Riv. Mat. Univ. Parma (5) 6 (1997), 123-128

SILVANA MARCHI (%)

CZ.P regularity for degenerate elliptic equations (**)

1 - Introduction

Let Q be an open, bounded, connected domain of R™. We consider C “(R")
vector fields X;, i =1, 2, ..., m, satisfying a Hérmander condition [9], [10], and
the forms:

m

.1 au, v) = [ 2 Xyu(w) Xio(@) do
Q t=
(1.2) J ﬁlxiu(m)xiv(x) de
Q t=
r
+=2 [ [u@ - u@)lv@) - o)l N, y) dedy + [ iz) ulz) o) de
2 Q x Q\diag(22) Q

where Iy is a positive constant, N = N(z, ) is a smooth, non negative, symmetric
function, possibly singular on diag(2) = {(x, «) [xe 2}, and [ = l(x) is a measu-
rable, non negative, bounded function.

The aim of this paper is to confront the forms (1.1) and (1.2) from the point of
view of the regularity of the solutions of the related equations. '

Recall that, according to the fundamental theory of A. Beuerling and J. Deny
[1], [2], and its extensions due to M. Silverstein [16], [17], M. Fukushima [8], Y. Le
Jan [12], any regular Dirichlet form & on the space H = L*(R") can be expressed
on its domain D[£], a linear subspace of H, as follows

E(u, v) = b(u, v) + I @) — a)ie) - iy)] jdx, dy)

R™x R"\diag(R")

+ [ () 9(z) k(dw)
X
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The functions % and v are the quasi-continuous modifications of % and v with
respect to the capacity associated to & [8] and u =, v =17 a.e. in R". The first
term in the right hand side of the above formula denotes the diffusion part, while
the second and the third terms are respectively the jump part or the non local
part and the local part. The measures j(dx, dy) and k(dx) are positive Radon
measures uniquely associated to & and are called respectively the jumping mea-
sure and the killing measure of &.

2 - Preliminaries

Let k& = 1 be integer. For any multi-index s = (sy, ..., s;) such that 1 <s; <m,
i=1,...,k, we define X°*=X, ... X, and denote |s| =k. For any integer k=1,
WHP(Q, X) denotes the space of all functions % e LP(£2) such that X*u e L?(R)
for any |s| <k, with the norm [l , = ||ull, + ls{Z(}ﬁl[Xsqu. WEP(Q, X) will be

the closure of Cy* () with respect to the same norm.

Let 2 be an open, bounded, connected subset of R™ such that Qcc X. If d,, de-
notes the intrinsic metric [14] associated to the form a in 2, then C. Fefferman
and D. H. Phong [7] proved that d, is linked to the Euclidean metric by the
estimates

1
2.1) Elx—'@/lsda(x,y)sClw—W

where &= % and C is a structural positive constant dependent also on .
By d, we can define the intrinsic balls B(x, ) = {yeR"|d,(x, y) <r} satis-
fying the doubling condition [14]. Thus (¥, d,,) is 2 homogeneous metric space in
the sense of R. Coifman and G. Weiss [6]. Let v be the homogeneous dimension of
the graded nilpotent group generated by the left invariant vector fields corre-
sponding to the lifted vector fields {}Z} of {X;} [13].
D. Jerison and A. Sanchez-Calle [11] proved the Poincaré inequality:
There exists a positive constant I'; such that, for any w e Cy”(2)

2.2) lullz20y < I X0l 20

L. Hérmander [9], L. P. Rotschild and M. Stein [15] proved that the form (1.1) is
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subelliptic of order ¢, that is there exists a positive constant I', such that, for any
ue COw (Q );

2.3) ltllirer < o lullir-2c0, 30

where H(2)=W*%(Q) is the usual fractional Sobolev space of order «.
We will take

¢ 1
2.4 Nz, ) = ——— = —(n+2
24) (z, ¥) i) m 2( a)

for 2a <2e +n (m <n + ¢). Moreover, ¢ is a positive constant such that N(x, )
1
< ICETIE By (2.1), (2.3), (2.4), the form (1.2) is well defined on W 2(8, X).
In fact, if u, ve WL 3(Q, X), then ‘
2.5) % f [u(x) — u(y) v(x) — v(y)] N(z, y) dedy =2 f[u(ac) () de
Q

Q x Q\diag(Q)

where:

2.6) Tu(w) = JTu(x) — u(y)] N(z, y) dy
Q

@.7 ”Iu(x)”m(g) s ((a, E)HMHH‘(Q)

1

Rn+2(s—a)

where C(a, 8) = (m'(s_—a

E<diam(Q).
Let Lu= — > X?u. As consequence of (2.2), each of the problems
i=1

1

2
)a),,) and B is a positive constant such that

2.8 ‘ Luy, =F u e Wi 2(R, X)

2.9 Lus + oIy + luy = F use Wi 3(Q, X)

has one and only one solution for any FeL?(Q).
Observe that, from (2.2), we have

(2.10) | ”%”WG"“’(g, 0 < Ty [|FllL20-

3 - C&F regularity

For any integer & = 1 and any real number B e (0, 1), Cz5(£2) will denote the
space of all functions which are (locally) Hélder continuous in £ with respect to
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the Euclidean metric. Moreover Saoc)(Q) will denote the space of all functions
which are (locally) Holder continuous in 2 with respect to the intrinsic metric d,,.
C. J. Xu [18] proved that C®#(2)cS"#(Q)c C®#(Q). Moreover, if we have
FeL*(2)NS%A(Q), then for any weak solution % of the equation Lu = F, if
ueC%Q), then ueSEA(Q).

Proposition 1 ([4], [5]). Let FeL%Q), where q> (% V 2). Then the so-
lution u, of (2.8) belongs to L ().

Proposition 2. Let FeL9(R2), where q > (% V 2). Then the solution u of
(2.9) belongs to L~ (£2).

Proof. Thanks to (2.2), (2.83), (2.7), if b(u, v) denotes the form (1.2), then
there exists a positive constant ¢’ such that, for any ue W 2(Q), we have
b, u) < c¢’ alu, u). It suffices now to repeat the proof of Proposition 1.

Proposition 3 ([4], [BD1Let F e L9(Q), where q > (% V2). Then the so-
lution u, of (2.8) is locally Holder-continuous in £2. The exponent of the Holder
continuity of u, is a structural constant y e (0, 1).

Proposition 4. Let FeLi(82), where q > (% V2) and let 2a <n. Then

the solution ug of (2.9) is locally Hdlder-continuous in Q with the same exponent
y of the solution u, of (2.8).

Proof. If FeL%(R2), where q > ( % V 2), then, by Proposition 2, 4, e L *(£2)

and then Ju,e L ®(2). For any e L *(RQ) we have F,=F — Ip —lp e LY(Q).
By Proposition 3 the solution u € W %(2, X) of the problem Lu = F, belongs to
CL7(2). If ¢ =wu,, then u=1us. So use C%7 ().

Proposition 5. Let 2(a+B)<n for fe(0,1). If uelL”™ ()N CcLA(Q),
then IueL ®(2)N CLA(Q).

Proof. Let z,2'eQ. If |x—x'|=—g—>0, we consider the sets

As=Bx', )N Q and C;=2\B(x', ). We have

l f u(:c) u(:t/)

|7ll

d
dy I <llllgo.pay) |2 — 2’ lﬁAf _”:c__:y_m <CR, A)|ullpo.pay |2—2" |7
Ak

Y|

20w, R™
Yo and m=L(n+20).

n—-2a

where C(R, a) =
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We can estimate l f u(lx—,)——:%?{—)-dyi in a similar way. So we obtain
T -y
u(@) — u(y) w(@') — u(y)
3.0 lf——ylgdy—fﬁdyl <20(R, D) lfulleo.ray |7 — 2 |P.
— i _

On the other hand

‘f w(x) — uly) —f u(w )"’M(y)d I

Cé Ix yl’ﬂl ylﬁl/
() —ulx’) |
f———d +f|u(y)—u("c)| Yy
e —y|™ ! I’" |o’ ~z/l’”]
s m—1
max{|c—y|, [z —
32)  <Cl)|ulloosuylz—2" 1P +2lully =0 |22 il y,,!l l, an}
Cs [z~y|™ e’ —y|
1B IRy 1 1
< Cl)fullo. sy |2 — 2 |2+ 2llully =0 |x — 2 | I 1dy

+

Cs lw_y|m+ﬂ lx:_y|m+ﬂ
< [C(a)||u”co,ﬂ<A6) +4C(a+ Bl =] |z — =" |P.

By (8.1) and (3.2) we conclude the proof.

Theorem. Let2(a+B) <nforBfe(0,1). IfFeL™(2)NCLA(Q), then the
solution wu, of the problem (2.8) belongs to CZP(RQ) and the solution us of the
problem (2.9) belongs to GRPNVE(Q), where y is the comstant of Proposition 3.

Proof. If FeL*(Q)NCLA(RQ), then, by Propositions 1, 3 and by [18] we
have u; € C%.%(R2). Moreover Propositions 2 and 4 give u;e L ®(£2) N C%7 (R2).
Hence, by Proposition 5, Juse L *(2) N CL7(2). The technique used to prove
Proposition 4 gives u, e CEEAVe(Q).
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Sommario

In questo articolo si danno condizioni di regolarita CE.P per le soluzioni di alcune

equazioni integro-differenziali relative a campi vettoriali di Hérmander.

&k ok



