SAMUEL ZAIDMAN (*)

Comments on pseudo-differential operators (**)

Introduction

In this work we make some comments on various elementary properties of pseudo differential operators as they appear in past work:

- 1. The $L^2(\mathbb{R}^n)$ estimate in [3] is here replaced with $H^s(\mathbb{R}^n)$ and $B^{1,s}(\mathbb{R}^n)$ estimates (see [4] for discussion on these spaces of distributions).
- 2. The H^s -estimate which is established in [2] is here replaced by a corresponding $B^{1, s}$ -estimate.
- 3. The order and the true order of some pseudo-differential operators which appear in $H^s(\mathbf{R}^n)$ spaces are discussed, in a similar way, in $B^{1,s}(\mathbf{R}^n)$ spaces (see our monographs [4], [5]).
- 4. We terminate by a $B^{1,s}(\mathbf{R}^n)$ -form of a $H^s(\mathbf{R}^n)$ inequality for the reversor operator: $A(x, D) \mathfrak{Cl}(x, D)$ corresponding to Kohn-Nirenberg regular symbols (see [5]).

1 - Hs- and B1, s-estimates

Consider a continuous function $\psi(\xi)$, $\mathbb{R}^n \to \mathbb{C}$, $\xi = (\xi_1, \xi_2 \dots \xi_n)$. Let supp $\psi = \{\xi; \psi(\xi) \neq 0\}$. We assume that

(1.1)
$$\xi, \eta \in \operatorname{supp} \psi \quad \text{implies} \quad |\xi - \eta| \le c \sqrt{1 + |\xi|}$$
 where $|\xi| = (\xi_1^2 + \ldots + \xi_n^2)^{\frac{1}{2}}$, as usual.

^(*) Dept. of Math. and Statist., Univ. Montreal, C.P. 6128 Succ. Centre-Ville, Montreal, Canada.

^(**) Received September 24, 1997. AMS classification 47 G 30.

Remark. From assumption (1.1) it follows that supp ψ is compact in \mathbb{R}^n . In fact, let us fix $\xi_0 \in \text{supp } \psi$. Then, $\forall \eta \in \text{supp } \psi$ we obtain

$$(1.2) |\eta - \xi_0| \le c\sqrt{1 + |\xi_0|} \text{hence} |\eta| \le |\xi_0| + c\sqrt{1 + |\xi_0|}.$$

Accordingly, $\psi(\cdot) \in C_0(\mathbf{R}^n)$ (continuous functions with compact support). It is immediate that, for the *Friedrichs operator* $\psi(D) = \mathcal{F}^{-1}\mathcal{M}_{\psi}\mathcal{F}$ (where \mathcal{F} , \mathcal{F}^{-1} are the direct and inverse Fourier transform while \mathcal{M}_{ψ} is the multiplication operator by ψ), the estimates:

(1.3)
$$\|\psi(D) u\|_{H^s} \leq \sup_{R^n} |\psi(\xi)| \|u\|_{H^s} \qquad \forall u \in H^s, \quad \forall s \in R$$

and

(1.4)
$$\|\psi(D) u\|_{B^{1,s}} \leq \sup_{\mathbb{R}^n} |\psi(\xi)| \|u\|_{B^{1,s}} \qquad \forall u \in B^{1,s}, \quad \forall s \in \mathbb{R}$$

hold true.

We shall prove

Theorem 1. Let $\zeta \in \text{supp } \psi$. Then the following inequalities are valid:

In fact, the Lemma in [3] implies that $\forall \eta, \zeta \in \text{supp } \psi$, the estimate

$$(1.7) 1 + |\eta| \le C(1 + |\zeta|)$$

holds true.

Next, for $u \in H^s(\mathbb{R}^n)$ we have

$$\begin{split} \|\psi(D) \ u\|_{H^{s}} &= [\int\limits_{R^{n}} (1 + |\eta|^{2})^{s} |\psi(\eta)|^{2} |\widehat{u}(\eta)|^{2} \mathrm{d}\eta]^{\frac{1}{2}} \\ &= [\int\limits_{\mathrm{supp} \ \psi} |\psi(\eta)|^{2} |\widehat{u}(\eta)|^{2} (1 + |\eta|^{2})^{\frac{1}{2}} (1 + |\eta|^{2})^{-\frac{1}{2} + s} \mathrm{d}\eta]^{\frac{1}{2}} \\ &\leq [\int\limits_{\mathrm{supp} \ \psi} |\psi(\eta)|^{2} |\widehat{u}(\eta)|^{2} (1 + |\eta|) (1 + |\eta|^{2})^{s - \frac{1}{2}} \mathrm{d}\eta]^{\frac{1}{2}} \\ &\leq C_{1} \sqrt{1 + |\xi|} [\int\limits_{R^{n}} |\psi(\eta)|^{2} |\widehat{u}(\eta)|^{2} (1 + |\eta|^{2})^{s - \frac{1}{2}} \mathrm{d}\eta]^{\frac{1}{2}} \end{split}$$

(we used here inequalities: $\sqrt{1+|\eta|^2} \le 1+|\eta|$ and $1+|\eta| \le C(1+|\xi|)$ from (1.7)). This is in fact (1.5) and for s=0 we obtain the Theorem in [3].

Next, consider (1.6). We have, $\forall u \in B^{1, s}(\mathbb{R}^n)$

$$\begin{split} \|\psi(D) \ u\|_{B^{1,s}} &= \int\limits_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{s}{2}} |\psi(\xi)| |\widehat{u}(\xi)| \, \mathrm{d}\xi \\ &= \int\limits_{\mathrm{supp} \ \psi} (1 + |\eta|^2)^{\frac{s}{2} - \frac{1}{2}} |\psi(\eta)| (1 + |\eta|^2)^{\frac{1}{2}} |\widehat{u}(\eta)| \, \mathrm{d}\eta \\ &\leq \int\limits_{\mathrm{supp} \ \psi} (1 + |\eta|^2)^{\frac{s-1}{2}} |\psi(\eta)| (1 + |\eta|) |\widehat{u}(\eta)| \, \mathrm{d}\eta \\ &\leq C(1 + |\xi|) \int\limits_{\mathbb{R}^n} (1 + |\eta|^2)^{\frac{s-1}{2}} |(\psi(D) \ u)^{\wedge}(\eta)| \, \mathrm{d}\eta = C(1 + |\xi|) \|\psi(D) \ u\|_{B^{1,s-1}} \end{split}$$

which is (1.6).

2 - Commutator inequality in $B^{1, s}$ -space

In this section we present a $B^{1,s}$ -version of a result in [2], concerning commutators of some pseudo-differential operators, which is in H^s -space. We refer to [5], p. 34-37 (for the special case r=0). Thus, let us consider measurable functions $g(x, \xi)$, $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$, such that

(2.1)
$$g(x, \xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbf{R}^n} e^{i\langle x, \lambda \rangle} \gamma(\lambda, \xi) \, \mathrm{d}\lambda \qquad \forall x \in \mathbf{R}^n, \xi \in \mathbf{R}^n$$

where $\langle x, \lambda \rangle = x_1 \lambda_1 + \dots x_n \lambda_n$, the function $\gamma(\lambda, \xi)$ is measurable, $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$, as well as the partial function $\lambda \mapsto \gamma(\lambda, \xi) \quad \forall \xi \in \mathbb{R}^n$, and the estimate

$$(2.2) |\gamma(\lambda, \xi)| \leq k(\lambda) \forall \xi \in \mathbb{R}^n, \ \forall \lambda \in \mathbb{R}^n$$

is verified, where

$$(2.3) (1+|\lambda|)^{|s|} k(\lambda) \in L^1(\mathbf{R}^n)$$

for some real number s.

Define the pseudo-differential operator $\mathfrak{S}(x, D)$ on $B^{1,s}$ by

(2.4)
$$\mathfrak{G}(x, D) u = \mathcal{F}^{-1}[(2\pi)^{-\frac{n}{2}} \int_{\mathbf{R}^n} \gamma(\xi - \eta, \eta) \widehat{u}(\eta) d\eta] \qquad \forall u \in B^{1, s}.$$

As seen in [5], p. 37, this is a linear continuous operator, $B^{1,s} \rightarrow B^{1,s}$, where

$$\|\mathfrak{S}(x,\,D)\,u\|_{B^{1,\,s}} \leq (2\pi)^{-\frac{n}{2}} \left(\int\limits_{R^n} (1+|\lambda|)^{|s|}\,k(\lambda)\,\mathrm{d}\lambda\right) \|u\|_{B^{1,\,s}} \quad \forall u \in B^{1,\,s}.$$

Next, consider a bounded measurable function $\psi(\xi)$, $\mathbb{R}^n \to \mathbb{C}$, such that

$$\left| \psi(\xi) - \psi(\eta) \right| \leqslant C |\xi - \eta| \left| \eta \right|^{-\frac{1}{2}} \quad \text{ for } \left| \xi - \eta \right| \leqslant \frac{1}{2} \left| \eta \right|$$

holds true, as well as a continuous function $\zeta(\xi)$, $\mathbb{R}^n \to [0, 1]$, where $\zeta(\xi) = 0$ for $|\xi| < \frac{1}{2}$ while $\zeta(\xi) = 1$ for $|\xi| \ge 1$.

The associated operators $\psi(D)$, $\zeta(D)$ belong to $\mathcal{L}(B^{1,s})$ (see (1.4)). Consider also the *commutator operator*

(2.5)
$$L = [\psi(D), \, \mathcal{G}(x, \, D)] = \psi(D) \, \mathcal{G}(x, \, D) - \mathcal{G}(x, \, D) \, \psi(D).$$

We prove the following

Theorem 2. Let us assume the supplementary assumption (replacing (2.3))

(2.6)
$$(1+|\lambda|)^{|s|+1}k(\lambda) \in L^{1}(\mathbf{R}^{n}).$$

Then the following estimate holds true

Proof. The *Fourier transform* of $\zeta(D)$ Lu is easily seen to be given by the formula

(2.8)
$$(\zeta(D) Lu)^{\wedge}(\xi) = \zeta(\xi)(2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \gamma(\xi - \eta, \eta) [\psi(\xi) - \psi(\eta)] \widehat{u}(\eta) d\eta.$$

Thus, we have to estimate the $L^1(\mathbb{R}^n)$ -norm of the expression

(2.9)
$$W_s(\xi) = (1 + |\xi|^2)^{\frac{s}{2}} (\xi(D) Lu)^{\hat{}}(\xi)$$

$$= (2\pi)^{-\frac{n}{2}} \int\limits_{\mathbb{R}^n} (1+\left|\xi\right|^2)^{\frac{s}{2}} \left(1+\left|\eta\right|^2\right)^{-\frac{s}{2}} \zeta(\xi) \, \gamma(\xi-\eta,\,\eta) [\psi(\xi)-\psi(\eta)] (1+\left|\eta\right|^2)^{\frac{s}{2}} \, \widehat{u}(\eta) \; \mathrm{d}\eta \, .$$

We shall make use of the inequality (2.7) at p. 34 in [5] and obtain accordingly the inequality

$$\begin{aligned} \left| W_{s}(\xi) \right| &\leq c \int_{R^{n}} (1 + \left| \xi - \eta \right|)^{|s|} \zeta(\xi) \, k(\xi - \eta) \left| \psi(\xi) - \psi(\eta) \left| (1 + \left| \eta \right|^{2})^{\frac{s}{2}} \right| \widehat{u}(\eta) \, d\eta \\ &\leq W_{s, 1}(\xi) + W_{s, 2}(\xi) \end{aligned}$$

where

$$W_{s, 1}(\xi) = C_1 \int_{\eta; |\xi - \eta| \leq \frac{1}{2} |\eta|} (1 + |\xi - \eta|)^{|s|} \, \zeta(\xi) \, k(\xi - \eta) \, \frac{|\xi - \eta|}{\sqrt{|\eta|}} (1 + |\eta|^2)^{\frac{s}{2}} \, |\widehat{u}(\eta)| \, \mathrm{d}\eta$$

and

$$W_{s,\,2}(\xi) = C_2 \int_{\eta;\,|\xi-\eta| \,\geqslant \,\frac{1}{2}\,|\eta|} (1+\big|\xi-\eta\big|)^{|s|}\,k(\xi-\eta)(1+\big|\eta\big|^2)^{\frac{s}{2}}\,\big|\,\widehat{u}(\eta)\,\big|\,\mathrm{d}\eta\;.$$

We see that $W_{s,\,1}(\xi) = 0$ for $|\xi| \le \frac{1}{2}$. For $|\xi| \ge \frac{1}{2}$ and $\frac{|\eta|}{2} > |\xi - \eta|$ we get $|\eta| \ge \frac{1}{3}$ and for $|\eta| \ge \frac{1}{3}$ we get $|\xi - \eta| |\eta|^{-\frac{1}{2}} \le C(1 + |\xi - \eta|)(1 + |\eta|^2)^{-\frac{1}{4}}$. This entails estimate for $W_{s,\,1}(\xi)$:

$$\begin{split} W_{s,\,1}(\xi) & \leq C \int\limits_{R^n} (1 + \left| \xi - \eta \right|)^{|s|} \, k(\xi - \eta) (1 + \left| \xi - \eta \right|) (1 + \left| \eta \right|^2)^{-\frac{1}{4}} (1 + \left| \eta \right|^2)^{\frac{s}{2}} \, \left| \, \widehat{u}(\eta) \right| \mathrm{d}\eta \\ & = C \int\limits_{R^n} (1 + \left| \xi - \eta \right|)^{|s|+1} \, k(\xi - \eta) (1 + \left| \eta \right|^2)^{\frac{s}{2} - \frac{1}{4}} \, \left| \, \widehat{u}(\eta) \right| \mathrm{d}\eta \end{split}$$

and accordingly

As for $W_{s,2}(\xi)$, from $|\xi - \eta| \ge \frac{1}{2} |\eta|$ we derive:

$$1 \le 2(1 + |\xi - \eta|) c(1 + |\eta|^2)^{-\frac{1}{2}}$$

hence

$$W_{s,2}(\xi) \le C \int_{\mathbb{R}^n} (1 + |\xi - \eta|)^{|s|+1} k(\xi - \eta) (1 + |\eta|^2)^{\frac{s-1}{2}} |\widehat{u}(\eta)| d\eta$$

and accordingly

We are able now to conclude with (2.7).

3 - Order and true order in the scale $B^{1,s}$

We first refer to [5], p. 4. Similar facts are true for the scale of Banach spaces $\{B^{1,s}(\mathbf{R}^n)\}$. For instance, if $u \in B^{1,\infty}(\mathbf{R}^n) = \bigcap B^{1,s}(\mathbf{R}^n)$ and if $\varphi(\xi)$, $\mathbf{R}^n \to \mathbf{C}$ is a measurable function such that

(3.1)
$$|\varphi(\xi)| \le C(1+|\xi|^2)^{\sigma}$$
 a.e in \mathbb{R}^n , for some real number σ

then one obtains

almost everywhere, so that

(3.3)
$$\int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{s}{2}} |\varphi(\xi)| d\xi = \|\varphi(D) u\|_{B^{1,s}} \le C \|u\|_{B^{1,s+2\sigma}} \forall s \in \mathbb{R}$$

which implies that $[2\sigma, +\infty) \in \mathcal{O}(\varphi(D))$.

In particular, if $\varphi(\cdot) \in C_0(\mathbb{R}^n)$ then (3.1) holds $\forall \sigma \in \mathbb{R}$ and accordingly $\mathcal{O}(\varphi(D))$, evaluated in $B^{1, \infty}(\mathbb{R}^n)$, is \mathbb{R} , as it is in the scale $\{H^s(\mathbb{R}^n)\}$.

Next we refer to the class of $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ -symbols denoted in [4] p. 94 with \tilde{S}^r ; if $p(x, \xi)$ is such a symbol and $\mathcal{P}(x, D)$ its associated operator (see (10.3) in [4], p. 95) we have

Theorem 3. The following estimate holds true

(3.4)
$$\| \mathcal{P}(x, D) u \|_{B^{1,s}} \leq C_s \| u \|_{B^{1,s+r}} \qquad \forall s \in \mathbb{R}, \ \forall u \in S(\mathbb{R}^n).$$

Proof. As seen in [4], if $\widehat{p}(\lambda, \xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-i\langle x, \lambda \rangle} p(x, \xi) dx$, then the Fourier transform of $\mathcal{P}(x, D)$ u is given by relation

$$(\mathcal{P}(x,D) u)^{\wedge}(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \widehat{p}(\xi - \eta, \eta) \widehat{u}(\eta) d\eta \qquad \forall u \in \mathcal{S}(\mathbb{R}^n).$$

Therefore $(\mathcal{P}(x, D) u)^{\wedge} \in L^1$ and $\mathcal{P}(x, D) u \in B^{1, 0}(\mathbb{R}^n)$.

Take now any $s \in \mathbb{R}$ and establish that the function $U_s(\xi)$ given by

(3.5)
$$U_s(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{s}{2}} \, \widehat{p}(\xi - \eta, \, \eta) \, \widehat{u}(\eta) \, d\eta$$

belongs to $L^1(\mathbf{R}^n)$.

We write the equality

$$U_s(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{s}{2}} (1 + |\eta|^2)^{-\frac{s}{2}} \widehat{p}(\xi - \eta, \eta)(1 + |\eta|^2)^{\frac{s}{2}} \widehat{u}(\eta) d\eta$$

whence the estimate

$$|U_{s}(\xi)| \leq (2\pi)^{-\frac{n}{2}} 2^{\frac{|s|}{2}} \int_{\mathbb{R}^{n}} (1 + |\xi - \eta|^{2})^{\frac{|s|}{2}} |\widehat{p}(\xi - \eta, \eta)| (1 + |\eta|^{2})^{\frac{s}{2}} |\widehat{u}(\eta)| d\eta.$$

Furthermore one has: $|\widehat{p}(\xi - \eta, \eta)| \leq C_l (1 + |\eta|^2)^{\frac{r}{2}} (1 + |\xi - \eta|^2)^{-l}$ for any l = 1, 2, ... so that

$$(3.6) |U_s(\xi)| \leq C_s \int_{\mathbf{R}^n} (1 + |\xi - \eta|^2)^{\frac{|s|}{2} - \ell} (1 + |\eta|^2)^{\frac{s+r}{2}} |\widehat{u}(\eta)| d\eta.$$

This obviously entails (3.4) (when l is sufficiently large).

We next complete reasonings in [5], p. 10, taking the scale $\{B^{1,s}(\mathbf{R})\}$ instead of $\{H^s(\mathbf{R})\}$, and $V = B^{1,\infty}(\mathbf{R})$.

Let $\psi(\xi) = 1$ for $\xi \ge 0$, $\psi(\xi) = 0$ for $\xi < 0$ and $\psi(D) = \mathcal{F}^{-1}\mathfrak{M}_{\psi(\cdot)}\mathcal{F}$. Then obviously

(3.7)
$$\|\psi(D) u\|_{B^{1,s}} \le \|u\|_{B^{1,s}} \quad \forall s \in \mathbb{R}, \ \forall u \in V \text{ and } [0, \infty) \in \mathcal{O}(\psi(D))$$

(the order is computed with respect to the scale $\{B^{1,s}(\mathbf{R})\}$).

Actually, the order of $\psi(D)$ equals $[0, \infty)$. This is a consequence of

Proposition 1. There exists no positive number ε_0 , such that $-\varepsilon_0 \in \mathcal{O}(\psi(D))$.

Proof. Let us assume that for some $\varepsilon_0 > 0$, $-\varepsilon_0$ belongs to $\mathcal{O}(\psi(D))$. Then the estimates

$$\|\psi(D) u\|_{B^{1,s}} \leq C_s \|u\|_{B^{1,s-\epsilon_0}} \qquad \forall u \in S(\mathbf{R}), \quad \forall s \in \mathbf{R}$$

hold true. In particular, if s = 0, we obtain that

Take now (as in [5], p. 11), a sequence $(g_p(\xi))$ where $g_p(\xi) \in C_0^{\infty}(\mathbf{R})$, $0 \leq g_p(\cdot) \leq 1$, $g_p(\xi) = 0$ for $\xi \leq p-1$ and $\xi \geq 2p+1$, $g_p(\xi) = 1$ for $p \leq \xi \leq 2p$

and then $u_p(x) = \mathcal{F}^{-1}(g_p(\cdot))$. Introducing in (3.8) we get

$$\int\limits_{R} \left| \psi(\xi) \, g_p(\xi) \, \right| \mathrm{d}\xi \leq C \int\limits_{R} (1 + |\xi|^2)^{-\frac{\varepsilon_0}{2}} \, \left| g_p(\xi) \, \right| \mathrm{d}\xi \qquad \forall p = 1, \, 2, \, \dots$$

and consequently

$$\int\limits_{0}^{\infty} \left| g_{p}(\xi) \left| \mathrm{d} \xi \leqslant C \int\limits_{p-1}^{2p+1} (1+\left| \xi \right|^{2})^{-\frac{\varepsilon_{0}}{2}} \, \mathrm{d} \xi \leqslant C(p+2)(1+(p-1)^{2})^{-\frac{\varepsilon_{0}}{2}} \right| d\xi \leqslant C(p+2)(1+(p-1)^{2})^{-\frac{\varepsilon_{0}}{2}}$$

for any $p \in \mathbb{N}$.

Also, $\int\limits_0^\infty |g_p(\xi)| d\xi \ge p$ and one gets

$$p \le C(p+2)(1+(p-1)^2)^{-\frac{\epsilon_0}{2}}$$
 $\forall p \in N$

which of course is impossible.

A similar result (cf. Prop. 5.1, p. 14 in [5]) is given below as

Theorem 4. Let $\psi(\cdot)$ be a continuous, real-valued function on \mathbb{R}^n , $0 \le \psi(\cdot) \le 1$, $\psi(\xi) = 0$ for $|\xi| \le \frac{1}{2}$, $\psi(\xi) = 1$ for $|\xi| \ge 1$. The operator $\psi(D)$ is continuous, $B^{1, \infty} \to B^{1, \infty}$ and its true order equals zero.

Proof. The only non-trivial thing to demonstrate: there is no negative number r belonging to $\mathcal{O}(\psi(D))$, in $\{B^{1,s}\}_{s\in R}$.

If such r < 0 would exist, then, in particular, it would follow that

$$\|\psi(D)u\|_{B^{1,0}} \le C\|u\|_{B^{1,r}}$$
 $\forall u \in S(\mathbf{R}^n)$

that is $\int_{\boldsymbol{R}^n} \left| \psi(\xi) \; \widehat{\boldsymbol{u}}(\xi) \right| \mathrm{d}\xi \leq C \int_{\boldsymbol{R}^n} (1 + |\xi|^2)^{\frac{r}{2}} \; \left| \; \widehat{\boldsymbol{u}}(\xi) \right| \mathrm{d}\xi, \quad \forall \boldsymbol{u} \in \mathcal{S}(\boldsymbol{R}^n) \; \text{ hence}$

(3.9)
$$\int_{|\xi| \ge 1} |\widehat{u}(\xi)| d\xi \le c \int_{\mathbf{R}^n} (1 + |\xi|^2)^{\frac{r}{2}} |\widehat{u}(\xi)| d\xi \qquad \forall u \in \mathcal{S}(\mathbf{R}^n).$$

Take now the sequence $(u_p(\cdot))$ in $\mathcal{S}(\mathbf{R}^n)$ where $\widehat{u}_p(\xi) = (1+|\xi|^2)^{-\frac{n}{2}}$, $|\xi| \leq p$ and $\widehat{u}_p(\xi) = 0$ for $|\xi| \geq 2p$, $\widehat{u}_p(\xi) \in C^{\infty}(\mathbf{R}^n)$, $0 \leq |\widehat{u}_p(\xi)| \leq (1+|\xi|^2)^{-\frac{n}{2}}$, $\forall \xi \in \mathbf{R}^n$ (see [5], p. 15).

Thus, (3.9) entails

$$(3.10) \qquad \int_{1 \le |\xi| \le p} (1 + |\xi|^2)^{-\frac{n}{2}} \, \mathrm{d}\xi \le C \int_{|\xi| \le 2p} (1 + |\xi|^2)^{\frac{r}{2}} (1 + |\xi|^2)^{-\frac{n}{2}} \, \mathrm{d}\xi$$

for any $p = 1, 2, \ldots$ In spherical coordinates, the inequality (3.10) becomes

$$\int_{1}^{p} (1+\varrho^{2})^{-\frac{n}{2}} \varrho^{n-1} d\varrho \le C \int_{0}^{2p} (1+\varrho^{2})^{\frac{r-n}{2}} \varrho^{n-1} d\varrho \quad \forall p=1, 2, \dots$$

which is impossible.

As in [5], p. 15, 16, Theorem 4 has the following

Corollary 1. Let $\psi(\cdot)$ as in Theorem 4 and, for some $\sigma \in \mathbf{R}$, define $\psi_{\sigma}(\xi) = |\xi|^{\sigma} \psi(\xi)$ for $\xi \neq 0$ and $\psi_{\sigma}(\xi) = 0$ for $\xi = 0$. Then, the true order of the operator $\psi_{\sigma}(D)$ relatively to $\{B^{1, s}(\mathbf{R}^n)\}$ equals σ .

Proof. Note the estimate: $|\psi_{\sigma}(\xi)| \leq C(1+|\xi|^2)^{\frac{\sigma}{2}}$, $\forall \xi \in \mathbb{R}^n$. Use of (3.3) shows that $t \cdot o(\psi_{\sigma}(D)) \leq \sigma$.

If this inequality is strict and $t \cdot o(\psi_{\sigma}(D)) = \sigma_1 < \sigma$, consider the operators $\psi_{\sigma}(D)$, $\psi_{-\sigma}(D)$, $B^{1, \infty} \to B^{1, \infty}$, and then apply Proposition 4.2, p. 12 in [5], with $V = B^{1, \infty}$, $L_1 = \psi_{\sigma}(D)$, $L_2 = \psi_{-\sigma}(D)$. We obtain

$$(3.11) t \cdot o(\psi_{\sigma}(D) \cdot \psi_{-\sigma}(D)) \leq \sigma_1 - \sigma < 0.$$

On the other hand, for any $u \in B^{1,\infty}$ we have

$$\begin{split} \psi_{\sigma}(D) \; \psi_{-\sigma}(D) \; u &= \psi_{\sigma}(D)(\psi_{-\sigma}(D) \; u) = \mathcal{F}^{-1}(\psi_{\sigma}(\xi)(\psi_{-\sigma}(D) \; u)^{\wedge}(\xi)) \\ &= \mathcal{F}^{-1}(\psi_{\sigma}(\xi)(\psi_{-\sigma}(\xi) \; \widehat{u}(\xi))) = \mathcal{F}^{-1}(\psi^{2}(\xi) \; \widehat{u}(\xi)) = \psi^{2}(D) \; u \; . \end{split}$$

Note that $\psi^2(\xi)$ has same properties as $\psi(\xi)$, so that, from Theorem 4, $t \cdot o\psi^2(D)$ (in $B^{1, \infty}$) equals 0.

From (3.11) we then derive the contradiction 0 < 0.

4 - Reversor inequality in B1, s-space

In this final (and short) section of this paper we present the $B^{1,s}$ -version of the inequality (2.19) at p. 63 of [5] concerning the *reversor operator* $A_a(x, D) - \mathcal{C}_a(x, D)$ corresponding to a C^{∞} -zero homogeneous symbol $a(x, \xi)$.

We thus refer to [5], Ch. VI for the main definitions of symbols and associated operators and establish

Proposition 2. If $a(x, \xi)$ is a (K-N) symbol, the difference operator $A_a - \mathfrak{A}_a$ is a linear continuous operator, $B^{1, s} \to B^{1, s+1}$, $\forall s \in \mathbb{R}$.

Proof. We shall demonstrate inequality

We have, as in [5] Ch. VI, the expression for the Fourier transform of $(A_a - \mathfrak{A}_a) u$:

$$((A_a - \mathcal{C}_a) u)^{\wedge}(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} [\tilde{a}'(\xi - \eta, \xi) - \tilde{a}'(\xi - \eta, \eta)] \, \widehat{u}(\eta) \, d\eta.$$

We consider next the expression

$$W_s(\xi) = (2\pi)^{-\frac{n}{2}} (1 + |\xi|^2)^{\frac{s+1}{2}} \int_{\mathbb{R}^n} [\tilde{a}'(\xi - \eta, \xi) - \tilde{a}'(\xi - \eta, \eta)] \hat{u}(\eta) d\eta$$

$$= (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{s+1}{2}} (1 + |\eta|^2)^{-\frac{s+1}{2}} [\tilde{a}'(\xi - \eta, \xi) - \tilde{a}'(\xi - \eta, \eta)] (1 + |\eta|^2)^{\frac{s+1}{2}} \widehat{u}(\eta) d\eta$$

whence, for any p of N, the estimate

$$|W_{s}(\xi)| \leq C_{s, p} \int_{\mathbb{R}^{n}} (1 + |\xi - \eta|^{2})^{\frac{|s+1|}{2} - p + \frac{1}{2}} (1 + |\eta|^{2})^{\frac{s}{2}} |\widehat{u}(\eta)| d\eta$$

and then, for sufficiently large p

$$\int_{\mathbb{R}^n} |W_s(\xi)| \, \mathrm{d}\xi = \|(A_a - \mathcal{Q}_a) \, u\|_{B^{1,\,s+1}} \le C \left(\int_{\mathbb{R}^n} (1 + |\lambda|^2)^{\frac{|s+1|}{2} + \frac{1}{2} - p} \, \mathrm{d}\lambda\right) \|u\|_{B^{1,\,s}}$$

which is (4.1).

References

- [1] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 267-305.
- [2] S. Zaidman, Sui commutatori di alcuni operatori pseudo-differenziali, Ann. Univ. Ferrara 13 (1968), 33-36.
- [3] S. Zaidman, An inequality for a certain Friedrichs operator, Ann. Univ. Ferrara 14 (1969), 105-107.

- [4] S. ZAIDMAN, Distributions and pseudo-differential operators, Pitman Res. Notes Math. 248, Longman, Harlow, U.K. 1991.
- [5] S. Zaidman, *Topics in pseudo-differential operators*, Pitman Res. Notes Math. 359, Longman, Harlow, U.K. 1996.

Sommario

In questo lavoro vengono fatti alcuni commenti riguardo a varie proprietà elementari degli operatori pseudo-differenziali, incontrate in precedenti lavori dell'autore. Essenzialmente, si presenta una versione $B^{1,s}(\mathbf{R}^n)$ di risultati precedentemente ottenuti in spazi $H^s(\mathbf{R}^n)$.

* * *

