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WENCHANG CHU (¥*)

Homogeneous product-sum polynomials
and combinatorial identities (**)

Symmetric functions have important applications to algebraic computation
and combinatorial enumeration (cf. [1], [5]). Two fundamental bases may be sta-
ted in

Definition. For complex indeterminates {x;}; -, & pair of symmetric po-
lynomials are defined as follows:

Complete symmetric function (homogeneous product-sum polynomial)
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Elementary symmetric function

- ki ks ook,
@) AR (@1, @, e,y ) = 2 g
ky+ke+ .. +ky=n
O0sk<s1,(i=12,...,m)
The purpose of this note is to introduce their properties and basic relations.

Applications to combinatorial identities will be sketched.

Theorem 1 (L. C. Biedenharn and J. D. Louck [2]). Let {x;} be distinct
complex nwmbers. Hy' can be expressed as divided differences.
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Proof. Recall the generating function for complete symmetric functions
and the expansion in partial fractions
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The coefficient of ¢" in the expansion reads as the divided differences for H"
stated in the theorem.

This derivation is simpler than the analytic proof due to L. C. Biedenharn
and J. D. Louck [2].

Theorem 2 (Shifted parameters). For complex numbers {x,} and c, there
holds
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Proof. Using the binomial expansion for the definition of H,*, we have
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Changing the summation order and noticing that
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we get
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which becomes the desired formula (4) with the shifted parameters after repla-

M
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Proposition 1 (Recurrence relation). For complex numbers {x.}, we
have
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Proof. It is an immediate consequence of the definition.

Proposition 2 (Convolution formula). For complete symmetric functions,
we have
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Proof. Itis also a direct consequence of the definition, which may be consi-
dered as an extension of Proposition 1.

Proposition 3 (Alternating summation). Complete symmetric and ele-
mentary symmetric functions are connected by relation
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Proof. Notice the generating functions:
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The coefficient of £” in the expansion of their product results in the convolution
between {A"}; and {H}}; from the first member of (7). It reduces to the second
member in view of the definition according to m > p or m < p.

Symmetric functions are symbolic generalizations of many classical numbers.
Some typical instances are displayed from the following specific settings:
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Example 1 (Binomial coefficients).
®) (7)) = AN, 1, D = Hy 5, L ),

Example 2 (Stirling numbers [4]). For two kinds of Stirling numbers, we
have

® ABZL(L, 2, o m = 1) = 8y (m, ) (D"
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For ¢ =1, the Gaussian binomial coefficient is defined by
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which reduces to the binomial coefficient (Z) when ¢ — 1.
Example 3 (Gaussian binomial coefficients [1]).
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where A™(1,q,..., g™ ') may be interpreted as the generating function for

partitions of unequal parts with the number of parts less or equal to % and each
part less than m. While H2*% (1, q, ..., ¢") is the generating function for the
partitions with the number of parts less or equal to m — % and each part less or
equal to n.

Substituting these examples into the propositions, we get three groups of
combinatorial identities:

Corollary 1. The following binomial identities hold true:
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Proof. The identities follow from setting x; = 1, respectively, in Proposi-
tions 1, 2 and 3 in view of Example 1.

Corollary 2. For Stirling numbers we have identities:
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Proof. The expression (16) in terms of divided differences follows from
setting a, = k in Theorem 1. The recurrence relation (17) is derived by putting
xo=m+landw, =kfork=1,2, ..., min Proposition 1 in view of Example 2.
The same example enables us to get (18) from setting x; = k in Proposition 3. If
we replace m and n with m — 1 and m — p, then the last result reduces to the
orthogonal relation [4]
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Corollary 3. The following q-binomial identities hold true:
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Proof. The identities follow from setting a;, = ¢*, respectively, in Proposi-
tions 1, 2 and 3 in view of Example 8. When ¢ — 1, they reduce to the binomial
formulas displayed in Corollary 2.



222 WENCHANG CHU [6]

References

[1] G. E. ANDREWS, The theory of partitions, Addison-Wesley, Reading, Mass., USA

1976.

[2] L. C. BIEDENHARN and J. D. Louck, Canonical unit adjoint tensor operators in
Un): Appendix A, J. Math. Phys. 11 (1970), 2368-2414.

[3] W. CHu, Inversion techniques and combinatorial identities, Boll. Un. Mat. Ital. 7

(1993), 737-760.

[4] L. CoMTET, Advanced combinatorics, Reidel, Dordrecht, The Netherlands
1974.

[5] I. G. MACDONALD, Symmetric functions and Hall polynomials, Oxford Univ.
Press, London 1979.

Sommario

Vengono studiate le funzioni simmetriche complete. Il calcolo algebrico viene utiliz-
zato per stabilive alcune formule fondameniali. Applicazioni alle identitd combinatorie
sono dimostrate come conseguenza.



