(i = 1, 2, 3)$ defined by the elements $a_1 = 1 + 2^{n-1}$, $a_2 = -1$, $a_3 = -1 + 2^{n-1}$. Obviously, $|\Gamma(C)| \neq 2$ or $|\Gamma(C)| = 2$; when $|\Gamma(C)| = 2$, it results either $\Gamma(C) = \{ id_N, \alpha_{a_1} \}$ or $\Gamma(C) = \{ id_N, \alpha_{a_2} \}$ or $\Gamma(C) = \{ id_N, \alpha_{a_3} \}$, thus we have to examine the following complementary cases:

(1) $|\Gamma(C)| > 2;$

4

- (2) $\Gamma(C) = \{ \mathrm{id}_N, \alpha_{a_1} \};$
- (3) $\Gamma(C) = \{ \mathrm{id}_N, \alpha_{a_2} \};$
- (4) $\Gamma(C) = \{ \mathrm{id}_N, \alpha_{a_3} \}.$

Cases (1) and (2). Now α_{a_1} belongs to $\Gamma(C)$, hence $\hat{2}$ is nilpotent because it is fixed by α_{a_1} .

Case (3). If $\Gamma(C) = \{ \operatorname{id}_N, \alpha_{a_2} \}$ and we suppose $\widehat{2}$ is left cancellable, then $\gamma_{\widehat{2}} \in \Gamma(C)$ and, hence, it must be $\widehat{2} \circ \widehat{1} = \gamma_{\widehat{2}}(\widehat{1}) = \pm \widehat{1}$. In both cases, it cannot be $\widehat{2}^{n-1} \circ \widehat{1} = \widehat{2}^{n-1}$, otherwise $\widehat{2}^{n-1} = \pm \widehat{2}^{n-1} = \widehat{2}^{n-1} \circ (\pm \widehat{1}) = \widehat{2}^{n-1} \circ (\widehat{2} \circ \widehat{1})$ $= (\widehat{2}^{n-1} \circ \widehat{2}) \circ \widehat{1} = [\widehat{2}(\widehat{2}^{n-1} \circ \widehat{1})] \circ \widehat{1} = \widehat{0}$, and this is absurd. So $\widehat{2}^{n-1} \circ \widehat{1} \neq \widehat{2}^{n-1}$.

Nevertheless, $\hat{2}^{n-1}$ is always nilpotent, because it is a fixed point of each element of Aut(G), hence $\hat{2}^{n-1} \circ \hat{1}$ is nilpotent too. Since $Q \subseteq p\mathbb{Z}_{p^n}$, $\hat{2}^{n-1} \circ \hat{1} = \hat{2}^k \hat{b}$ with (b, 2) = 1 and 1 < k < n-1. A direct verification shows that $\hat{2}^{n-1-k}$ is a right identity of $\hat{2}^{n-1}$ and, therefore, it is a left cancellable element of N (see Prop. 1 [2]), hence $\gamma_{\hat{2}^{n-1-k}} \in \Gamma(C)$ and thus $\hat{2}^{n-1-k} \circ \hat{1} = \gamma_{\hat{2}^{n-1-k}}(\hat{1}) = \pm \hat{1}$. We examine the two possibilities separately.

Suppose $\hat{2}^{n-1-k} \circ \hat{1} = \hat{1}$. Since $B_{\hat{2}^{n-1-k}} = \{\hat{2}^{n-1-k}, -\hat{2}^{n-1-k}\}$, it follows that $(-\hat{2}^{n-1-k}) \circ \hat{1} = -\hat{1}$. Thus

$$\begin{split} \widehat{2}^k \widehat{b} &= \widehat{2}^{n-1} \circ \widehat{1} = (-\widehat{2}^{n-1}) \circ \widehat{1} = [-(\widehat{2}^{n-1} \circ \widehat{2}^{n-1-k})] \circ \widehat{1} = [\widehat{2}^{n-1} \circ (-\widehat{2}^{n-1-k})] \circ \widehat{1} \\ &= \widehat{2}^{n-1} \circ [(-\widehat{2}^{n-1-k} \circ \widehat{1})] = \widehat{2}^{n-1} \circ (-\widehat{1}) = -(\widehat{2}^{n-1} \circ \widehat{1}) = -\widehat{2}^k \widehat{b} \,, \end{split}$$

that is $\hat{2}^k \hat{b} = -\hat{2}^k \hat{b}$, but now this is excluded because of k < n-1. Thus $\hat{2}$ is nilpotent.

Suppose $\widehat{2}^{n-1-k} \circ \widehat{1} = -\widehat{1}$. We have again $B_{\widehat{2}^{n-1-k}} = \{\widehat{2}^{n-1-k}, -\widehat{2}^{n-1-k}\}$, but now $(-\widehat{2}^{n-1-k}) \circ \widehat{1} = \widehat{1}$. As above, it results $-\widehat{2}^k\widehat{b} = \widehat{2}^k\widehat{b}$ which is absurd.

Case (4). If $\Gamma(C) = \{id_N, \alpha_{a_3}\}$, the statement arises analogously to case (3).

 $\mathbf{5}$

Proposition 4. Let N be a wd-nearring on $G = (\mathbb{Z}_{p^n}, +)$. The following statements are equivalent:

- (1) \hat{p} is a nilpotent element;
- (2) $p\mathbb{Z}_{p^n}$ is the radical Q;
- (3) the right identities of \hat{p} belong to $\mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$.

(1) \Rightarrow (2) If \hat{p} belongs to the subnearring Q, obviously $p\mathbb{Z}_{p^n}$ is included in Q. But $p\mathbb{Z}_{p^n}$ is a maximal subgroup of $(\mathbb{Z}_{p^n}, +)$, so $Q = p\mathbb{Z}_{p^n}$.

 $(2) \Rightarrow (3)$ The right identities of \hat{p} are left cancellable (see Proposition 1) and if $Q = p\mathbb{Z}_{p^n}$, the left cancellable elements of N are in $\mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$.

 $(3) \Rightarrow (1)$ Let \hat{g} be a right identity of \hat{p} . Since g is relatively prime to p, then \hat{g} is one of the generators of $(\mathbb{Z}_{p^n}, +)$, hence, for some k in \mathbb{Z} , it follows that $\hat{p} = k\hat{g}$, where p divides k because p and g are relatively prime. By induction, we can show that $\hat{p}^{(t)} = k^{t-1}\hat{p}$. In particular, we obtain $\hat{p}^{(n)} = k^{n-1}\hat{p} = \hat{0}$ because k is a multiple of p, hence \hat{p} is nilpotent.

Using Propositions 3 and 4, recalling that $\Gamma(C)$ is the group of the left translations defined by the left cancellable elements, we can derive the following:

Theorem 1. If N is a wd-nearring on $G = (\mathbb{Z}_{p^n}, +)$ and p divides the order of $\Gamma(C)$, then the set Q of the nilpotent elements coincides with $p\mathbb{Z}_{p^n}$.

Thus all wd-nearrings on $(\mathbb{Z}_{2^n}, +)$ have $Q = 2\mathbb{Z}_{2^n}$, while, if $p \neq 2$, there exist wd-nearrings on $(\mathbb{Z}_{p^n}, +)$ with $Q = p\mathbb{Z}_{p^n}$ and also with $Q \neq p\mathbb{Z}_{p^n}$, when p does not divide the order of $\Gamma(C)$. That is shown by the following example.

Example 1. Let $G = (\mathbb{Z}_{81}, +)$ and define on \mathbb{Z}_{81} the following multiplications: for all $\hat{a}, x \in \mathbb{Z}_{81}$

$$\hat{a} \circ x = \begin{cases} \hat{0} & \text{if } a = 0 \\ x & \text{if } a \equiv_3 1 \text{ or } a = 3k \text{ with } k \equiv_3 1 \\ 80x & \text{if } a \equiv_3 2 \text{ or } a = 3k \text{ with } k \equiv_3 2 \\ 9x & \text{if } a = 27 \text{ or } a = 9k \text{ with } k \equiv_3 1 \\ 72x & \text{if } a = 54 \text{ or } a = 9k \text{ with } k \equiv_3 2 \end{cases}$$

A. BENINI and F. MORINI

$$\widehat{a} \circ 'x = \begin{cases} \widehat{0} & \text{if } a = 0 \\ x & \text{if } a \equiv_3 1 \\ 80x & \text{if } a \equiv_3 2 \\ 3x & \text{if } a = 3k \text{ with } k \equiv_3 1 \\ 78x & \text{if } a = 3k \text{ with } k \equiv_3 1 \\ 78x & \text{if } a = 9k \text{ with } k \equiv_3 2 \\ 9x & \text{if } a = 9k \text{ with } k \equiv_3 2 \\ 27x & \text{if } a = 9k \text{ with } k \equiv_3 2 \\ 27x & \text{if } a = 27 \\ 54x & \text{if } a = 54 \end{cases}$$

then $(\mathbb{Z}_{81}, +, \circ')$ turns out to be a wd-nearring with $Q = 3\mathbb{Z}_{81}$, while $(\mathbb{Z}_{81}, +, \circ)$ results a wd-nearring with $Q \neq 3\mathbb{Z}_{81}$. Both these constructions are possible, because p = 3 does not divide the order of $\Gamma(C) = \{id_G, -id_G\}$, in according to Theorem 1.

Case $Q = p\mathbb{Z}_{p^n}$.

In this paragraph we collect some further properties about wd-nearrings on $(\mathbb{Z}_{p^n}, +)$ with $Q = p\mathbb{Z}_{p^n}$.

Proposition 5. Let $N = (\mathbb{Z}_{p^n}, +, \circ)$ be a wd-nearring with $Q = p\mathbb{Z}_{p^n}$. For every $k \in \mathbb{Z}$, it is $k\hat{p}^t \circ \hat{1} = p^t e^{-t} (ke^t \circ \hat{1})$, where $1 \leq t < n$ and e is an idempotent right identity of \hat{p} .

From the hypothesis and Proposition 4, we have $\hat{p} \circ e = \hat{p}$ with $e \in \mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$, hence *e* is an invertible element of the ring $(\mathbb{Z}_{p^n}, +, \cdot)$ so $\hat{p} \circ \hat{1} = e^{-1}\hat{p}$. Consequently, $k\hat{p} = k(\hat{p} \circ e) = \hat{p} \circ ke$ and also $\hat{p}^{(2)} = p^2 e^{-1}$. By induction we can prove $k\hat{p}^t = \hat{p}^{(t)} \circ ke^t$ and also $\hat{p}^{(t)} \circ \hat{1} = p^t e^{-t}$. Thus, $k\hat{p}^t \circ \hat{1} = \hat{p}^{(t)} \circ ke^t \circ \hat{1}$ $= (ke^t \circ \hat{1})(\hat{p}^{(t)} \circ \hat{1}) = p^t e^{-t}(ke^t \circ \hat{1})$.

We now establish a congruence between the identities 1_a of the maximal subgroups B_a of C.

Proposition 6. Let $N = (\mathbb{Z}_{p^n}, +, \circ)$ be a wd-nearring with $Q = p\mathbb{Z}_{p^n}$. Let B_x , B_y $(x, y \in C)$ be two maximal multiplicative subgroups of C. If $\hat{a} \in B_x$, $\hat{b} \in B_y$ and $\hat{a} - \hat{b} \in p^j \mathbb{Z}_{p^n}$, (j < n), then it is also $\mathbf{1}_{\hat{a}} - \mathbf{1}_{\hat{b}} \in p^j \mathbb{Z}_{p^n}$.

Let \hat{e} be an idempotent right identity of \hat{p} . From $\hat{a} - \hat{b} \in p^{j} \mathbb{Z}_{p^{n}}$ it derives $p^{n-j}\hat{a} = p^{n-j}\hat{b}$ and hence $p^{n-j}e^{-(n-j)}\hat{a} = p^{n-j}e^{-(n-j)}\hat{b}$. Clearly, we can also say that $ae^{-(n-j)}\hat{p}^{n-j}\circ \hat{1} = be^{-(n-j)}\hat{p}^{n-j}\circ \hat{1}$. Using Proposition 5 we obtain

 $p^{n-j}\hat{e}^{-(n-j)}(ae^{-(n-j)}\hat{e}^{-(n-j)}\circ\hat{1}) = p^{n-j}\hat{e}^{-(n-j)}(be^{-(n-j)}\hat{e}^{-(n-j)}\circ\hat{1}).$ It follows $p^{n-j}(\hat{a}\circ\hat{1}) = p^{n-j}(\hat{b}\circ\hat{1})$ and $(\hat{a}\circ\hat{1}) - (\hat{b}\circ\hat{1}) \in p^j \mathbb{Z}_{p^n}$, hence $(\hat{a}\circ\hat{1})^{-1} - (\hat{b}\circ\hat{1})^{-1}$ belongs to $p^j \mathbb{Z}_{p^n}$. Keeping in mind that $1_{\hat{a}} = (\hat{a}\circ\hat{1})^{-1}\hat{a}$ and $1_{\hat{b}} = (\hat{b}\circ\hat{1})^{-1}\hat{b}$, the statement is clear.

7

In [3], necessary and sufficient conditions are given to construct all the nearrings whose additive group is finite and cyclic. Precisely, Clay proved that a function π of \mathbb{Z}_m in itself such that $\pi(a)\pi(b) = \pi(a\pi(b))$, for all $a, b \in \mathbb{Z}_m$, (hereinafter called *Clay function*), defines a multiplication «*» on $(\mathbb{Z}_m, +)$ by a * b $= \pi(a)b$ and $(\mathbb{Z}_m, +, *)$ turns out to be a nearring. Conversely, if «o » is the multiplication of a nearring $N = (\mathbb{Z}_m, +, \circ)$, then the map π of \mathbb{Z}_m in itself defined by $\pi(a) = a \circ \hat{1}$ is a Clay function. Clearly, this last function π defines a multiplication which equals «o » of N.

Using these previous results we can prove the following:

Proposition 7. Let $N = (\mathbb{Z}_{p^n}, +, \circ)$ be a wd-nearring with $Q = p\mathbb{Z}_{p^n}$. Suppose e is an idempotent right identity of the element \hat{p} . The Clay function π defining the product « \circ » of N is such that:

for each $\hat{a} \in \mathbb{Z}_{p^n}$, $a = kp^t$, with $k \in \mathbb{Z}$ and (k, p) = 1

$$\pi(\widehat{a}) = p^t \gamma_{ke^t}(e^{-t})$$

where γ_{ke^t} is the left translation defined by ke^t .

By [3] $\pi(\hat{a}) = \hat{a} \circ \hat{1}, \hat{a} \in \mathbb{Z}_{p^n}$, defines the Clay function related to the product of *N*. Therefore, we have to prove that $\hat{a} \circ \hat{1} = p^t \gamma_{ke^t}(e^{-t})$, for each $a = kp^t \in \mathbb{Z}$, (k, p) = 1. From Proposition 5, $\hat{a} \circ \hat{1} = k\hat{p}^t \circ \hat{1} = p^t e^{-t}(ke^t \circ \hat{1}) = p^t e^{-t}\gamma_{ke^t}(\hat{1}) = p^t \gamma_{ke^t}(e^{-t})$.

Construction.

In [7] Giovanni Ferrero shows how to construct, in the finite case, strongly monogenic nearrings, starting from an additive group G and a subgroup Φ of Aut(G). With a suitable choice of Φ , in [8], the author can build a particular class of strongly monogenic nearrings, the planar and specifically integral planar nearrings. It is exactly in [8] that the (G, Φ) pair is introduced, where G is an additive group and Φ is a subgroup of Aut(G) which only includes fixed point free automorphisms. This pair (G, Φ) is known in literature as *Ferrero pair*.

Even if according to Ferrero's work, the construction described in this paper starts from a pair (G, Φ) which is not necessarily a Ferrero pair, in fact G equals $(\mathbb{Z}_{p^n}, +)$ and Φ is any subgroup of not necessarily fixed point free automorphisms of G. Beginning with such a pair (G, Φ) , now we are able to define a Clay function on \mathbb{Z}_{p^n} . The derived nearring results a wd-nearring with $Q = p\mathbb{Z}_{p^n}$, thus, it is non integral nearring but with a trivial left annihilator, therefore, in particular, non integral planar nearring and not even strongly monogenic.

Definition 1. Let $G = (\mathbb{Z}_{p^n}, +)$ and let Φ be a subgroup of Aut (G). Two elements a and b of G are called a-associate if the following condition holds:

(a) if $a - b \notin p^{j} \mathbb{Z}_{p^{n}}$, (j < n), then for all $x \in \Phi(a)$ and for all $y \in \Phi(b)$ it is $x - y \notin p^{j} \mathbb{Z}_{p^{n}}$.

A set of representatives of the orbits included in $\mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$ is called a-set if its elements are a-associate to each other. A subgroup Φ of Aut (G) with an a-set R_a will be denoted by $\langle \Phi, R_a \rangle$.

Definition 2. Let $G = (\mathbb{Z}_{p^n}, +)$ and $\langle \Phi, R_a \rangle$ be a subgroup of Aut (G) with an a-set. Let e be a selected element of R_a . For every $\hat{a} \in \mathbb{Z}_{p^n}$ define $(^1)$:

$$\pi(\widehat{a}) = \begin{cases} \widehat{0} & \text{if } a = 0, \\ p^r \varphi_{ke^r}(e^{-r}) & \text{if } a = kp^r \text{ with } k \in \mathbb{Z}, \ (k, p) = 1 \text{ and } 0 \leq r < n \end{cases}$$

Proposition 8. Let G, $\langle \Phi, R_a \rangle$ and π be as in Definition 2. Then π is a Clay function.

First of all, we prove that π is a function. Clearly, for every $\hat{a} \in \mathbb{Z}_{p^n}$, $\pi(\hat{a})$ exists. Hence it is sufficient to show that $\hat{a} = \hat{b}$ implies $\pi(\hat{a}) = \pi(\hat{b})$.

If $\hat{a}, \hat{b} \in \mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$ the statement is clear.

If $\hat{a} \in p\mathbb{Z}_{p^n}$ then $\hat{b} \in p\mathbb{Z}_{p^n}$ too. Denote $a = kp^r$ and $b = (k + tp^{n-r}) p^r$, for some $t \in \mathbb{Z}$, with (k, p) = 1 and $0 \le r < n$. It follows:

$$(\beta) \quad \pi(\widehat{a}) = p^r \varphi_{ke^r}(e^{-r}) = p^r e^{-r} \varphi_{ke^r}(\widehat{1}),$$

$$(\gamma) \quad \pi(b) = p^r \varphi_{(k+tp^{n-r})e^r}(e^{-r}) = p^r e^{-r} \varphi_{(k+tp^{n-r})e^r}(1)$$

Comparing (β) and (γ), we can see that our statement is true if $\varphi_{ke^r}(\hat{1})$ and

⁽¹⁾ We recall that φ_x denotes the automorphism of Φ such that $\varphi_x(e_x) = x$, where e_x is the selected representative of $\Phi(x)$.

 $\varphi_{(k+tp^{n-r})e^r}(\widehat{1})$ are congruent (mod $p^{n-r}\mathbb{Z}_{p^n}$). Let e_1 and e_2 denote the selected representatives of $\Phi(ke^r)$ and $\Phi((k+tp^{n-r})e^r)e^r)$ respectively, by the hypothesis e_1 and e_2 are α -associate, it follows that $e_1 - e_2$ belongs to $p^{n-r}\mathbb{Z}_{p^n}$, and this is true for $\varphi_{(k+tp^{n-r})e^r}(e_1) - \varphi_{(k+tp^{n-r})e^r}(e_2)$ too. But $\varphi_{(k+tp^{n-r})e^r}(e_2)$ equals $(k+tp^{n-r})e^r$ which, clearly, belongs to the coset $ke^r + p^{n-r}\mathbb{Z}_{p^n}$, called S. Finally, recalling $ke^r = \varphi_{ke^r}(e_1)$, it results that $\varphi_{(k+tp^{n-r})e^r}(e_1)$ and $\varphi_{ke^r}(e_1)$ are in S. Thus, since $e_1 \in \mathbb{Z}_{p^n} \setminus \mathbb{Z}_{p^n}$, the proof is complete.

We now show that π is a Clay function, that is π fulfils the following condition $\pi(a)\pi(b) = \pi(a\pi(b))$, for all $a, b \in G$.

Take $\hat{a}, \hat{b} \in \mathbb{Z}_{p^n}$ with $a = hp^r$, $b = kp^s$, where h, k are relatively prime to p and $0 \le r, s < n$. We have:

$$\begin{aligned} \pi(\widehat{a}) \ \pi(\widehat{b}) &= p^{r} \varphi_{he^{r}}(e^{-r}) \ p^{s} \varphi_{ke^{s}}(e^{-s}) = \\ &= p^{r+s} e^{-(r+s)} \varphi_{he^{r}}(\widehat{1}) \ \varphi_{ke^{s}}(\widehat{1}) = p^{r+s} e^{-(r+s)} \varphi_{ke^{s}}(\varphi_{he^{r}}(\widehat{1})), \\ \pi(\widehat{a} \pi(\widehat{b})) &= \pi(hp^{r+s} \varphi_{ke^{s}}(e^{-s})) = p^{r+s} \varphi_{h\varphi_{ke^{s}}(e^{-s}) e^{r+s}}(e^{-(r+s)}) = \\ &= p^{r+s} e^{-(r+s)} \varphi_{he^{r} \varphi_{ke^{s}}(\widehat{1})}(\widehat{1}) = p^{r+s} e^{-(r+s)} \varphi_{\varphi_{ke^{s}}(he^{r})}(\widehat{1}). \end{aligned}$$

Because $\varphi_{\varphi_{x(y)}} = \varphi_x \circ \varphi_y$, for each $x, y \in \mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$, then the proof is complete.

In the next example we can see that the choice of the representatives of the orbits included in $\mathbb{Z}_{p^n} \setminus p\mathbb{Z}_{p^n}$ is essential in order to make π a function.

Example 2. Let $G = (\mathbb{Z}_{16}, +)$ and $\Phi = \{id_G, a_7, a_9, a_{15}\}$. Since $|\Phi| = 4$, there are exactly two orbits of B: $\Phi(\widehat{1}) = \{\widehat{1}, \widehat{7}, \widehat{9}, \widehat{15}\}$ and $\Phi(\widehat{3}) = \{\widehat{3}, \widehat{5}, \widehat{11}, \widehat{13}\}$. Let $\widehat{7}$ and $\widehat{5}$ be the selected representatives of $\Phi(\widehat{1})$ and $\Phi(\widehat{3})$, respectively. Choose $e = \widehat{7}$. In this case, for instance, $\pi(\widehat{4}) = 4\varphi_{e^2}(e^{-2}) = 4\varphi_{\widehat{1}}(\widehat{1}) = \widehat{12}$ while $\pi(\widehat{5\cdot 4}) = 4\varphi_{5e^2}(e^{-2}) = 4\varphi_{\widehat{5}}(\widehat{1}) = \widehat{4}$, hence π is not a function. In fact, $\widehat{7}$ and $\widehat{5}$ are not α -associate.

Theorem 2. Let G, $\langle \Phi, R_a \rangle$ and π be as in Definition 2. Define $x * y = \pi(x) y$, for all $x, y \in G$. The structure $N = (\mathbb{Z}_{p^n}, +, *)$ is a wd-nearring whose radical Q is $p\mathbb{Z}_{p^n}$.

From Th. II of [3] and Proposition 7, N is a (left) nearring. Now we have to verify that $(\mathbb{Z}_{p^n}, +, *)$ is weakly divisible. Assume $\hat{x}, \hat{y} \in N$, with $x = hp^r$ and $y = kp^s$ and suppose $s \leq r$. Take $g = hp^{r-s}(\varphi_{ke^s}(e^{-s}))^{-1}$, it results $\hat{y} * g = \hat{x}$. In the same way we can proceed when $r \leq s$. Finally, from Proposition 4, to prove

[10]

 $Q = p\mathbb{Z}_{p^n}$ can be reduced to show that \hat{p} is nilpotent. Applying the induction principle we can show that $\hat{p}^{(t)} = p^t [\varphi_e(e^{-1})]^{t-1}$. From this it follows $\hat{p}^{(n)} = \hat{0}$, hence \hat{p} is nilpotent.

Example 3. Let $G = (\mathbb{Z}_{16}, +)$ and $\langle \Phi, R_a \rangle = (\{id_G, \alpha_7, \alpha_9, \alpha_{15}\}, \{\widehat{7}, \widehat{11}\})$. Choose $e = \widehat{7}$. Definition 2 provides the following Clay function on G:

π :	(0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	$\setminus 0$	$\overline{7}$	14	9	12	15	2	1	8	15	14	1	4	7	2	9 /

and this defines a multiplication «*» on \mathbb{Z}_{16} by $x * y = \pi(x) y$.

Now $N = (\mathbb{Z}_{16}, +, *)$ turns out to be a nearring and, in particular, a wd-nearring with $Q = 2\mathbb{Z}_{16}$. Thus N is a nearring of order 16, non integral, without non trivial left annihilators, and, therefore, non planar and not strongly monogenic.

Theorem 2 summarizes the construction method of wd-nearrings on $(\mathbb{Z}_{p^n}, +)$ with $Q = p\mathbb{Z}_{p^n}$ and the following theorem emphasizes that all such wd-nearrings are constructed in this way.

Theorem 3. Every wd-nearring $N = (\mathbb{Z}_{p^n}, +, \circ)$ with $Q = p\mathbb{Z}_{p^n}$ is constructible as in Theorem 2 taking:

- (1) $G = (\mathbb{Z}_{p^n}, +);$
- (2) $\Phi = \Gamma(C);$
- (3) the idempotent elements of N as α set of Φ ;
- (4) e equals an idempotent right identity of \hat{p} .

From Proposition 2(1), Proposition 6 and Proposition 1, $\langle \Phi, R_{\alpha} \rangle$ and *e* of the hypothesis are suitable to apply Definition 2, that is to define the Clay function π (Proposition 8):

$$\pi(\widehat{a}) = \begin{cases} \widehat{0} & \text{if } a = 0, \\ p^r \varphi_{ke^r}(e^{-r}) & \text{if } a = kp^r \text{ with } k \in \mathbb{Z}, (k, p) = 1 \text{ and } 0 \leq r < n \end{cases}$$

In this case, for all $k \in \mathbb{Z}$, $1 \le r < n$, the automorphism $\varphi_{ke^r} \in \Gamma(C)$ such that $\varphi_{ke^r}(e_{ke^r}) = ke^r$ turns out to be the left translation γ_{ke^r} defined by ke^r , in fact, from the hypothesis, $\gamma_{ke^r}(1_{ke^r}) = ke^r$ and 1_{ke^r} is the fixed representative of $\Gamma(ke^r) = B_{ke^r}$. Therefore, from Proposition 7, the Clay function defining «· » equals the Clay function π here constructed. Thus, clearly, the multiplication «· » of N and the one defined by π coincide.

References

- A. BENINI, Near-rings on certain groups, Riv. Mat. Univ. Parma (4) 15 (1989), 149-158.
- [2] A. BENINI and S. PELLEGRINI, *Weakly Divisible Nearrings*, Discrete Math. (to appear).
- [3] J. R. CLAY, The near-rings on a finite cyclic group, Amer. Math. Monthly, 71 (1964), 47-50.
- [4] J. R. CLAY, Nearrings: Geneses and Applications, Oxford University Press, New York 1992.
- [5] J. R. CLAY and J. J. MALONE jr., The near-rings with identities on certain finite groups, Math. Scand., 19 (1966), 146-150.
- [6] C. COTTI FERRERO and G. FERRERO, Quasi-anelli con particolari semigruppi di Clay, Matematiche vol. LI suppl. (1996), 81-89.
- [7] G. FERRERO, Classificazione e costruzione degli stems p-singolari, Istit. Lombardo Accad. Sci. Lett. Rend. A, 102 (1968), 597-613.
- [8] G. FERRERO, Stems planari e BIB-Disegni, Riv. Mat. Univ. Parma (2) 11 (1970), 79-96.
- [9] G. GALLINA, Generalizzazioni di quasi-anelli fortemente monogeni, Riv. Mat. Univ. Parma (4) 12 (1986), 31-34.
- [10] S. PELLEGRINI, Φ -sums: medial, permutable and LRD-near-rings, Near-rings and Near-fields: Proc. of a Conference held at the Math. Forschungsinstitut, Oberwolfach, 1989, G. Betsch et al. eds., 1995, 152-169.
- [11] G. PILZ, A construction method for near-rings, Acta Math. Acad. Sci. Hungar. 24 (1973), 97-105.
- [12] G. PILZ, Near-rings 23 (Revised edition) North Holland Math. Studies, Amsterdam 1983.

Abstract

A nearring N is weakly divisible (wd-nearring) if, for each $x, y \in N$, there exists an element $z \in N$ such that xz = y or yz = x. In this paper we characterise and construct all zerosymmetric wd-nearrings on the group $(\mathbb{Z}_{p^n}, +)$ of integers (mod p^n), p prime, in which $p\mathbb{Z}_{p^n}$ is the set of all the nilpotent elements.

* * *