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Remarks on automorphisms of Nambu-Poisson structures (**)

Introduction

The theory of Poisson manifolds (ef. [7], [21], [23]) constitutes an extension of
the symplectic geometry to the nontransitive case. Numerous problems which
arise in physics are well described on the ground of this theory. When a Poisson
manifold is interpreted as the phase-space the group of all Poisson automor-
phisms plays the role of the symmetry group.

Y. Nambu in [11] proposed a more general setting of Hamiltonian mechanics.
After years of oblivion some recent papers (e.g. [19], [4], [6]) have given a new in-
terest to Nambu’s ideas. From the geometric point of view a so-called Nambu-
Poisson structure defined by R. Ibdfiez, M.de Ledn, J. C. Marrero and D. Martin
de Diego in [5] constitutes an interesting generalization of the Poisson geometry.
As mentioned in [5] some further extension is still possible. In the sequel we shall
appeal to some definitions and facts established in [5].

The aim of this note is to study some aspects of automorphisms of Nambu-
Poisson manifolds. In Sections 1 and 2 we recall some preliminary facts concer-
ning Nambu-Poisson structures. Sections 3 and 4 are devoted to the introduction
of the flux homomorphism (Theorem 2) and the study of its relation with isotopies
(Theorem 3). This extends the symplectic case ({3], [1], [9]) as well as the case of
regular Poisson manifolds [17]. In the remaining part we prove that the geometric
structure of a Nambu-Poisson manifold restricted to the set of all regular points
is uniquely determined by the group of its automorphisms (Theorem 5). This re-
sult can be viewed as a modern contribution to the Erlangen Program of F.
Klein [6] (see also [2], [13], [14], [16], [24] and references therein). The proof of it
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follows a pattern from my previous papers. In contrast to a traditional argument
as in [24], [2] our refinement of it works also in the case of nontransitive groups of
diffeomorphisms. Another advantage of it is that an inspection concerning the
perfectness of the group in question is not necessary. Nota bene such a theorem is
unknown (and probably difficult) in the case of generalized Poisson geome-
try.

It is worth noting that all the presented facts generalize as well those for the
volume preserving transformation group [20], [2].

All manifolds, tensors, diffeomorphisms and so on are assumed to be of the
class C*. Certain facts presented in this note are no longer true in the real ana-
lytic category.

1 - Nambu-Poisson structures

Let us recall first the concept of Poisson manifolds. Let M be a smooth mani-
fold of dimension m, and let C > (M) (resp. J(M); resp. 27(M)) denote the ring of
all R-valued smooth functions on M (resp. the Lie algebra of all vector fields on
M; resp. the space of all »forms on M).

A Poisson structure can be introduced by a skew-symmetrie (2, 0)-tensor 4 on
M such that [4, A] =0, where [.,.] is the Schouten-Nijenhuis bracket. Then the
rank of A, may vary but it is even everywhere. The ring C* (M) can be then
given a Lie algebra structure by means of the bracket

1.1) {u, v} = A(du, dv) for any u, veC* (M)

and every adjoint homomorphism of this bracket is a derivation of C (M) (the
Leibniz rule)

(1.2) {uv, w} = u{v, w} +v{u, w} for any u, v, weC*(M).

Observe that a Poisson structure may be defined equivalently by means of the
bracket {.,.}: C® (M) x C*(M)— C * (M) which is 2-linear, skew-symmetric and
satisfies (1.2). The bracket and the tensor A are then related by (1.1).

We have the musical bundle homomorphism associated with A

s QM) — (M) Bla") = Ala, B)

where o' = fi(a), for any a, Be QY(M). In case A is nondegenerate (i.e. rank (A1)
equals dim (M)), [} is an isomorphism and we get a symplectic structure.
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In general, the distribution (7. M), x € M, integrates to a generalized folia-
tion such that A restricted to any leaf induces a symplectic structure [21]. This fo-
liation is called symplectic.

The first step towards generalization of Poisson structures is the following

Definition 1. A skew-symmetric n-linear mapping

{ ., O X ... xC"(M)—C>(M)

is called a generalized almost Poisson bracket of order n if it verifies the Leibniz
rule

1.3) {mvy, ooy = u{vr, oo, U b F o {w, ., Uy}
for all uy, ..., u,, v, C”(M). The pair (M,{-, ..., -}) is then called a genera-
lized almost Poisson mamnifold (of order n).

Recall that the skew-symmetry means that

{uh ceey un} = (_l)sgn(a){ua(l), teey ua(n)}’

where ;e C* (M), o is any permutation of % elements and sgn(o) its parity.

Equivalently, a generalized almost Poisson manifold of order » is given as the
pair (M, A), where A is a skew-symmetric (%, 0)-tensor on M. The relation be-
tween A and the n-bracket {-, ..., -} is expressed by the equality

(1.4) A(dul, eey dun) = {’LLI, eey 'L(/n}

for all uy, ..., u, e C*(M).
The concept of the musical homomorphism [ extends naturally to any gene-
ralized almost Poisson structure (M, A). Namely, we define a linear map-

ping

f: Q" 1(M)— x(M) by setting

(Ij(al/\.../\an_l), By=Aaq, ..., apyi, B)

for any ay, ..., a,_; and for any Be QYM).

Here (,) is the natural pairing on (M) x Q'(M). We shall write
(ayA...Na,_)" instead of f(a;A...Aa,_1).

A vector field X is called an infinitesimal automorphism (i.a.) of (M, A) if
£LxA =0, where £ denotes the Lie derivative. It can be checked ([5], Proposition
3.5) that this condition amounts to claiming that X is a derivation of the bracket

TN
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Next, a vector field X on (M, A) is said to be Hamailtonian if there are n — 1
funetions uy, ..., U, 1€ C” (M) such that X=X, where

veey Upp )

Xul, Uy (dul AR /\dun,— l)u'

By X (M) (resp. Xy(M, A)) we denote the space of all i.a. (resp. Hamiltonian
vector fields) of (M, A). Likewise, &, (M), (resp. Xy (M, A),) stands for the Lie
algebra of all compactly supported elements of X, (M) (resp. Xy (M, A)). Note
that in view of the equality [£y, £y] = £yx, y the space X, (M) (or X,(M),) is ac-
tually a Lie algebra.

Now we formulate the clue notion in the paper.

Definition 2 [5]. A generalized almost Poisson manifold of order n is called
a Nambu-Poisson manifold (NP-manifold in short) if the following integrability
condition is fulfilled: for any functions u;, ..., %,-;€C " (M) the Hamiltonian
vector field X,, ., _, is a derivation of the bracket {-, ..., -}, ie.

n
Xul, ...,un_l{vly ] vn} = ,21 {vla very Xm,...yun_lvir ey vn}
i=

for all wy, ..., Uy—1, V1, ..., v, € C*(M).

Notice that for #» =2 the above condition is equivalent to [/, A] =0 (cf. [5]).
Consequently, the NP-manifolds of order 2 coincide with Poisson manifolds.
As an immediate consequence of Definition 2 we get

Corollary 1. Ewvery Hamiltonian vector field on an NP-manifold is an in-
finitesimal automorphism. ‘

A basic example of an NP-manifold of order » is an oriented n-dimensional
manifold. Indeed, by fixing a volume form @ on M we define the associated Nam-
bu-Poisson bracket by

1.5 {ty, ..., uyf o =dug A\ ... Adu,.

The correspoding (n, 0)-tensor is denoted by A ,. Conversely, it is easily seen
that given an n-dimensional NP-manifold (M, A) of order % one can find a vo-
lume form w on M such that A=4,.

Proposition 1. Let (M, A) be an NP-manifold. Then Xy(M, A) is a Lie
subalgebra of X, (M). :
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In fact, we have

n—1

Let us recall some coneepts from [18] (see also [15]). A (generalized) foliation
is a partition & of M into weakly imbedded submanifolds, called leaves, such that
the following condition holds. If & belongs to a k-dimensional leaf, then there is a
local chart (U, ¢) with ¢(x) =0, and ¢p(U) =V X W, where V is open in R¥, and
W is open in R"™¥ such that if L e then ¢(L|U)N (Vx W) =V x [, where
l={weW: ¢ (0, w)eL}.

Next we say that a smooth distribution @ = {D, },. is completely integrable
if there exists a foliation & such that D, = T, &, Vx e M. Observe that the dimen-
sion of D, (and of the leaves of &) may vary and that a usual Frobenius theorem
is no longer true unless foliations are regular (i.e. all the leaves have the same
dimension).

Given a generalized almost Poisson tensor let us deﬁne a smooth distribution
@ = {D,},y with D, being the subspace of 7', M spanned by all Hamiltonian vec-
tor fields X, ., _, evaluated at x e M. Equivalently, D, = [J(A"~' T M). This
distribution is called characteristic. For n =2 @ is always completely integrable
and we get the symplectic foliation F(A).

In our case we have the following structural theorem.

Theorem 1 [5]. Let (M, A) be an m-dimensional Nambu-Poisson mani-
fold of order n=3. Then:

1. The corresponding distribution @, ts completely integrable and, conse-
quently, it defines o foliation, denoted by F(A). There are two kind of leaves of
F(A):

a. if A, =0 then then leaf passing through x reduces to x itself

b. if A, =0 then the leaf meeting x has dimension n and A restricted to it
induces @ Nambu-Poisson structure which comes from a volume form.

2. In case b. there exists a distinguished chart (i, ..., Ty, Y1, .-, Yg) 0L T
(g=m —n) such that A=09,/\... \3, where J;= 3/dx;.

The points x with A4 ,=0 are called singular while the remaining ones are
called regular. By M"™ we will denote the set of all regular points of
(M, A).

Let L be a regular leaf. By £, we shall denote the volume form on L which
generates the Nambu-Poisson structure on L.
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Observe that the existence of canonical coordinates for Poisson manifolds has
been proved in [7], [23].

2 — Preliminaries on Poisson automorphism and isotopies
We begin with the following

Definition 8. Let (M;,{-, ..., }), i=1, 2, be a generalized Poisson mani-
fold of order n. A smooth mapping f: M,— M, is called a Poisson morphism if
for any uy, ..., U, € C* (M) we have

{uyof, ooy ttyof li=A{uy, ..., Uptaof.

By a straightforward computation we have

Proposition 2. The following conditions are equivalent:
1 fi(My, A)— (M, As) is a Poisson morphism.
2. Ay, Ay are f-related, that is

Al(f*al, ...,f*an) =/12(a1, ...,an)

fO'r all Ay «ony anEQl(Mz).

3. For any uy, ..., U, 1€ C*(M,) one has
f*X“'l: ey Uy =Xu1 Oofy ey Up~10f

that is the Hamiltonian vector fields X, . u,_, ond Xy of, ... u,_,of QVe f-rela-
ted.

Let us recall that there is a bijective correspondence between smooth isotopies
J in Diff” (M) satisfying fy = id and smooth families of compactly supported vec-
tor fields X; (see e.g. [10]). This correspondence is given by the equality

d
@.1) -a];—‘ =X, of,.

In particular, a time-independent compactly supported vector field corresponds to
its flow. Furthermore, if G(3/) is a locally arcwise connected group of diffeomor-
phisms (this is the case of all classical groups of diffeomorphisms [14]) then the
corresponding smooth families of vector fields belong to the Lie algebra of
G(M).
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From now on we assume that diffeomorphism groups are locally contractible.
By G(M), we denote the subgroup of all fwhich can be joined with the identity by
a compactly supported isotopy f; in G(M). Then G(M), is the connected compo-
nent of the identity iff M is compact.

For an NP-manifold (M, A) the symbol G(M, A) stands for the group of all
leaf preserving diffeomorphisms satisfying f*A =4 (i.e. being Poisson mor-
phisms of (M, A) onto itself). Hence G(M, A), denotes the subgroup of G(M, A)
of all f such that there is a compactly supported isotopy f; in G(M, A) with fy =id
and f; =f.

Next, by X(M, A) (resp. X(M, A).) we denote the Lie subalgebra of %, (M)
(resp. X,(M),) of all elements tangent to F(A). Clearly, Xy(M, A)c X(M, A),
XM, A),;cX(M, A),, and (M, A),NXg(M, A) = Xxz(M, A),.

We have

Propos1t10n 3. Suppose that f;, X; are related by the equation (2.1). Then
ﬁeG(M Ay for each t if and only if X, X(M, A), for each t.

Proof. When restricting f; to a regular leaf . we have
d .
Egﬁ* QL =ﬁ* (‘EX;QL) =f£*(L(Xt) dQL -+ d(L(Xt)QL)) =ﬁ* d(L(Xt) QL) N

It follows that the claim holds true on any leaf, and consequently so does on the
whole M.

Definition 4.
1. A smooth path satisfying Proposition 8 is called a Poisson isotopy.

2. A Poisson isotopy f; is said to be Hamiltonian if the corresponding
Xie Xy(M, A), for each t.

3. A diffeomorphism f of (M, A) is called Hamiltonian if it can be written as
a finite product of exp(X) where X e 3y (M, A),. The group of all Hamiltonian
diffeomorphisms is denoted by G*(M, A).

Clearly G*(M, A)y=G*(M, A). However the following questions arise. Let
G(M, A) be the group generated by all exp(X) with (M, A),. Next, let
G*(M, A) be the totality of f which can be joined with id by a Hamiltonian iso-
topy, It is not known whether G(M, A), = G(M, A) and G*(M, A) = G*(M, A).
Note that equalities are satisfied for symplectic manifolds (cf. [8]) as conse-
quences of a difficult simplicity theorem in [1].
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Proposition 4. G*(M, A) is a normal subgroup of G(M, A).

Indeed, if f= exp (X) where X = (du; A ... A du, ), then for any ge G(M, A)
we have g !ofog =exp(Y) where Y = (d(u; 0g) Adup A ... Adt,_ 1)

3 - Foliated forms and foliated cohomology

Let (2*(M), d) be the De Rham complex of a smooth manifold M. Given a
(not necessarily regular) foliation & on M we define the subcomplex 2*(M, &) as
follows: we QT(M, F) if and only if we Q"(M) and w(X;, ..., X,) =0 for any
vector fields X, ..., X, tangent to & Then we set

Q¥(F) =Q*(M)/Q*M, F)

and by @ e Q7(F) we denote the class of weQ"(M). It is easily seen that if
@, = @y then dw; = dw,. Consequently, the differential d descends to the differen-
tial d defined on £ *(F). Thus we get a new differential complex (Q*(F), d), the
complex of foliated forms. By H *(F) we denote the cohomology of Q*(F), and
by [@] the cohomology class of @. Clearly H"(F) = 0 if » > dim &, where dim &is
the maximal dimension of the leaves of &

It is visible that the exterior product A in *(M) descends to *(F). Next,
it is easily seen that «X) @ = uX)w and f*@ =f*w are correct definitions
whenever X is tangent to & and f is a leaf preserving smooth map. The former
enables us to define the Lie derivative by

Ly@ = uX) do + duX) @

for X tangent to & Moreover, for a smooth family w,eQ"(M), tel, we
define

1 1 1 1 :
[wdt=fw,dt and [l@]dt=[fw,d].
0 0 0 0

Definition 5. Let (M, A) be an NP-manifold of order n, let M " be the set
of all its regular points and let F(A) = F(A) |M". Then by @ = 2(A) we denote
the F(A)-foliated n-form on M" such that

{ty, ooy} @ =dus A ANQuy = dug A Aduy,
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for all uy, ..., u,e C = (M). Here {-, ..., -} is related to A by (1.4). We call Q the
Sfoliated n-form associated with A.

Observe that in a canonical chart (%, ..., @,, ¥1, ..., ¥,) at a regular point we
have @ =dx; A ... Adwx,.

The above definition enables us to introduce the notion of exactness. Namely,
one says that (M, A) is exact if there is @ e 2"~ 1(F(A)) such that d@ = Q on
M.

Unfortunately, there is no a one-to-one correspondence between (n, 0)-ten-
sors and (foliated) n-forms as in the symplectic or regular Poisson case [17]. This
is revealed e.g. by the following

Example 1. Let M =R? and A = ad, A\ 8, where ;= 9/0x; and a e C* (M).
Then F(A) is generated by X, =ad, and X,,= — ad;. The zeros of a are
the singular leaves of &(/1) while the connected components of R® — o 7*(0) are

1
the regular leaves. The corresponding foliated 2-form £ = — d; A\ dxz cannot be
extended to singular leaves. ¢

4 — The existence of the flux homomorphism

By an argument similar to that for symplecthomorphisms ([22], [17]) one can
show that the group G(M, A), is locally contractible. Therefore G(M, A)y, the
universal covering of G(M, A)y, is the totality of pairs (f,{f;}) where f=£
of G(M, A) and {f;} is the homotopy rel. endpoints class of the isotopy f;, tel.
Then G(M, A), is given a group structure and the multiplication of it can be de-
fined either by the pointwise multiplication over I of representants or, equivalent-
ly, by the juxtaposition of representants. The latter means that {g,}. {fi} = {h:}
where

1
Tor for OstsE

sf=s1.

1
Gor—1°/1 for E
Now we wish to generalize the concept of the flux homomorphism (first intro-

duced by E. Calabi in [3] for symplecthomorphisms) to Nambu-Poisson manifolds.
Let 2 = Q(A) be the foliated n-form living on M" corresponding to A. For any
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Poisson isotopy f; we set

1
.1) Flux({£,}) = [TuX,) Q1 dte H"~{(F(A))
0

where the family X, is defined by (2.1).

Theorem 2. Let (M, A) be any NP-manifold. The equality (4.1) defines a
continuous homomorphism Flux : GM, A)y—>H* YFAY). Moreover, if ¢, is
a flow of Xe X(M, A), then Flux({¢;}) = [(X) Q]

Proof. The proof follows the lines of [1], p. 182-3 (the symplectic case; see
also [17] for regular Poisson manifolds), and we reproduce it here for the sake of
completeness only. First observe that any Poisson isotopy of (M, A) is uniquely
determined on M" as it stabilizes at the singular points.

Let f;, g, be two Poisson isotopies such that {i} =49:} and fi = g1. Theréfore
there is F ;, a smooth 2-parameter family in G(M, A1) s'atiSfying Fo =1,
Fi,=g, F, o=id, F, ,=fi=g, for any s, tel. We then set ’

an,t an’t

AN Y, ,=
at 8, t , b Os

oF}

and it is visible that ¢+ X, , corresponds by (2.1) to t—F ;.
We have

1 1
= WX, ,, Y, D)@ dt= a(fﬁ(ys, b X, ) dt).
0 0

aXLet usa(?cplain the above equalities. The second one follows by the eqdfality
ik *! 4 [X, . Y, ] (cf. [1]). Next, the third is a consequence of the for-

Os ot
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mula ([X, Y]) Q = [£y, (Y)] and Proposition 8. The fourth equality follows by
Y, 0=Y,1=0 and by £40 = duX) 2.
Hence we get

] 1 1
Flux ({g,}) - Flux ({£;}) = fa(f?z‘(ys,t,xs,t) dt) ds
0 0

= a( f _Q—(Ys,tr Xs,t) dt/\dS)
I

xI

which implies that Flux is well defined. Next, Flux is a homomorphism since the
multiplication in G(M, A) can be represented by the juxtaposition. Finally, Flux
is continuous by a standard argument.

The last assertion holds since X corresponding to ¢, is time-independent.

Remark. Contrary to [3], [1], [17] Flux is not surjective.

Proposition 5. If Q@ = — do (i.e. Q is exact) and f, is a Poisson isotopy
then Flux({£;}) = [@ — B

Proof. Let X, be related to f; by (2.1). Then we have
O Yol -5 d
[uX,) @) = [f*uXy) Q) = - [f*dX,) d] = = [f* @] = — — [ff@].

The assertion follows by integrating over the interval [0,1].

The significance of the flux homomorphism consists in the fact that it charac-
terizes isotopies. To obtain an analogue with the symplectic case (cf. [9]) we have
to introduce additional Lie algebras of i.a. (A full analogue does not hold because
of situations as in Example 1.)

Let X.(M, A) be the subalgebra of all X e X(M, A), such that supp (X|M") is
compact in M". Then we have the isomorphism

*: (M, A)3X—>*X=yX) Qe QY {(KA)),

where Q7% 1(HA)") is the subspace of Q" Y(HA)") of all d-closed forms with
compact support in M". Now by XF(M, A) we denote the subalgebra of all X
of &,(M, A) such that *X is d-exact.
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Theorem 3. Let (M, A) be an NP-manifold and let f; be a Poisson isotopy
such that the corresponding X,e X.(M, A). Then f; is homotopic rel. end-
points to an isotopy g, with the corresponding Y,e (M, A), if and only if
Flux({fi}) =0.

Proof. We may assume that X,eX¥(M, A). Then «X,) @ = d@, for
D e Q" EH(HA)). Hence Flux({£;}) =0 as [dw,] = 0.
1
Conversely, by assumption we have [«X;) 2dt=d®, for some @
0

of Q" 2(HA)"). Observe that @ can be chosen compactly supported since all
supp X; are in a fixed compact subset of M. Let X5 be the vector field satisfying
*Xz=d® and let ¢, be the flow of X5. It is visible that it suffices to consider
pTlof ins’cead1 of f. Therefore after a possible reparametrization we may and do

assume that f X;dt = 0. Next we set
0

t
4.2) Z,=-[X.dr.
0

Let s— 3 be the flow of Z,. We put g,=19}of;. Then f; = ¢, and
(4.3) Flux ({¢: }o<z<1) =0

for each . In fact, FIUX({wlr}osrst) =Flux({¥i}o<s<1) = [(Z) 2] due to the
homotopy invariance. Thus by (4.2)

Flux ({g: }o<r<t) = FIUX({W%}Osrsz) +Flux ({; }o<r<t)

t
=[(Z) @1+ J[uX,) @1dr=0.
0

Finally, it is straightforward that (4.3) implies that ¥, related to g, belongs to
XF (M, A).

5 - Locality and pseudo-k-transitivity

In this section we make some preparations to prove that the regular part of
any NP-manifold is uniquely determined by the group of its automorphisms (The-
orem b). First we consider two important concepts concerning the automorphism
group of a geometric structure: the locality and the pseudo-k-transitivity.
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Definition 6. A diffeomorphism group G(M) satisfies L-condition (locality)
if for any open relatively compact U, Vc M with UcV, and a smooth diffeotopy
{fi} in G(M) with fy = id, there exist ¢ > 0 and a smooth diffeotopy {g;} such that
9,=f, on U for |t| <e, and supp(g,)c V.

Then any orbit of G(M), is a weakly imbedded submanifold of M.

Definition 7. A-diffeomorphism group G(M) is pseudo-k-transitive if for
any two k-tuples of pairwise distinet points (x;, ..., @) and (yq, ..., yp) of M
such that x;, ¥; belong to the same orbit of G(M )o and each orbit of dimension <1
contains at most one x; there exists fe G(M) satisfying fla;) =v;, 1=1, ..., k.

Notice that this definition coincides with the k-transitivity (i.e. T(k)-property
in [2], [13]) if G(M), acts transitively. (We assume here dim (M) > 1; in dim 1 the
k-transitivity is somewhat differently formulated.)

The following theorem, which generalizes a well-known theorem of W.Booth-
by, relates the two above concepts.

Theorem 4. Let G(M)cDiff* (M) satisfy the L-condition. Then G(M) is
pseudo-k-transitive for each k= 1.

For the proof, see [15].

Corollary 2. Let (M, A) be an NP-manifold. Then G* (M, A), (and a for-
tiori G*(M, A), GWM, A),, G(M, A)) is pseudo-k-transitive for each k=1.

This is so since the group G*(M, A) (and G* (M, A),) satisfies the L-condi-
tion. In fact, let fie G*(M, A). Then one can assume that f,=exp(X;) with
X, = (duy A\ ... Ndu, ;) € Xy(M, A). Choose a smooth function A with suppi
cVand A=1 on U. Then g; corresponding to

Y, = (dQu) A ... AdQAat, 1))
satisfies Definition 6.
Definition 8 (Fragmentation property). Let G(M) be a diffeomorphism
group. For any finite family of open balls {U;} and any fe G(M), such that

supp (f) c UU; there exists a decomposition f=f, o ... of; such that supp ( Ui
for j=1,...,s.
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Proposition 6. Any diffeomorphism group satisfying the L-condition pos-
sesses the fragmentation property. In particular, so does G* (M, A).

Proof. Let fe G(M),, let f; be an isotopy joining f with id, and let X; be the
corresponding family in (M), the Lie algebra of G(M). If we take
Syt fo 2 ymy =1, ..., m, instead of f; for m sufficiently large, we may assume
that f; is close to the identity. '

First we choose a new family of open balls, {V;}i.;, satisfying
supp () cVU...UV, for each ¢ and which is starwise finer that {U;},
that is

(V) (30) star(V;)c Uy, where star(V))= U V.

Vjﬂ‘—/k#ﬂ

Let (4;)j-, be a partition of unity subordinate to (V}), and let Ytj=let.
We set

XI=Y!+..+Y] j=1,...,s

and X = 0. Each of the smooth families Xt’ integrates to an isotopy gtj with sup-
port in V;U... UV, We get the factorization fi=gf=/fo...of}, where
fi=g!o(gi"")". Then the required inclusions

supp (f]) = supp (g{ o (g ")) cstar (V;) c Uy,
hold whenever f; is sufficiently near the identity.

Remark. The above proof shows that actually the fragmentation property
holds as well for isotopies.

For any fe G(M) we denote by Fix(f) the set of all xeM fixed by f.

Proposition 7. For any sufficiently small neighborhood V of a regular
point xeM there exists fe G*(M, A) such that Fix(f)= M- U)U {«x} for
some open ball U with UcV.

Proof. Suppose (V, xy, ..., &,, %1, --., ¥,) is a canonical chart at . In this
chart let >0 such that B(0, r)cV. Choose a smooth A: R—R such that
AMx) =0 for <0, and A(x) >0 for > 0. We define

WLy ey Ly Y1y ooy Yg) =M@+ .+ Y22 — @+ . +92))).

Next we take ay, ..., a,_;€ 2 (M) such that (a; A... Aa,_,) =0 everywhere
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on V. This can be done for V sufficiently small. Then we put f= exp (X), where
X=@a;A...Noy_ )

6 — Isomorphism between Poisson automorphism groups

Recall that a diffeomorphism between two foliated manifolds is leaf preserv-
ing, if it maps each leaf of the first manifold onto a leaf of the second
manifold.

Theorem 5. Let (M;, A;), i=1, 2, be an NP-manifold. Then any group
isomorphism @: GWM,, A,) —=>G(M,, A,) is induced by a wunique leaf
preserving diffeomorphism ¢: M{—> M3 in the sense that D(f)|M3 = ¢fp !
Yfe G(M,, A ;). Moreover, ¢* A,= ad; where a is a smooth function constant
on the leaves.

From now on, for simplicity, we denote G; = G(M;, A;), i =1, 2. By S, G; we
denote the isotropy subgroup (or the stabilizer) of G; at x e M;. Next we let
Fj=®71(S,G,) for yeM,.

The proof of the following lemma is due to J. Whittaker [24]. The nontransi-
tive version is in [14], Sec. 3 and it applies to our case. This is so since G(M, A) is
pseudo-3-transitive (Corollary 2). ‘

Lemma 1.

i. Let xe M. Then S,G; is a maximal subgroup of G;.

ii. Let ye M7 and let C be a closed nomempty subset of M{ satisfying
CnL=L for any regulor leaf LeFA,) and such that f(C)=C for any
feFy.

Then C= {x} for some xeM{ and F, =S,G,.
The proof of Theorem 5 consists mainly in showing the following

Theorem 6. For any yeMj there exists a uwique xeM] such that
®(Sx Gl) = Sy Gg.

Proof. We introduce the following notation. For any open ball U in M; let
G;(U) (resp. Gi¥(U)) be the totality of elements of G(M;, A ;) (resp. G*(M;, 4;))
compactly supported in U. Next, for ¥ € M; we denote by ¢, the totality of open
balls U of M, satisfying

GF(U)cF}=d 1S, Gy).
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Let C, = M, — U@,. It is easily seen that the closed subset C, is preserved by ele-
ments of F.
The following statement (cf. [13], [14]) is a clue part of the proof.

For any y e M3 and for any regular leaf L € F(A {) there is an open ball U on
M, such that UNL =@ and G{*(U)cF,.

To show the above property fix y e M5 . For any open ball V on M, satisfying
VN L= we may assume the existence of f; € G{*(V) such that f;(y) = y where
fo = D(f); otherwise we are done. We can then take two open sets V, W and
F1, F1eGEO, 61,51 € G (W) such that VNW =@, L-VUW =6, and

y#=fo(y) = faly) =y Y= Go(y) = Go(y) =y

where f5 = B(f}), fo = D(f1), §2 = PG1), Fo = PGs) (cf. [14], Lemma 4.1; in our
case the proof is the same).

Due to Proposition 7 one can choose ks € Gy such that Fix (hy) =(M —B) U{y}
for some open ball B at y so small that the equalities

BnfyB)=¢, BNfHB=§, BNHB) =@ BNGE®B) =0

hold. Let &; = @ “'(hy). Then we have either VUL, (V) L, or VU R, (V) > L.

In first case we choose an open ball U such that TN (VU (V) =, and
UNL=#=§. For any k, e G{*(U) one has [ky,[f;, 211 =id and [k;,[f;, & 1] =id,
as supp([ f1, 1) and supp([fy, k1) are contained in VU &, (V). Hence for
ko= &(k;) we have

Uk, [f2, Re1l =1id [k, [fas Be]] =1id.

By definition we get Fix([fs, k1) =M — (BUf2(B) U {y, f2(y)} and similarly
for Fix([f;, hs]) with f, instead of fs.

Observe that f(Fix(g)) =Fix(g) whenever f, g commute. Hence either
ko(y) =y or ky(y) = fs(y). Analogously for f, instead of f, we get either
ka(y) =y or ky(y) = fa(y). Consequently we have ky(y) =y as fo(y) # fa(y).
Thus G#(U)cF}, as required.

In the second case we take W instead of V and we apply an analogous argu-
ment. This proves the statement.

Now we apply Lemma 1. By the result we have just achieved C, cannot con-
tain any leaf of ;). Arguing by contradiction suppose C,=#, ie. M{c UUJ-
such that G{#*(U;)cF,. By Proposition 6 we get G*(M,;, A,)cF,. Then, by
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ES 1ol o= i .
G (Ml,/ll)cgeg(ghm)g F,og={id}
This contradiction proves that C, # §i. By Lemma 1 for C=C, we get F; =S, G;
for some xe M.

Proof of Theorem 5. Theorem 6 and its symmetric version determine
uniquely a bijection ¢: M7 — My verifying @(S,G;) = Sy Go. It follows from the
proof that ¢ satisfies

(6.1) D(f) | M3 = ¢pfp " VfeG,

and that ¢ is leaf preserving. It is visible from (6.1) that ¢ is a homeomorphism.
As in [13] we prove that ¢ is a diffeomorphism as well

To show the uniqueness let 3 be another bijection such that
D(f) |Mg =yfy ! VfeG,. Assume that ¢ =y and set y =y ~'¢ = id. We have
xfx '=fIM{ for any feG,. There is xeM; such that y=¢(x)=x. Let
zeL,, z#x, z#y such that y, z lie in the same component of L,— {x} if
dim(L,) =1. By the pseudo-2-transitivity of G, there is feS,G; such that
fly) =z It follows that yfy ~(y) = yf(x) = y(x) =y while fy) =z=y; a con-
tradiction.

Finally, to state that ¢ interchanges the geometric structures 4, and A, we
need first that ¢, is a Lie algebra isomorphism of 3(M;, A ), onto X(Ms, A2),.
This can be done exactly as in [14], p. 540. Therefore, if L, € HA ), L = ¢(L;)
and £, is the volume form living on L;, then the equality

(6.2) dulX) 2,,=0
implies the equality
6.3) d(¢ +X) 21,=0.

Now let x € M{. We choose a canonical chart (U, x;, y;), i <n,j < g at x such
that @, =dx; A ... Adw, in U. Now let (V= ¢(U), x/, y;') be a chart at y = ¢(x)
such that ®/ o ¢ = &;, ¥/ o ¢ = y;. In particular, ¢ «(8;) = 3; where 3; = 8/8x; and
3 = 9/dx; . Let us write Q,,=adx; A... \dw,. It is easily seen that suitable
extensions of 3; verify (6.2). Consequently, suitable extensions of 9; satisfy (6.3).
Hence the function « is constant. Therefore we get the equality ¢ * 4, = ad, with
a depending on leaves only. This implies that a is a smooth function.

This completes the proof.
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Final remarks.

1. Theorem 5 still holds for G(M, A),, G*(M, A), or G*(M, A), instead of
G(M, A). The proof is essentially the same.

2. Clearly, the topological and smooth structure of the set M — M" cannot be
deduced from G(M, A). The possible exception is when the set of singular points
is sufficiently thin, e.g. finite.

3. An infinitesimal version of Theorem 5 still holds. It states that if there
exists a Lie algebra isomorphism ¥ : (M, A,) = X(M,, A ,) then there exists a
unique Poisson diffeomorphism ¢ : M{— M7 such that ¢, = ¥. The result and its
proof is a generalization of that for the unimodular structures in [12].
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Sommario

Le strutture di Nambu-Poisson costituiscono una nozione base nella geometria mul-

tisimplettica. Vengono qui ottenuti alcuni risultati relativi al gruppo deglt automorfismi
di queste strutture. Si propone anzi tutto una definizione di omomorfismo flusso (flux
homomorphism). Si mostra poi che il gruppo degli automorfismi determina completa-
mente la struttura sottogiacente sullinsieme dei punti regolari.






