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ERHARD AICHINGER (%)

Local polynomial functions on the integers (**)

1 - Introduction

We write N for the natural numbers, N, for the naturals with 0, Z for the set
of all integers, and I for the ring of integers (Z; +, ). For any algebra A4, we
take P(4) to be the set of all unary polynomial functions on 4 (cf. [4]).

Let G and H be sets, let F be a subset of H, and let n be a natural number.
We define L, F' as the set of all those functions from G to H that can be interpola-
ted by a function in F' at every subset of G with no more than n elements. Formal-
Iy, this reads as

L F={l: G=H|VScG: |S|<n=3feF |VoeS: flo)=Un)}.

Furthermore, we put LF = ﬂN L,F. For F =P(I), we obtain the chain of local

polynomial functions on the integers, which has been investigated in [5]. In that
paper, the following results about the chain L,P(I), n e N, have been proved:

1. For all neN, the set L, ;P(I) is a proper subset of L, P(I). Actually, in
1
[6] it is shown that for ¢, (x) = E(m —1)Xx—2)...(x — n) we have ¢,,eL,P{)
and Pon € I--fn+1 P(I)

2. LP(I) is uncountable. This is shown by giving an explicit description of
the funections that lie in LP{).

(*) Institut fiir Algebra, Stochastik und wissensbasierte math. Systeme, J. Kepler
Univ., Linz, Austria. :

(**) Received December 19, 1997. AMS classification 08A40. Supported by a Doktoran-
denstipendium of the Austrian Academy of Sciences.
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It will follow from our characterization that @,, is the simplest possible
example of a function in L, P(I) that does not lie in L, P{).

In [7] and [1], all functions from N to Z where x — y divides f(x) — f(y) for all
x, ye N are determined. Their result can easily be modified to obtain the set
L, P(I). This set deserves special interest because it is the set of all congruence
preserving functions on the ring of integers. On any algebra A, we call a function
¢ congruence preserving if c¢(x) and c(y) are congruent modulo the smallest con-
gruence that collapses « and . In the case of the ring of integers, this means that
c(x) — c(y) is a multiple of x —y for all integers « and .

2 — The characterization of L, P(J)
We need the following definitions.

Definition 1. For all », ie Ny we define a natural number A(n, i) by:

A(n,0) =1 for all neN,
A(0,1) =1 for all ieN,
An, 1) =lem(iA(n—-1,7—-1), A(n,1—1)) for all n,ieN.

From the recursive definition, we see that A(n, 7) is the least common multi-
ple of all products that are formed by multiplying at most » different elements
lying in {1, 2, ..., 5}. For example,

A(2,5)
=lem(1,2,3,4,5,1-2,1-83,1-4,1-5,2-8,2-4, 2-5,3-4,3-5,4-5) = 120.
We are now ready to give the main results of the present note:

Proposition 1. LetneN, and let f be a function from N to Z. Then the fol-
lowing statements are equivalent:

1. For all subsets S of N with af most n elements there exists a function p
n P(I) such that p|s=f|s.

2. The function f can be written as

flx) = ‘iciA(n -1, i)(wf 1)

1

where (¢;);cn, 1S 0 sequence of integers.
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For n = 2, this is precisely the result in [7]. We omit the proof of this result
because it runs exactly as the proof of the following theorem, which gives a cha-
racterization of L, P(I).

Theorem 1. The mapping D, defined by
D((¢;)icz)(@)
& X z+j—1 i jr+i—1
= 2 ¢An—-1,2/-1) + 2 e jA(n—1,2)) _
i=1 25— 1 j=0 27
maps Z? bijectively to L,PU).

Note that the above sums are finite for any xeZ, because j > |«| implies

rx+j-1) fe+j-1} 0
2j—1 24 '
Before proving Theorem 2, we state two lemmas. The first one is taken from [5].

Lemma 1 ([5], Lemma 5). For a function f: Z—Z, the following, are equiva-
lent.

1. feL,PQD.

2. For all y and for all @, %, ..., x,_1€Z\{y} there exists a function
peP) such that

Sfwe) = fly)
T~y

pla;) = for i=1,2,...,n—1.

Now we construct some functions that lie in L, P(I).
Lemma 2. For neN and ieNy let ™: Z—Z be defined by:
x

B xl—>( An—1,1).

1
Then for all neN we have

2.1) B e L, P VieNp.

Proof. We proceed by induction on =.
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Base case 7 = 1. Since every function from Z into Z lies in L; P(Z), so does
every V.

Induction step n—n + 1. For ¢ = 0, we observe that ﬂ‘o’” is constant. But every
constant funection is clearly in L, P(I). Therefore, we will from now on assume that
i is at least 1.

We have to show that ¢ lies in L, P(I). To this end, we show that 8¢ satis-
fies condition 2 of Lemma 1. Let therefore y be any integer. Proceeding as in [7],

we use the equality
AT AN YE AT
1 1) =1\ 4 i—j

(n) (n) i (Iv—y)(y
B3 (®) = B3 () _ =1\ 1=

r—y r—y

for writing

Aln—1,1)

Hence for « =y this is equal to

iy Ve—y—1\ An—1,17)
E(J)( j—l) i

In order to guarantee condition 2 of Lemma 1, it is sufficient to show that
each summand lies in L, _;P({). Since A(n — 1, j) divides A(n ~ 1, i) for j <71,
this is guaranteed if the function f defined by
J

) = (x~y~1)A<n—1,j>

j=1

lies in L, ;P for j=1,2,...,1.

In order to show this, we fix j with 1 <j<1. By Definiton 1, A(n —1,j)
is a multiple of jA(n —2,j—1). Since the induction hypothesis tells us
—y—
j=1
L,-1P(I) as well. This completes the induction step.

1
that g(x) = (oc )A(n—Z, j—1) lies in L,_;P{), the function f lies in

Now we are ready to prove the main result.
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Proof of Theorem 1. Let (z;);cn, be the enumeration of the integers given

1
by 20=0, 2, =1, 2= —1, 23=2 and, in general, z, = E(k+1) for odd k£ and
#z, = — —k for even k. By Z; we denote the set {2y, 2, 23, ..., 2;_1}. Let g(n, ©)

be the generator of the ideal
{lz)|leL,PU) and i(s) =0 for all seZ;}

of the ring I.
If we have a sequence (b;);cn, €L, P(I) with the following basis property

(2.2) bi(s) =0 for all seZ; and b(z;) =g(n, 1)
then we can easily convince ourselves that every fel,P(I) can be written as

flw) = ZN a; b;(x)

where a; e Z for all 1eN,. Note that this sum is finite for any x € Z, because for
¥ =2z;, we have b;,,1(2;) = b;+2(%;) = ... = 0. It is also obvious that each sequence
(@;); e, gives rise to a function in L, P(J) and that different sequences produce dif-
ferent functions.

Hence we are done if we compute g(n, 1) and a sequence of functions b; in
L. P() with the basis property given in Condition (2.2).

First of all, we give a lower bound to g(n, i) with respect to divisibility. In
fact, we get

2.3) A —1,1) |g(n, 1).

For proving Condition (2.3), we show that each product of at most n — 1 ele-
ments in {1, 2, ..., i} divides g(n, 7). We fix such a product p =d;-dy ... dy,-1,
where 7y <n and the dy’s are pairwise different members of {1, 2, ..., i}. Let
[ be a function in L, P(I) with I(s) =0 for s € Z;. We show that the number p di-
vides U(z;). Without loss of generality, we assume that ¢ is odd, hence for
j=1,2, ..., 1, the integer z; —j is an element of Z,.

Since [ e L, P(I), we find a polynomial function ¢ on the integers such that ¢
interpolates ! at the places z;—d,, z;~ds, 2, — ds, ..., 2;~ d,,_; and z;. Since
g(z;—d;)=0for j=1,2, ..., ny—1, we know that we can write ¢ in the form

ng—1

g(x) = g, (%) jIJl (% — (2; — d)))
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where ¢, is also a polynomial function with integral coefficients. Hence

ng—1

Uz) = q(z;) = ¢, () _Hl d; .
i

Therefore p =d,-dy...d,, -, divides I(z;). This shows that A(n —1, 7) divides
g(n, ).

Lemma 2 now gives equality in Condition (2.3). Actually, Lemma 2 allows
us to construct a sequence with the basis property given in Condition (2.2). For
x+j5—1

27—
x+j—1 ,J L
ti(x) = y A(m—1,27). The sequence (%, si, 1, Se, Lo, Sz, ...) has
J

jeN we define sj(ac)——-( An—1,27-1) and for jeN, we let

the properties required in (2.2). In addition, by Lemma 2, all s; and {; are in

L, P,

We shall now prove that the example of an element in L, P(I)\L, . ; P(I) given
in [5] is actually the easiest possible one.

Corollary 1. Let p be a polynomial function on the rational numbers with
rational coefficients such that the vestriction of p to the integers lies in L, P(I),
but not in L,,PU). Then the degree of p is at least 2mn.

(2n+2)!

2
Hence for j<2n we have A(n, j)=A(n—1, j) =7, but A(n, 2n) # A(n—1, 2n).

Proof. We have A(n,j) =j! for j<2n+ 1 and A(n, 2n +2) =

3 — A remark on the cardinality of L, F

In [6], W. Nobauer proposes to investigate the cardinalities of the sets L, P(4)
for all kinds of universal algebras A. In this section, we give an elementary reason
for the fact that LP(J) is uncountable.

Convention 1. For the rest of this note, let G = (G; +, —, 0) be a group,
and let F be a subgroup of GC. The carrier set of F is, as usual, denoted by F.

Definition 2. Let F, G be as in Convention 1. Then D is a base of equality
for F iff Dc G and every function in F that is zero at all elements of D is zero
everywhere on G.
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The following proposition is an obvious modification of [2], Lemma 1.

Proposition 2. Let G and F be as in Convention 1, and let D be o base of
equ_alz'ty for F. Let n be the cardinality of D. Then we have L, (F=F.

Proof. We suppose that there is a function [ that lies in L, +, F, but not in F.
Since ! is in L, F, there is a function f; € F that agrees with [ on D. Since f; lies
in F, but ! does not, we have a point y € G such that f; (y) = I(y). The cardinality of
DU {y} is n + 1, hence there is a function f, e F that agrees with [ on D U {y}.
Therefore the functions f; and f; agree on D, but they have different values at y.
Hence the function f; — f; is zero everywhere on D, but not the zero function. This
contradicts the fact that D is a base of equality of F.

Note that Proposition 2 is also true for infinite cardinals %. Of course, in this
case we have n + 1 =n.

We will now give a result that can be considered as a reversion of this
proposition.

Theorem 2. Let G and F be as in Convention 1. If F and G are both coun-
table and if F =LF then there exists a finite base of equality D for F.

Proof. The result is obvious if ' or G is finite. Let Yo, Y1 Y2, ... and
Jos fis foy ... be complete enumerations of F' and G, respectively. Furthermore we
abbreviate the set {y; |t <7} by I'().

Suppose that there is no finite base of equality for F. We shall construct a se-
quence (7%, ), <N, of non-negative integers and a sequence (g,, ) e, of elements of
F with the properties:

L. G | vy # Son | Tt VmeN,

) 2. Ny +1 = Mo VmENO
3' gm+1 Innm) =gm Ir(nm) VmENO‘

We construct the sequences inductively. Let gy e F such that g, = f;. Let ng be
minimal in Ny with go(y ) = £ (v 5,)-

If we have already constructed g,, and n,, we construet g,,,; and n,,,; as
follows:

In the case gu|rm,) =fu+1lmm, there exists a function heF with
Im | vy =P\ rm,y and B f, .1, since otherwise I'(n,) would be a forbidden
base of equality for F. We set ¢,,.;=h. Now let n,,; be minimal with
h()’an) ;ﬁfm-t-l(Yan)'

If G | Ry Z S +1 | ronyy WE S Gs1 =g a0d Ny 4y =7y, + 1.
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Since for every y e G, the sequence (g,,(¥))m~ Is eventually constant, we may
define a function [ on G by ‘
Uy) = lim g,(y).

m—> o

The function [ lies in LF, and hence, by assumption, [ lies in F. So [ is equal to f,,
for some meNy. Since | rw,)=9m |rmy @04 9w |, 2 fu | rny, We obtain
U] ren,y # fon | renyy- But this shows that [ can not be equal to f,.

Putting the last two propositions together, we get

Corollary 2. Let G and F be as in Convention 1. If F and G are both
countable and if F =LF then there exists an neN, such that F=L,F.

This property can be strengthened.

Corollary 8. Let G and F be as in Convention 1. If LF and G are both
countable, then we have:

1. There is a finite base of equality D for F.
2. LF=F.

Proof. By the idempotence of the operator L, we have LF = LLLF. Since both
LF and G are countable, we may apply Theorem 2 and get a finite base of equali-
ty D for LF. Since F' is a subset of LF, the set D is also a base of equality of F.
This proves (1); the claim in (2) now follows by Proposition 2.

Corollary 4. Let R be o countably infinite integral domain. Then LP(R)
is not countable. ‘

Proof. We suppose that LP(R) is countable. Then there exists a finite base of
equality D for P(R), and hence the polynomial p(x) = dHD(m — d) induces the zero-

function on K. This is impossible because R is an infinite integral domain.

For polynomial functions on ©-groups, we obtain the following corollary. We
recall that Q-groups are groups with further operations; a definition is given, e.g.,
in [3]. '

Corollary 5. Let V be an Q-group. If LP(V) is countable, then there exists
o finite base of equality for P(V).
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Proof. The result follows from Corollary 38 and the observation that LP(V)
can only be countable if V is countable as well.
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Sommario

Si determinano tutte le funzioni sull’insieme Z degli interi relativi che possono essere
interpolate da un polinomio a coefficient! in Z su ogni sottoinsieme di Z con al pin n
punti. Inoltre si dimostra che in ogni dominio di integrita esistono molte funzioni che si
comportano localmente come polinomi sebbene polinomi non siano.
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