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ALESSANDRO ZACCAGNINI (*)

On the Selberg integral via Heath-Brown’s identity (**)

1 - Introduction

The object of this paper is to prove a well-known result of prime number theory
by means of Heath-Brown’s identity. We deal with the Selberg integral

2x
JX, by = [ |wt) —wt—h)—h|?dt.
X
It is well-known that the current density estimates yield the following
Theorem. If h = xTte for some fixed &> 0, then J(X, h) = o(Xh?).

For this, see for instance B. Saffari and R. C. Vaughan [4], Lemma 5.
D. R. Heath-Brown [1] proved Huxley’s Theorem [2] that one has
WY(X) — (X — h)~ h provided that h =2 X # % by means of his identity (see
Lemma 1 of [1], or Lemma 2 below), thereby avoiding a direct appeal to the pro-
perties of the zeros of the Riemann zeta-function, except for Vinogradov’s zero-
free region.

We extend this approach to the above integral. It will be apparent from the
proof that the same result holds provided that e = £(X) = A(log log X)* (log X)*
for a sufficiently large 4 > 0.

2 - Preliminaries

In what follows we shall assume that X is sufficiently large. Qur implicit con-
stants may depend on the parameter k (see Lemma 2 below), and we shall eventual-
ly choose k = 5. For the notations see D. R. Heath-Brown [1]. £ denotes log X.

(*) Dip. di Matem., Univ. Parma, Via M. D’Azeglio 85, 43100 Parma, Italia.
(**) Received October 30, 1996. AMS classification 11 N 05. The Author wishes to
thank A. Perelli for his unfailing help and support.



206 A. ZACCAGNINI 2]

Lemma 1. The Theorem follows from the estimate

2X
[ 1w — vt — 6t) — 6t]2 at = 0(62X?)
X

uniformly for X 7T <0 <1.
Proof. See the proof of Lemma 6 of B. Saffari and R. C. Vaughan [4].

Lemma 2 (Heath-Brown’s identity). For any integer k=1 we have

] k . . !
W -5 =3 CVOUEUTEWE - S 60 - ML)
This is Lemma 1 of [1]. In Heath-Brown’s identity we choose
M@s)= 3 "gf) where y* = 2X.
n=y

Obviously, all coefficients of terms n < 2X of the last summand in (1) vanish,
because

LOMs) =1+ X n™ % u(d).
o d<y
This means that when te[X, 2X] the sum

St 0) =9t —ypt—6)= > An)

t—Ot<n<t
is equal to the sum of the coefficients with n ]t — 8¢, £] of the sum over j in (1).
For je{l,...,k} we define % to be the set of all 2j-tuples
N =(Ny, ..., N,;) such that N; = % foralli=1,..., 27, and 2"N,; = X for a sui-
table non-negative integer = if ¢ <j, and 2"N; =y if ¢ > j. Denote by U the
union of all W, for je {1, ..., k}. Since |A| < £%, we see that S(¢, 6) is a linear
combination of O(£*) sums of the type

SN, t, 0) = > (og my) u(mj 4 1)... (7))
n; elN;, 2N; Vi =1, ..., 2
t—0t<ny.mgst

where N/ rangers over . For the sake of definiteness, set
k
S, 0) =2 a(j, k) 2 ZWV,t,0)
i=1 NeW

- where a(j, k)<< 1.
Qur aim is to prove that each ¥ can be written in the following way

2 SV, L, 0) =0V, t) + RV, t, 0)
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where MV, t) is independent of 6. In fact, if (2) holds for suitable I anf N, we
let
k k
M) =X alj, k) 2 MWV, t) and R, 0= 2 a(j, k) 2 RWV,t,0)
j=1 NeW Jj=1 New
so that S(t, 8) = ¢(t) — (@ — 6t) = 0M(t) + N(¢, 0). Then we have
2X 2x

[ 15, 0) - 6t|2 at = [(@2 (M) - 1) + 2(S(t, 6) — 61 R(t, 6) — R(t, )% dt .
X X

2X
We set H(X, 0) = [ |N(t, 6)|* dt. Applying the Brun-Titchmarsh and the
X

Cauchy inequalities to the second summand on the right, we have
2X

2X

@ [ 1S, 6) - 6t]2 dt = 62 [ (M) — £ dt + O(H(X, 0) + X* 6H(X, 60)*).
X X

Hence, recalling Lemma 1 and the fact that || < £%%, we have proved

Lemma 8. The Theorem follows from the estimates

. 2X
@) SO — 2 at = o(X?)
X
2x ‘
®) I\}fla}iif IRV, t, 0)|2 dt = 0(X362.72)
Nedy

uniformly for X 7T < o<1,

We shall prove the first part of Lemma 3 by taking 6 large, whereas the
proof of the second estimate is achieved by means of a mean value estimate as
described below.

We denote by d,, (n) the coefficient of » % in ™ (s). The following result is a
consequence of Theorem 2 of P. Shiu [5].

Lemma 4. For fizxed 8 > 0 and any non-negative integer m we have

> dn(n) K5 nydog )™~ 1

rsEnsr+y

uniformly for x° <y <.

3 - Reduction to mean-value estimates

Our approximation of the type (2) shall yield three error terms: obviously, it
is enough to prove that (5) holds for each one separately. Actually, for all but
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the last error term we shall prove the stronger inequality

(6) (| NWY, ¢, 0)] =o(X6.£75).

X=<t=s2X Nel

For Ned/ we put fi(s)= 2 a,(n)n"°, where a,(n)=Ilogn,
nelN,, 2N,]

a,(n)=1 for r=2,...,7 and a,(n) = u(n) otherwise. Now set
& Ca
F(s)=Fy(s)= [l ()= 2 —=
r=1 nsX N

say, where |c,| <dy;(n)L£. We remark that we may assume that
HN =2 @+DYX since otherwise ¥ =0 and (2) is trivial. Thus ¢, = 0 only

for nel(X)=[2"%+DX 2¥X]

Observe that for s = 1 +4r and 2 <7 < 2j we have

2
) lfi()| <NT & |fi(s)| <NE so that |F(s)] < X7 £
By Perron’s formula we have
L +1T1 (t gt)s
F(s) m——— 277
S(N) = zm fT oL ds
+0( ;X le, | [min (1, 77! | log Z |7 + min(1, Ty 1|log |*1)])
n e l(X)
2~ 5kA

We choose 4 = 6_£k and T = and deal with the first summand in the
error term. For the sake of brevity, for any non-negative interger r let
I={nelX): rI! < |log o | <(r+1)T{'}. Observe that I,# @ only for

0<sr< M, say, with M KT. We then have

[¢,| min (1, T11|log ]—1)<< Z [cu ) > Z Ty c,| | log ;gl i

nel X) <srsM nel,
KD le )+ X 2 Tt e, T E le,| + > o7t Z lc] -
nely 1srsM nel, 1srsM nel,

Furthermore t77 1<« |I,| <tT;* for all » < M, and (6) follows using Lem-
ma 4.
The other summand in the error term is dealt with in the same way.
The main term of Z(N) will come from a short interval: for s = —é— + 4t and
|z| < T, we have
£° — (¢ — 6)°

- = 6t° + 0(]s] 62t7).
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Hence by (7)
14Ty L 4T,

f F(s) —-—(—-e—t)— ds=0 [ F(s)t*ds + O(T20%Xe).

2m + i, 27t i,

We can obviously take as J¢(V, t) the integral on the right hand side, and the
error term will satisfy (6) provided that Ty depends only on X and

®) 6 =o(Tg2e ®*D)
which we now assume. Then (5) will follow from the estimate

2x Th —+n 1 ir

t— 6t of
© max [ | [Fy(: pin = )’ dr|? dt = o(X36%.L72).
Nely 14 2 % +ir

For the sake of brevity write s, = —;— + 11, for r =1, 2, and similarly for s.

We set
2x T
T = | f Py S qepat= [ [ FGs) TG o, 6, 71, ) e dr,
[Ty, Th 1P
where
1— 1_9-—+z1'1 _1_9%*#2 2X 4 Xez
(X, 0,1, T5) = ( ) ( ) ft”’(“ ~T) dt < _ &6 .
§+n1 %*’itz b 1+ |7 = 75|

By the Cauchy-Schwarz inequality we have

|F(s1) F(s5)]
J(N) < (X0)* —— dr; dtr
[Toj"y{]g T+ |ty —15] ! z
F(s)|? dz, dr, F(s)|1?dr; drs 1
<<(X9)2{ ff |1 1| 1 2 f |1 2] 1 2}2
[To,T1]2 + lrl - T2i [TO’TI]2 + Irl - 7:2|
(10) 7 7, 7,
K (X022 [ |F(s)|? drlf -l—jr—lgf—l <<(X9)2£f|F(s)|2 dr
To
or

K(X02e® max [ |F(s)|?dr.
Ty<T<T j

Thus (9) is a consequence of (10) and of the following result, whose proof is de-
ferred to the next section.
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Lemma 5. If (8) holds for Ty = exp(ﬁ%) and 6 BX_%”, we hove

27
max f lFN(% +47)|? dr = o (XL~ Bk +2))

Nell T

uniformly for To<T<T,.

4 - Proof of Lemma 5

The proof is very similar to the proof of Lemma 3 in [1]. For the sake of bre-
vity we do not duplicate the whole argument, but merely outline it, giving the
needed modifications.

We shall say that a set S of points in [T, 2T1] is well spaced if |7, —7,| =1

for every 1,,, 7, € S with n # m. For brevity, we write s = s(1) = —;: + it and si-

milarly s, = —é— + 17,. We first write F' as the product of F'; and F,, where F5(s)

is the product of all factors f, of F with N, < X“4. Let Y denote the product of all
N, when f; is a factor of F', and Z denote the product of all N, when f;, is a factor
of F,, so that Z < X% and YZ << X. Hence, by (7) we have |Fy(s(z))| << Z* £and

2T 27
an [ |Fy(s(@)|? dr<< Ze2 [ |Fy(s(2)|? dr = Z£2J(X, T)
T T

say. Now there exists a set S with |8| < T' of well-spaced points z,, in [T, 27T']
such that

JX, TYK 2 |Fi(s)]?
T,es

For each factor f, of F; set
alh, n) ~ %

]ﬁz(sn)] = Nh
Then Heath-Brown proves that

ES
3

12y oh,n)<1-ny(Ty), where 7(Ty) = 2C(og Tl)”%(log log T4)

and C is a suitable absolute constant. This follows from Richert’s form of the Ko-
robov-Vinogradov zero-free region for the Riemann zeta-function. We then set
L =[£] and split the range for o into subranges I; for 0 <1< L as follows

N _1_ =_1_ ___l—l _1_ L <] <
Iy =] 00,2] I ]2+ T ,2+L] for 1sl<L.

We divide the points 7, into classes C(k, ) in the following way

Clh, ) ={t,e8: a(h,n)= 1max2.a(7", n) and o(h,n) e} },
<r<2j
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so that the classes C(k, [) are not necessarily disjoint. Since there are O(£) clas-
ses, there is a class, C(k', ") say, such that

JX, T)<e 2 |Fisx)]?
teCh',1l")
Note that if 7,,e C(h’, ') then

|Fl (S(rn))l2 H N20(h 7) =1 < H N2l Lt < Y2l'L_1 .

If I’ = 0 then J(X, T) &< T'£, and Lemma 5 follows from (11) since Z < X4,
Ifl'=21 we set

1 I'—1
2 "L
We relabel the points 7, so that C(h',1') = {7,:1<n < R}. Thus
(18) J(X,T)<Y? 'Re while |f(s,)|>N° % for I<sn<R.

f&)=fi(s) N=N, R=|[CC'1)|.

G:

The mean and large values technique of Montgomery [3] and Lemma 4
yield

R&T¥1 704 for N<T?

for some fixed A > 0. This is proved by means of mean-value estimates for Diri-
chlet polynomials (see e.g. Theorem 7.3 of [3]) for the range [ %], and the

Halasz Lemma (see e.g. 2.9 of [2]) for the range [ , 11. This 1mplies that for
N<T* we have

27
f|FN(s(r))|2dr<<Z£A+3Y2" 1

£1-0) & X1 -8ka(1-0) pA+3

using (11) and (13). Now (12) easily implies that
X -8kA(L - 0) pA+3 o p—(2k+2)

and Lemma 5 follows.

In the case N = T%, we assume that 4 < i, so that X < T;— and N = X%.

4k
This means that f = f; for some % < 7, provided that we choose & = 5. Then Hél-

der’s inequality and Ingham’s fourth power moment estimate for £ (—;— + it) (see
e.g. Titchmarsh [6], (7.6.1)) yield

RN%*-2&(T+ R+ RN2T 4 eB«K(T + RN*T %) £
since R<KT. From this we deduce at once that either

R<«TN2 40 pB i
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and Lemma 5 follows as above, or
N4U~ 2 & N2 T ~d4 0‘313
which means that T<<N!~° &% and finally

—0)

R&KTN "ot X1 oot ;77 ot

and Lemma 5 follows in this case as well.

6 - Completion of the proof of Lemma 3: the main term

Our estimates thus far have been uniform for 8 = X B e, provided that (8)
holds. In particular, we may take 6, = exp { —V/£}. In this case, we see that the
left hand side of (3) is 0(X?83) by the Prime Number Theorem, and the remain-
der term on the right is also 0(X362%) by (5). Thus (4) follows and the proof of
the Theorem is ecomplete.
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Sommario

Diamo una dimostrazione alternativa della stima J (X, k) = 0(Xh?) per Uintegrale di
Selbery

2x
J& k) = [ |pt) = pt—h) - h|%dt
X
quando h =X i H, per mezzo di una identitda di Heath-Brown.

o o



