ALESSANDRO ZACCAGNINI (*)

On the Selberg integral via Heath-Brown's identity (**)

1 - Introduction

The object of this paper is to prove a well-known result of prime number theory by means of Heath-Brown's identity. We deal with the Selberg integral

$$J(X, h) = \int_{X}^{2X} |\psi(t) - \psi(t - h) - h|^{2} dt.$$

It is well-known that the current density estimates yield the following

Theorem. If $h \ge X^{\frac{1}{6} + \varepsilon}$ for some fixed $\varepsilon > 0$, then $J(X, h) = o(Xh^2)$.

For this, see for instance B. Saffari and R. C. Vaughan [4], Lemma 5. D. R. Heath-Brown [1] proved Huxley's Theorem [2] that one has $\psi(X) - \psi(X - h) \sim h$ provided that $h \geq X^{\frac{7}{12} + \epsilon}$, by means of his identity (see Lemma 1 of [1], or Lemma 2 below), thereby avoiding a direct appeal to the properties of the zeros of the Riemann zeta-function, except for Vinogradov's zero-free region.

We extend this approach to the above integral. It will be apparent from the proof that the same result holds provided that $\varepsilon = \varepsilon(X) \ge A(\log \log X)^{\frac{1}{3}} (\log X)^{-\frac{1}{3}}$ for a sufficiently large A > 0.

2 - Preliminaries

In what follows we shall assume that X is sufficiently large. Our implicit constants may depend on the parameter k (see Lemma 2 below), and we shall eventually choose k = 5. For the notations see D. R. Heath-Brown [1]. \mathcal{L} denotes $\log X$.

^(*) Dip. di Matem., Univ. Parma, Via M. D'Azeglio 85, 43100 Parma, Italia.

^(**) Received October 30, 1996. AMS classification 11 N 05. The Author wishes to thank A. Perelli for his unfailing help and support.

Lemma 1. The Theorem follows from the estimate

$$\int_{X}^{2X} |\psi(t) - \psi(t - \theta t) - \theta t|^2 dt = o(\theta^2 X^3)$$

uniformly for $X^{-\frac{5}{6}+\varepsilon} \leq \theta \leq 1$.

Proof. See the proof of Lemma 6 of B. Saffari and R. C. Vaughan [4].

Lemma 2 (Heath-Brown's identity). For any integer $k \ge 1$ we have

$$(1) \qquad -\frac{\zeta'}{\zeta}(s) = \sum_{j=1}^k (-1)^j \binom{k}{j} \zeta'(s) \zeta^{j-1}(s) M^j(s) - \frac{\zeta'}{\zeta}(s) (1-M(s)\zeta(s))^k \; .$$

This is Lemma 1 of [1]. In Heath-Brown's identity we choose

$$M(s) = \sum_{n \leq y} \frac{\mu(n)}{n^s}$$
 where $y^k = 2X$.

Obviously, all coefficients of terms $n \leq 2X$ of the last summand in (1) vanish, because

$$\zeta(s) M(s) = 1 + \sum_{n \ge 2} n^{-s} \sum_{\substack{d \mid n \\ d \le n}} \mu(d).$$

This means that when $t \in [X, 2X]$ the sum

$$S(t, \theta) = \psi(t) - \psi(t - \theta t) = \sum_{\substack{t - \theta t < n \le t}} \Lambda(n)$$

is equal to the sum of the coefficients with $n \in]t-\theta t,\,t]$ of the sum over j in (1). For $j \in \{1,\ldots,k\}$ we define \mathfrak{A}^j to be the set of all 2j-tuples $N^j = (N_1,\ldots,N_{2j})$ such that $N_i \geqslant \frac{1}{2}$ for all $i=1,\ldots,2j$, and $2^rN_i = X$ for a suitable non-negative integer r if $i \leqslant j$, and $2^rN_i = y$ if i > j. Denote by \mathfrak{A} the union of all \mathfrak{A}^j , for $j \in \{1,\ldots,k\}$. Since $|\mathfrak{A}| \ll \mathfrak{L}^{2k}$, we see that $S(t,\theta)$ is a linear combination of $O(\mathfrak{L}^{2k})$ sums of the type

$$\Sigma(N^{j}, t, \theta) = \sum_{\substack{n_{i} \in]N_{i}, \ 2N_{i} | \forall i = 1, ..., 2j \\ t - \theta t < n_{1}...n_{2j} \leq t}} (\log n_{1}) \mu(n_{j+1}) ... \mu(n_{2j})$$

where N^j rangers over \mathfrak{A} . For the sake of definiteness, set

$$S(t, \theta) = \sum_{j=1}^{k} \alpha(j, k) \sum_{N^{j} \in \mathbb{N}^{j}} \Sigma(N^{j}, t, \theta)$$

where $\alpha(j, k) \ll 1$.

Our aim is to prove that each Σ can be written in the following way

(2)
$$\Sigma(N^j, t, \theta) = \theta \mathfrak{M}(N^j, t) + \mathfrak{R}(N^j, t, \theta)$$

where $\mathfrak{M}(N^j, t)$ is independent of θ . In fact, if (2) holds for suitable \mathfrak{M} and \mathfrak{N} , we let

$$\mathfrak{M}(t) = \sum_{j=1}^{k} \alpha(j, k) \sum_{N^j \in \mathfrak{N}^j} \mathfrak{M}(N^j, t) \quad \text{and} \quad \mathfrak{R}(t, \theta) = \sum_{j=1}^{k} \alpha(j, k) \sum_{N^j \in \mathfrak{N}^j} \mathfrak{R}(N^j, t, \theta)$$

so that
$$S(t, \theta) = \psi(t) - \psi(t - \theta t) = \theta \mathfrak{M}(t) + \mathfrak{R}(t, \theta)$$
. Then we have

$$\int_{X}^{2X} |S(t,\theta) - \theta t|^2 dt = \int_{X}^{2X} (\theta^2 (\mathfrak{M}(t) - t)^2 + 2(S(t,\theta) - \theta t) \mathfrak{M}(t,\theta) - \mathfrak{M}(t,\theta)^2) dt.$$

We set $H(X, \theta) = \int_{X}^{2X} |\Re(t, \theta)|^2 dt$. Applying the Brun-Titchmarsh and the Cauchy inequalities to the second summand on the right, we have

(3)
$$\int_{X}^{2X} |S(t, \theta) - \theta t|^{2} dt = \theta^{2} \int_{X}^{2X} (\mathfrak{M}(t) - t)^{2} dt + O(H(X, \theta) + X^{\frac{3}{2}} \theta H(X, \theta)^{\frac{1}{2}}).$$

Hence, recalling Lemma 1 and the fact that $|\mathfrak{A}| \ll \mathfrak{L}^{2k}$, we have proved

Lemma 3. The Theorem follows from the estimates

(4)
$$\int_{X}^{2X} (\mathfrak{M}(t) - t)^2 dt = o(X^3)$$

(5)
$$\max_{N \in \mathcal{N}} \int_{X}^{2X} |\Re(N, t, \theta)|^2 dt = o(X^3 \theta^2 \mathcal{L}^{-2k})$$

uniformly for $X^{-\frac{5}{6}+\varepsilon} \leq \theta \leq 1$.

We shall prove the first part of Lemma 3 by taking θ large, whereas the proof of the second estimate is achieved by means of a mean value estimate as described below.

We denote by $d_m(n)$ the coefficient of n^{-s} in $\zeta^m(s)$. The following result is a consequence of Theorem 2 of P. Shiu [5].

Lemma 4. For fixed $\delta > 0$ and any non-negative integer m we have

$$\sum_{x \leq n \leq x + y} \mathsf{d}_m(n) \ll_{\delta, \, m} y (\log \, x)^{m - 1}$$

uniformly for $x^{\delta} \leq y \leq x$.

3 - Reduction to mean-value estimates

Our approximation of the type (2) shall yield three error terms: obviously, it is enough to prove that (5) holds for each one separately. Actually, for all but

the last error term we shall prove the stronger inequality

(6)
$$\max_{X \leq t \leq 2X} \max_{N \in \mathfrak{N}} |\Re(N, t, \theta)| = o(X\theta \mathcal{L}^{-k}).$$

For $N \in \mathfrak{A}^j$ we put $f_r(s) = \sum_{n \in [N_r, 2N_r]} a_r(n) n^{-s}$, where $a_1(n) = \log n$, $a_r(n) = 1$ for $r = 2, \ldots, j$ and $a_r(n) = \mu(n)$ otherwise. Now set

$$F(s) = F_N(s) = \prod_{r=1}^{2j} f_r(s) = \sum_{n \le X} \frac{c_n}{n^s}$$

say, where $|c_n| \leq d_{2j}(n) \mathcal{L}$. We remark that we may assume that $\prod_i N_i \geq 2^{-(2j+1)} X$, since otherwise $\Sigma = 0$ and (2) is trivial. Thus $c_n \neq 0$ only for $n \in I(X) = [2^{-(2j+1)} X, 2^{2j} X]$.

Observe that for $s = \frac{1}{2} + i\tau$ and $2 \le r \le 2j$ we have

(7)
$$|f_1(s)| \ll N_1^{\frac{1}{2}} \mathcal{L} |f_r(s)| \ll N_r^{\frac{1}{2}}$$
 so that $|F(s)| \ll X^{\frac{1}{2}} \mathcal{L}$.

By Perron's formula we have

$$\Sigma(N) = \frac{1}{2\pi i} \int_{\frac{1}{2} - iT_1}^{\frac{1}{2} + iT_1} F(s) \frac{t^s - (t - \theta t)^s}{s} ds$$

$$+O(\sum_{n\in I(X)}|c_n|\left[\min(1, T_1^{-1}|\log\frac{t}{n}|^{-1})+\min(1, T_1^{-1}|\log\frac{t-\theta t}{n}|^{-1})\right]).$$

We choose $\Delta=\frac{\varepsilon}{6k}$ and $T_1=X^{\frac{5}{6}-5k\Delta}$ and deal with the first summand in the error term. For the sake of brevity, for any non-negative interger r let $I_r=\{n\in I(X)\colon rT_1^{-1}\leqslant |\log\frac{t}{n}|<(r+1)T_1^{-1}\}$. Observe that $I_r\neq\emptyset$ only for $0\leqslant r\leqslant M$, say, with $M\ll T$. We then have

$$\sum_{n \in I(X)} |c_n| \min(1, T_1^{-1} | \log \frac{t}{n} |^{-1}) \ll \sum_{n \in I_0} |c_n| + \sum_{1 \le r \le M} \sum_{n \in I_r} T_1^{-1} |c_n| | \log \frac{t}{n} |^{-1}$$

$$\ll \sum_{n \in I_0} |c_n| + \sum_{1 \leq r \leq M} \sum_{n \in I_r} T_1^{-1} |c_n| (rT_1^{-1})^{-1} \ll \sum_{n \in I_0} |c_n| + \sum_{1 \leq r \leq M} r^{-1} \sum_{n \in I_r} |c_n|.$$

Furthermore $tT_1^{-1} \ll |I_r| \ll tT_1^{-1}$ for all $r \leq M$, and (6) follows using Lemma 4.

The other summand in the error term is dealt with in the same way.

The main term of $\Sigma(N)$ will come from a short interval: for $s = \frac{1}{2} + i\tau$ and $|\tau| \leq T_0$ we have

$$\frac{t^s - (t - \theta t)^s}{s} = \theta t^s + O(|s| \theta^2 t^{\frac{1}{2}}).$$

Hence by (7)

$$\frac{1}{2\pi i} \int_{\frac{1}{2}-iT_0}^{\frac{1}{2}+iT_0} F(s) \frac{t^s - (t-\theta t)^s}{s} ds = \theta \frac{1}{2\pi i} \int_{\frac{1}{2}-iT_0}^{\frac{1}{2}+iT_0} F(s) t^s ds + O(T_0^2 \theta^2 X \mathcal{E}).$$

We can obviously take as $\mathfrak{M}(N, t)$ the integral on the right hand side, and the error term will satisfy (6) provided that T_0 depends only on X and

(8)
$$\theta = o(T_0^{-2} \mathcal{L}^{-(k+1)})$$

which we now assume. Then (5) will follow from the estimate

$$(9) \quad \max_{N \in \mathfrak{A}} \int\limits_{X}^{2X} |\int\limits_{T_{0}}^{T_{1}} F_{N}(\frac{1}{2} + i\tau) \frac{t^{\frac{1}{2} + i\tau} - (t - \theta t)^{\frac{1}{2} + i\tau}}{\frac{1}{2} + i\tau} d\tau|^{2} dt = o(X^{3} \theta^{2} \mathcal{L}^{-2k}).$$

For the sake of brevity write $s_r = \frac{1}{2} + i\tau_r$ for r = 1, 2, and similarly for s. We set

$$J(N) = \int_{X}^{2X} \left| \int_{T_0}^{T_1} F(s) \frac{t^s - (t - \theta t)^s}{s} d\tau \right|^2 dt = \int_{[T_0, T_1]^2} F(s_1) \overline{F(s_2)} c(X, \theta, \tau_1, \tau_2) d\tau_1 d\tau_2$$

where

$$c(X,\,\theta,\,\tau_1,\,\tau_2) = \frac{1-(1-\theta)^{\frac{1}{2}+i\tau_1}}{\frac{1}{2}+i\tau_1}\,\frac{1-(1-\theta)^{\frac{1}{2}-i\tau_2}}{\frac{1}{2}-i\tau_2}\,\int\limits_X^{2X}t^{1+i(\tau_1-\tau_2)}\,\mathrm{d}t \ll \frac{(X\theta)^2}{1+\left|\tau_1-\tau_2\right|}\;.$$

By the Cauchy-Schwarz inequality we have

$$J(N) \ll (X\theta)^{2} \int_{[T_{0}, T_{1}]^{2}} \frac{|F(s_{1})F(s_{2})|}{1 + |\tau_{1} - \tau_{2}|} d\tau_{1} d\tau_{2}$$

$$\ll (X\theta)^{2} \left\{ \int_{[T_{0}, T_{1}]^{2}} \frac{|F(s_{1})|^{2} d\tau_{1} d\tau_{2}}{1 + |\tau_{1} - \tau_{2}|} \int_{[T_{0}, T_{1}]^{2}} \frac{|F(s_{2})|^{2} d\tau_{1} d\tau_{2}}{1 + |\tau_{1} - \tau_{2}|} \right\}^{\frac{1}{2}}$$

$$\ll (X\theta)^{2} \int_{T_{0}}^{T_{1}} |F(s_{1})|^{2} d\tau_{1} \int_{T_{0}}^{T_{1}} \frac{d\tau_{2}}{1 + |\tau_{1} - \tau_{2}|} \ll (X\theta)^{2} \mathcal{L} \int_{T_{0}}^{T_{1}} |F(s)|^{2} d\tau$$

$$\ll (X\theta)^{2} \mathcal{L}^{2} \max_{T_{0} \leq T \leq T_{1}} \int_{T_{0}}^{2T} |F(s)|^{2} d\tau.$$

Thus (9) is a consequence of (10) and of the following result, whose proof is deferred to the next section.

Lemma 5. If (8) holds for $T_0 = \exp(\mathcal{L}^{\frac{1}{3}})$ and $\theta \ge X^{-\frac{5}{6} + \epsilon}$, we have

$$\max_{N\in \mathfrak{A}} \int\limits_{T}^{2T} \big|F_N(\frac{1}{2}+i\tau)\big|^2 \, \mathrm{d}\tau = o(X\mathcal{L}^{-(2k+2)})$$

uniformly for $T_0 \leq T \leq T_1$.

4 - Proof of Lemma 5

The proof is very similar to the proof of Lemma 3 in [1]. For the sake of brevity we do not duplicate the whole argument, but merely outline it, giving the needed modifications.

We shall say that a set \mathcal{S} of points in [T,2T] is well spaced if $|\tau_m-\tau_n|\geqslant 1$ for every τ_m , $\tau_n\in\mathcal{S}$ with $n\neq m$. For brevity, we write $s=s(\tau)=\frac{1}{2}+i\tau$ and similarly $s_r=\frac{1}{2}+i\tau_r$. We first write F as the product of F_1 and F_2 , where $F_2(s)$ is the product of all factors f_h of F with $N_h\leqslant X^{\mathcal{A}}$. Let Y denote the product of all N_h when f_h is a factor of F_1 and F_2 denote the product of all F_2 so that F_2 and F_3 and F_3 where F_3 and F_3 when F_4 is a factor of F_3 , so that F_3 and F_4 and F_5 where F_6 and F_7 where F_8 is a factor of F_8 .

(11)
$$\int_{T}^{2T} |F_N(s(\tau))|^2 d\tau \ll Z \mathcal{L}^2 \int_{T}^{2T} |F_1(s(\tau))|^2 d\tau = Z \mathcal{L}^2 J(X, T)$$

say. Now there exists a set S with $|S| \ll T$ of well-spaced points τ_n in [T, 2T] such that

$$J(X, T) \ll \sum_{T \in S} |F_1(s_n)|^2$$
.

For each factor f_h of F_1 set

$$|f_h(s_n)| = N_h^{\sigma(h, n) - \frac{1}{2}}.$$

Then Heath-Brown proves that

(12)
$$\sigma(h, n) \leq 1 - \eta(T_1)$$
, where $\eta(T_1) = 2C(\log T_1)^{-\frac{2}{3}}(\log \log T_1)^{-\frac{1}{3}}$

and C is a suitable absolute constant. This follows from Richert's form of the Korobov-Vinogradov zero-free region for the Riemann zeta-function. We then set $L = [\mathcal{L}]$ and split the range for σ into subranges I_l for $0 \leq l \leq L$ as follows

$$I_0 =]-\infty$$
, $\frac{1}{2}$] $I_l =]\frac{1}{2} + \frac{l-1}{L}$, $\frac{1}{2} + \frac{l}{L}$] for $1 \le l \le L$.

We divide the points τ_n into classes C(h, l) in the following way

$$C(h, l) = \left\{ \tau_n \in \mathcal{S} \colon \sigma(h, n) = \max_{1 \leq r \leq 2j} \sigma(r, n) \text{ and } \sigma(h, n) \in I_l \right\},\,$$

so that the classes C(h, l) are not necessarily disjoint. Since there are $O(\mathfrak{L})$ classes, there is a class, C(h', l') say, such that

$$J(X, T) \ll \mathcal{L} \sum_{\tau \in C(h', l')} |F_1(s(\tau))|^2$$
.

Note that if $\tau_n \in C(h', l')$ then

$$\big|F_1(s(\tau_n))\big|^2 = \prod_{h=1}^{2j} N_h^{2\sigma(h,\,n)-1} \leqslant \prod_{h=1}^{2j} N_h^{2l'L^{-1}} \leqslant Y^{2l'L^{-1}} \,.$$

If l'=0 then $J(X,T)\ll T\mathcal{L}$, and Lemma 5 follows from (11) since $Z\leqslant X^{2k\Delta}$. If $l'\geqslant 1$ we set

$$\sigma = \frac{1}{2} + \frac{l'-1}{l}$$
 $f(s) = f_{h'}(s)$ $N = N_{h'}$ $R = |C(h', l')|$.

We relabel the points τ_n so that $C(h', l') = \{\tau_n : 1 \le n \le R\}$. Thus

(13)
$$J(X,T) \ll Y^{2\sigma-1}R\mathcal{L}$$
 while $|f(s_n)| \gg N^{\sigma-\frac{1}{2}}$ for $1 \le n \le R$.

The mean and large values technique of Montgomery [3] and Lemma 4 yield

$$R \ll T^{\frac{12}{5}(1-\sigma)} \mathcal{L}^A$$
 for $N \leqslant T^{\frac{3}{5}}$

for some fixed A>0. This is proved by means of mean-value estimates for Dirichlet polynomials (see e.g. Theorem 7.3 of [3]) for the range $[\frac{1}{2}, \frac{3}{4}]$, and the Halász Lemma (see e.g. 2.9 of [2]) for the range $[\frac{3}{4}, 1]$. This implies that for $N \leq T^{\frac{3}{5}}$ we have

$$\int\limits_{T}^{2T} |F_N(s(\tau))|^2 \ \mathrm{d}\tau \! \ll \! Z \mathcal{L}^{A \, + \, 3} \, Y^{2\sigma \, - \, 1} \, T^{\frac{12}{5}(1 \, - \, \sigma)} \! \ll \! X^{1 \, - \, 8k \Delta(1 \, - \, \sigma)} \mathcal{L}^{A \, + \, 3}$$

using (11) and (13). Now (12) easily implies that

$$X^{-8k\Delta(1-\sigma)} \mathcal{L}^{A+3} \ll \mathcal{L}^{-(2k+2)}$$

and Lemma 5 follows.

In the case $N \geqslant T^{\frac{3}{5}}$, we assume that $\Delta \leqslant \frac{1}{4k}$, so that $X \leqslant T^{\frac{12}{5}}$ and $N \geqslant X^{\frac{1}{4}}$. This means that $f = f_k$ for some $h \leqslant j$, provided that we choose k = 5. Then Hölder's inequality and Ingham's fourth power moment estimate for $\zeta(\frac{1}{2} + it)$ (see e.g. Titchmarsh [6], (7.6.1)) yield

$$RN^{4\sigma-2} \ll (T+R+RN^2T^{-4}) \mathcal{L}^{13} \ll (T+RN^2T^{-4}) \mathcal{L}^{13}$$

since $R \ll T$. From this we deduce at once that either

$$R \ll TN^{2-4\sigma} \mathcal{L}^{13} \ll T_1^{\frac{12}{5}(1-\sigma)}$$

and Lemma 5 follows as above, or

$$N^{4\sigma-2} \ll N^2 T^{-4} \mathcal{L}^{13}$$

which means that $T \ll N^{1-\sigma} \mathcal{L}^4$, and finally

$$R \ll T \ll N^{1-\sigma} \mathcal{L}^4 \ll X^{1-\sigma} \mathcal{L}^4 \ll T_{\frac{5}{5}}^{\frac{12}{5}(1-\sigma)} \mathcal{L}^4$$

and Lemma 5 follows in this case as well.

6 - Completion of the proof of Lemma 3: the main term

Our estimates thus far have been uniform for $\theta \ge X^{-\frac{5}{6}+\varepsilon}$, provided that (8) holds. In particular, we may take $\theta_0 = \exp\{-\sqrt{\mathfrak{L}}\}$. In this case, we see that the left hand side of (3) is $o(X^3\theta_0^2)$ by the Prime Number Theorem, and the remainder term on the right is also $o(X^3\theta_0^2)$ by (5). Thus (4) follows and the proof of the Theorem is complete.

References

- [1] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Can. J. Math. 34 (1982), 1365-1377.
- [2] M. N. HUXLEY, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
- [3] H. L. Montgomery, *Topics in multiplicative number theory*, Lecture Notes in Math. 227, Springer, Berlin 1971.
- [4] B. SAFFARI and R. C. VAUGHAN, On the fractional parts of x/n and related sequences II, Ann. Inst. Fourier 27 (1977), 1-30.
- [5] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161-170.
- [6] E. C. TITCHMARSH, The theory of the Riemann zeta-function, Oxford Univ. Press, Oxford, U.K. 1986.

Sommario

Diamo una dimostrazione alternativa della stima $J(X, h) = o(Xh^2)$ per l'integrale di Selberg

 $J(X, h) = \int_{Y}^{2X} |\psi(t) - \psi(t - h) - h|^{2} dt$

quando $h \ge X^{\frac{1}{6} + \epsilon}$, per mezzo di una identità di Heath-Brown.

* * *