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Numerical and analytic study
of a parabolic-ordinary system modelling cardiac activation

under equal anisotropy conditions (**)

1 - Introduction

During a heart beat an excitation wavefront propagates throughout the myo-
cardium; the wavefront is represented by a thin layer of cells which undergoes a
depolarization process, i.e. a sudden temporal change of the transmembrane po-
tential v, defined as the jump of the potential across the cellular membrane. This
electrochemical perturbation (action potential) is brought about by the flow of
ionic currents across the membrane. The depolarization process of the cardiac
tissue may be described by means of the macroscopic bidomain model ([6]), with
Hodgkin-Huxley type gating equations of the cellular membrane current.

In the bidomain model, the cardiac tissue is defined by two interpenetrating
continuous media (i.e. the intercellular i and the extracellular or interstitial e
medium respectively), connected everywhere by a continuous cardiac cell mem-
brane. It’s well known that the bidomain, under equal anisotropy conditions, re-
duces to a monodomain and that in this case the extracellular and intracellular
potentials can be obtained as scaled versions of the trasmembrane potential.

The introduetion of non diagonal conductivity tensors for the i and e media
allows to model the effect of the intramural fiber rotation (rotational anisotro-
py) on the current flow.

(*) Dip. di Matem., Univ. Parma, Via M. D’Azeglio 85, 43100 Parma, Italia.
(**) Received August 29, 1996. AMS classification 35 K 57.
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In Section 2, we present the mathematical model in details and give existence
and uniqueness results for its solution and other regularity results. In Sections 3
and 5, we propose and analyse a numerical method based on the finite element Ga-
lerkin space discretization. The associated nonlinear system of ordinary differen-
tial equations is solved by means of the Crank-Nicholson time-stepping, combined
with a quasilinearization technique. Convergence of both space and time discreti-
zation is proved.

2 -~ Mathematical model

Let 2 be a bounded open domain in R?® with boundary 32 of class @' *¢
a € (0, 1), representing an insulated block of myocardium (the bidomain i + e).

Let o} and o} be the conductivity coefficients parallel and transverse, re-
spectively, to cardiac fiber direction for the i-medium, ¢f and o7 be the conducti-
vity coefficients for the e-medium and let a = a(x) be the unit vector tangent to
the fiber at point x € Q. The conductivity tensors for the intracellular and extra-
cellular media are given by:

M, = (0} — o})aa’ + o} M, = (¢} — 0{)aal + ¢ .

The tensor M = M; + M, characterizes the bulk conductivity of the composite
medium i + e. In the following we assume that of, o, of and of are positive
constants, with o} = o} and of = o¢, i.e. conductivity is greater along than across
fibers.

Let the anisotropic ratios be defined as follows:

of

&= — 1= —.

oj Oy

In this paper we suppose that equal anisotropy holds, ie.:
() g, =&, =17 constant.

Let v(x, t) be the transmembrane potential assumed to be a regular function
in the region Q. Under assumption (1), the activation process is described by
the reaction-diffusion (RD) system (see [3], [4] and [6] for more details):

¥Con ¥y — 1—1—7— div M, Vo + o, (v, m, h) = 0 in Q %10, T1

my = fo(v, m) = —(a,, ) + B, (WHm+ a, (V) in 2 x10, T]
@ b =fiw, k) = = (@) + BN+ ay(v) in Q x10, T

n"M,; Vv =0 on 9Q x10, T']

v(x,0)=v, mX,0)=m, ) ~hEx,0) =75,y in 2
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where n is the outward unit normal vector to 9Q, y is the membrane surface
area per unit volume of the tissue, C,, is the membrane capacitance per unit area
and I,,, is the ionic current per unit area carried by the flow of ions across the
membrane. Funections m(x, t) and h(x, £) are dimensionless gating variables re-
sponsible for the activation and inactivation of the sodium channel respectively
and

Ctm('l)) h (’U) — ap (7))
Ay (V) + By (V) - ay(®) + B, (V)

My (V) =

are their steady-state values; «,,, a,, 8, and 3, are positive empirically deter-
mined functions of potential », as described in [5]. These functions, in their origi-
nal form, present some point discontinuities which can be eliminated easily by
raccording the jumps in such a way that the functions belong to G%(R), without
affecting the numerical solution to system (2). Finally, the initial datum v, (x) is
a Holder continuous function such that v, < v, < vy, in £.

The fast sodium current is the main cause of depolarization of cardiac cells
during the excitation phase of the action potential. It is modeled by gating equa-
tions of the Hodgkin-Huxley type ([7]) and can be represented in the form

Lign (0, m, b) = gngmPh(v — vy) + g, (v — v,)

where gy, and g, are the maximum conductances for sodium ions and repolariza-
tion eurrents, respectively, and vy, and v, are the equilibrium potentials for so-
dium and repolarizing currents.

For mathematical purposes, we can rewrite system (2) in the form

— ——glv+ﬁ(v,m,h)+f in Qx10, T
) my = fo (v, m) by = f3(v, k) in 2 x10, T
n"M;Vo =0 on 98 x10, T1

(X, 0)=v, mx,0)=m, W) hix,0)="h,(v) in Q

1
Cﬂl

where fi (v, m, h) = — Inam (v — vy,) and f= —(:,1— 9.9, £v =0 div M; Vo

and 0= —— b,
Xcﬂl(l + ,r)
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We have shown in [12] that the solution of system (3) exists and is unique. In
fact, £ is a uniformly elliptic operator in Q since, for any & of R?

ETM;E = (0} ~ oD ETaa & + oiETE = (o] — ol)aTE) (a7 E) + olETE
= (o] — oD |a"E|* + o] |E|* = g | €|

for every x e 2, where |-| indicates the Euclidean norm and a, = of.
We assume that £ has Holder continuous coefficients in Q. Moreover fun-
ctions f; i =1, 2, 3, satisfy the local Lipschitz condition:

for each R > 0 there are constants K; = K;(R) such that
i) —fitw)| < K; |lu—w|, when |ul; <R, |w)) <R

3
where |ul;= > |u].

It is useful for the sequel to state the above mentioned result in this
form

Theorem 1. System @) has o wnique classical global solution
ve @@ x [0, T N>R %10, TD; m, h e €% (2 x [0, T1). Moreover this so-
lution satisfies the limitations

4) 0sm<l 0<h<l v,<v<wy, in @ x [0, T].

Finally, it must be noted that the components m and kb of the solution to (3)
have continuous partial derivatives of the second order with respect to x over
£ x]0, T1. This follows by composition argument, since the gating equations can
be thought as ordinary differential equations in m and &, where the right mem-
ber f;(i = 2, 8) contains a parameter vector x and, by composition, has conti-
nuous partial second order derivatives with respect to the components of (y, x),
y =m, h. This yield ([2]) the desired regularity for m and k.

3 - Finite element approximation

Although system (3) has generally smooth solution, it represents a challen-
ging numerical problem because it involves disparate time and space scales. Va-
riables v and m have fast dynamics relative to 2 and the solution exhibits steep
fronts, due to the short diffusion length and rapid variation of m. Formally spea-
king, this situation refers to the stiffness of the system of equations, which may
impose severe constraints on the time and space discretization steps to achieve
stability and accuracy.
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In this work, system (3) is discretized first in space, by means of the finite
element Galerkin method based on the following weak formulation:

Find ve £2(0, T; H-(2) N CY(0, T; £2(Q)); m, he (0, T; £2(2)) such
that

ad; w(t), @) + W), @) = (£ W(®), m(t), hE), @) + (f, @)

d =
" 5 (7D, @) = (R (@), m®), @)

% (h(b), @) = (f; (u(t), h(t)), @)
v(0)=vy, m(0)=m, (vy) h(0)="h, (v

Vg e H(RQ), where d/dt is taken in the sense of distribution on 2 and we
define

gr

m

Alu, w) = a@f(Vw)TMiVu dx + (uw, w) Vu,weH(Q)
(,) being the scalar product in £2(RQ).

The Galerkin method consists in fixing a family of finite dimensional spaces
V., c H' () of dimension N, (tending to infinity as k — 0) and in seeking appro-
ximate solutions v, my, k. [0, T'1— V, satisfying the following ordinary diffe-
rential equations system:

Y, e Vi, —(% (v (), wy) + Qv (8), wy) = (fy (0 (D), My, (D), Ty (B)), wy) + (f, wyp)

© ad; (me (), ) = (fo (0 (&), My (£)), 10,)

% (e (8), wy) = (s (0 (8), By (8)), i)

() =vy . m(0)=mg ,  hy(0) =Ry

where vy i, Mg and hy eV, are suitable approximations of the initial
data.

It is easy to verify that the bilinear form @ is coercive and continuous, since
Alw,w) = al|wll?, Vwe HY(R), with a=min(a0,%), and |a(y, o] < vl
Vo, v e H(Q), where y = 9M + —g- M = max [m,, ||, M; = (m,, ;) and ||}
is the H'-norm. "

Functions v, (1), m;, () and h;,(f) can be represented as linear combination of
basis functions ¢;, 1 = 1, ..., N}, with time varying coefficients. Taking w;, = ¢;,
1=1,2,..., N, in (6), we get the following system of nonlinear differential alge-



148 S. SANFELICI [6]

braic equations:

@ P %‘ti (1) + Av(®) = £, (v(2), m(t), h(t)) + £
®) %’?— (®) = £, (v(t), m(t)
) %‘t‘- (1) = £, (v(t), h(t))

V(O) =V m(O) = Iy h(O) = ho

where (y =v, m, h):

Y=, yn)" ?/k(t)zjzlyj(t)%' ?/o,kz,zl?/o,j Q;
< iz

P=((¢;p;dx;1,j=1,...,N,) is a positive definite matix of dimension
Q

N;. (mass matrix); A= (ay), a; = Alp;, @), 1,j=1,...,N;, is a N X Ny
symmetric definite positive matrix; v(¢), m(?), h(f) e RM Yt €10, T]. Functions
£, : R®%: — R and f; 3: R®¢— R are still locally Lipschitz continuous.

For simplicity, we suppose in the sequel that £ is a polygonal convex domain
of R® with Lipschitz continuous boundary and that (5) has still a unique bounded
solution. The analysis below may be extended to more general (non polygonal)
domains 2 by introducing the concept of isoparametric finite elements.

Let 7, be a family of triangulations of £, associated to a reference polyhe-
dron F by invertible affine maps Tr, for every F e1,, and suppose that 7,
k>0 is regular, ie there exists a constant o = 1 such that

max EF— €0 VkE>0
Fer, @F
where kp = diam (F) and ¢y = sup {diam (S):S is a ball contained in F'}.
For instance, we can consider simplicial triangulations and the finite element
spaces V. of the continuous functions whose restrictions to each element of 7,
are linear polynomials

Vk=X]§ = {'UkE @0(?2—):'”le€ &Py, VFE’L’k}

where &, is the space of polynomials that are of degree less than or equal to one.
Note that X! cH!'(Q).

If the integrals over an element are computed using a trapezoidal quadrature
rule based on nodal values of the functions, then the mass matrix P results of diago-
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nal type, i.e. the mass matrix is lumped, and functions f; are defined as follows:
fi(v, m, h) =P(fi(vy, mq, hy), ..., fi(Vn,, Mo, hNk))T

f,(v, m, h) = (f;(v;, my, by), ..., fs(Vn,, My, hNk))T , s=2,3.

4 - Semi-discrete error analysis

In this section, we are going to study the properties of the semidiscrete
system (6), or equivalenty of system (7)-(9). We point out that these results are
independent of the particular choice of space V}, which doesn’t need to be X} .

The main results are the existence of a unique global solution to system (6)
and the convergence of the Galerkin semidiscrete approximation to the exact
solution of (5). The idea of the proof was used by Thomée [13] for general semili-
near equations of parabolic type. Let’s start with the following remark.

Remark 1. For fized k system (7)-(9) has a wunique local solution
(v, m, h): [0, T']1— R®* for some T’ < T, since P is a positive definite matrizx
and functions f; (v, m, h), s=1,2,3, r=1,..., N, are Lipschitz continuous
with respect to variables v, m and h, in any bounded open subset B of RN

Moreover, the functions f,, s = 1, 2, 8 in (7)-(9) are ([0, T'] X B), therefo-
re the solution (v, m, h)e (0, T').

In the analysis developed below we shall show that, under usual assumptions
on {V;} and for k sufficiently small, 7’ can be taken to be equal to 7. Hence,
global solvability of system (6) follows.

Definition 1. We say that the family {Vi} is of class S,,, (with s < u) if
V. cH?*(2) and

Vwe H*(Q),  inf 3 K |w—w]; < Ck*fwl, .
WL EVE §=

Here and below C denotes constants, not necessarily the same at different
oceurrences, which are independent of £ and the functions involved. Similarly, ¢
will denote constants which are independent of k& but which may depend on the
exact solution u(t) = (v(t), m(t), h(t)T of (5).

In the following we assume that the family {V,} is of class S, , and satisfies
the following inverse inmequality

(10) lwello < CE = lwy o Vw,e Vi, k<k for some v and k; .
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We introduce the interpolation operator ) :C°(Q)—V,

Ny
7 (w) = ‘21 w(a;) @;
i<

where a; are the nodes on 2 and we assume that the following inequalities hold
for any we H(2), uz2:

an  Jw-z@l< G, o -zl < Gl

Remark 2. The family {Xi} of Section 3 is of class Sy » (see [10]). More-
over, suppose that the family of triangulations 7, is quasi-uniform, i.e. it 1s ve-

gular and there exists a constant y > 0 such that glin kr= vk, VE> 0, and that
€T

the quantity k = max ky approaches zevo. Then the inverse assumption (10) and
inequalities (11) hold with u =2 and v = —7274, where n 18 the space dimension
(see [1] and [10]).

Let 3 be the range of the exact solution u = (v, m, h)T of (5)
S={ut,x):xeR,te[0, T}

f=(f,f, )T is Lipschitz continuous in the closed neighborhood X of X, for
any & > 0. Let’s fix one of these &, sufficiently large to include the initial datum
(v, (0), my, (0), k(0T in X5, and let K; > 0 be constants such that the following
Lipschitz conditions hold in X;:

[fitwy) — filws)| < K; |wy — wa, 1=1,2,3.

Heuristically, we might argue that, since the approximate solution
w, = (v, my,, )T is always going to be close to u, it belongs to X 5. In order to
show that this is the case, we have to provide maximum norm estimates for the
approximation error, since closeness in the sense of £2 or H' does not automati-
cally imply that u, belongs to X; for small k.

Now we state the main theorem of this section.

Theorem 2. Let {V,} be of class &, (u = 2), with V,c H'(Q), and assu-
me that (10), (11) and (14) below hold for some v < u. Then, if the solution
u(t) e (H*(Q)? Vtel[0, T] and m(t), h,(t) e H* () almost everywhere in
[0, T, there is a kg such that, for k < ky, the solution u, of (6) exists fort < T,
and for these t we have

| (W (8), 7, @), By BT — (w(E), m(t), hENT [l < k™ .
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The error analysis between u;, and u can be accomplished comparing the Ga-
lerkin solution v, () to the elliptic projection W(t) of the exact solution »(t) of
(5) onto V., defined by

(12) AW (L), wy) = A(v(t), wy) VeV, .
As it is well known [8], the error in this projection o(¢) = v(f) — W({) sati-

sfies for t < T

(18) lo@l; < ck* ~{lo@®)|], < ck* 7 j=0,1.

The rest of the error in v, is then 6(f) = v, () — W) e V.

We shall assume that the initial values are chosen in such a way that

14) e = MOl < ck* ||ty — mIO)|o < ek [y — RIO0)|g < ck*

with W(t) defined by (12). For instance, as a consequence of (13), (14) follows
from the triangular inequality and from condition

(15) e — 2O |o < ck*  |[(my — mI(O)g < ck*  ||[(Ry, — B)(0)]|g < k.

Proof. Let t* be the largest number less than or equal to 7 such that u,
exists and belongs to X, for t <tk: t* =sup{s < T:u,(t) e Z;Vt < s}.
Subtracting (5) from (6) and taking into account (12), we have for almost
every te[0, t*)
(16) (6, w) — (o wi) + A6, wy) = (fi(vg, My, by) — f1 (v, m, h), wy)
= (.fl('vk’ My, hk) —fl (W9 My, h’k)) wk) + (fl (W’ my,, h’/c) _fl (’l), oy h’k)’ 'wk)
+(f1 ('U, 77’0;“ hk) —fl (’l), m, hk)y ’L()k) + (fl (?), n, h’k) —fl (7)7 m; h)a wk) .

Setting w;, = 6(f) in (16) and using the Cauchy-Schwarz inequality, the
coerciveness of @, the Lipschitz condition for f, and the well known inequality

ab < ea® + i b2, Ye > 0, we obtain for te [0, tF)

1 d e b 2 2 2 E_li 2 _[_{_f 2 _fif 2

Loz < L louli + e + KD IO+ 21 ol + 2 0415+ - 1l

where we have set M(t) = m; (t) — m(t) and H(t) = k. (t) — h(t) for t [0, t*).
Since time differentiation commutes with elliptic projection, by (13) we have

llo:ll < ck*. Hence

an L ol < i + Gy ol + Callml + Co 2
K2
where €, =4+ K2>0 and C, = — > 0.

4e
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Now, let's consider the first gating equation in its weak form; we have
(18) (M (@), wi) = (fo(vg, my) — fo (v, M), wy) Vw,e V.
Set wy, = my(t) — v, eV, where 9, is an arbitrary element of V,. As before,

this yields

1 2
2 Fn 4 \aall < calmal + 5 1Ml + 2 lm — will§ + K201 + K2 [lolls -

If we choose v, = 7, (m(t)) for all £ e [0, t¥), then from (11) it follows that
lm — w,ll < ck*. Therefore

1

41l < cs s + L HMt I3+ &2 16lIF + KEllol§ + oo™
2 dt

(19)

Moreover, choosing wy, = (my); — 5, (m, (1)) € Vi, in (18), for almost any ¢ € [0, t*)
we have

K K} K}
“Mt”%$45“Mt”0+( = +38) Iy — 7 ()5 + R = ol + i lell + 2—2 12213

that is, for ¢ < ?11—,
124,15 < ck® + Cs[|01F + Csllell§ + CallM]3 .

The last inequality can be combined with (19), yielding

(20) Ll < e k2 + cillol + Cs ol + Ci Ina

Zdt

Similarly, the second gating equation yields

@n L < o 2+ G0l + G lolls + Ci 11 -

2 dt
Now, we sum up (17), (20) and (21) and get

2 N d ol + M2+ |HD < O3 + M]3 + | HIP + el .
Let’s integrate over [0, t], t < t*

t
low) |z + |M®|5 + |H®E < Cof WO IE + MR + | H®IDds + cTh> .

Gronwall’s lemma and assumption (14) assure that
le@ it + 2@ + 1H®

< (60| + 1M (0) |3 + | H(0)|3) + cTk*)e"" < ck™ .
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Hence, for t < t*, we have
iy (&) = u@®E = [0 @) — v} + [l (8) = MmO + || (&) = R
< 2[|6lF + 2llollf + M + [ HIf < ck
that is
(@2) (o (1), 1 (B, g () = (@), m(B), Rty < ek .
Moreover, for t < t¥, we have

fue — ulle < gy my, Ri) = (v, 7, B
(23) +w, my, k) — @, m, B + [(v, m, Iy) — (v, m, B,
= v = vl + [y — m]l + g~ 2|l .
Let’s consider the first term on the right-hand side of (23); set
wy, = 7, (v)

v — willee + [l — vl < k™ lop — wyllo + oo, — 0|

o =2l <
< ck ™" [log = vllo + ok 7 g = vllo + [l — vl
< OB ok ol < TR < S k< ky

since v < u. Similar results can be found for the other two terms in (23). There-
fore, for t < t* we have

e ®) — u®)]. < S k<

where k, is sufficiently small and independent of t*. Hence we may conclude by
continuity that ¢* cannot be smaller than T, that is t¥ = T for k < k, and, by (22)
lue ) — u@®)|lo < ck*, VE<T.

In the case of linear finite elements, for suitable approximate initial data, if
u(t) e (H2(92))?® Vte[0, T] and m,(t), h(t) e H?(R2) almost everywhere in

[0, T1, the assumptions of Theorem 2 are satisfied for u =2 and v = %, thus

yielding a second order £2 convergence of the Galerkin semi-discretization to
the exact solution wu.

5 - Time discretization

As a consequence of the arguments above, we can replace f;, 1 =1, 2, 8, in
(3) by smooth functions f;, which coincide with f; on a neighborhood X;. 5> % but
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which are bounded in R?¢ together with their partial derivatives of order less
than or equal to 2. This replacement doesn’t affect either the exact solution u or
the discrete solution u, if k is sufficiently small.

Let’s now turn to the time discretization of system (7)-(9), where the vector
functions f;, i = 1, 2, 3, have to be modified into f;. The application of a conver-
gent time-stepping assures that, for At sufficiently small, the totally discretized
solution belongs to X;., where f; =f;.

Since the elliptic term in the RD system (3) is small with respect to the reac-
tion term, an explicit method turns out to be stable only for very small time
steps. This can be avoided by using an implicit or semi-implicit time-stepping.
Therefore, we discretize the semidiscrete system (7)-(9) by means of the Crank-
Nicholson method

S - _%LP—lszu_i_ %ﬁp—lfl(vpd’ m'*1, b+l

+(d - %P_IA)VZ-F éz—t-P*lfl(vl, m!, b)) + AtPf
(24)
mitl = %fg(vl“, mi* 1) + _Lgfz(vz’ m) + m!
At =

R+l = ~é—f3(vl“,hl+1)+ Aztfg(vl, hd) + ht.

Scheme (24) may be rewritten in the form:
(25) Xt =Atgx!th + q(xh) 1=0,1,..., M -1

where x! = (v}, m!, h))T e R®" are approximations of (v, m, h)T at time ¢’ and
g, q: R?Y — R® are @ Lipschitz continuous vector functions. A standard
fixed point argument shows that, given the initial vector x° = (v, mg, hy) € =5,
for At sufficiently small, equation (25) has a unique solution x'*?, for each
l1=0,1,...,M—-1.

System (24) is solved, at each time step, by means of a quasilinearization
technique [11] consisting of the first step of Newton’s method. The continuous
nature of the solution guarantees that, for small 4t, the value at the previous ti-
me step x’ is close to the root x'*! being sought and the quadratic convergence
of Newton’s method implies that the vector computed by one iteration is a good

approximation of x'*1,
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When the integrals in (6) are computed by means of trapezoidal quadrature
rule, we get the following iterative scheme (I=0,...,M — 1)

(26) (ZP+A+I)¥* 4+ Dim'* ! + DLR = bf
—%ngl“ +(+ %Dﬁ)m’““l: —é‘éépng I+ é’éing)ml+mbé

—%ngl“ +(1+ -4‘2113@3)1#+1 = —%ﬁpgvl +(+ é‘éing)hl + At b
where |

J! = diag ( Ci P gn. (mb R D} = diag( Z’L P (8gna (M2 hE (v} — vx,)))
n m

Di= diag(—C-l— Pis (ga (D (0] = vy)))

m

! {
8am (’Uz) B aﬂm (7)1_) mll) Di _ diag(am('vil) + ﬁm (’[)ll))

D} = diag (1 — m))

ov} o}
3, (v) 3B, (w}

D = diag (1 — k) @ (v) _ 9P (”)hf) D} = diag (a, () + B, (v))
v} v}

bl = (—%P — A +J)vl+ Dim!+ DLk + 2FL + of
bé = (- (am (vll) + ﬂm (vll)) m]% + an ('Ull)9 cees T (am (vll\fk) +ﬁm(v1l\'k)) mzlvk + am(vil\/k))T
bl = (—(a, () + Br W ki + a, (W), ..., —(a) (k) + Br (k) bk, + a0k )T

i =f ¢, m,h).
Substituting m!*! and h'*! in (26), we get the single linear system

@7 G'vi*! = Elv' + F
where:

2 At At e 4 At e
G =(ZP+A+ ZEDIA+ S D)7 D+ %Dg(n 2L D)1 D} + I
2 At At oo At At o
E' = (57 P~ A+ 2 Di(l+ Z- DDy + S Dh(I+ S DY Df +T)
F! = 9F + 2f — AtDL(L + AL Diy~1hL — At DL(T + 4L DLy~
- 1 1 2 4 2 2 2 6 3
It’s worth noticing that matrix G’ turns out to be a Stieltjes matrix with re-

spect to the discretization steps used in the applications, and this fact gives sta-
bility to our numerical scheme.
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Now we analyse the above described time-stepping on a single non-linear or-
dinary differential equation of the form

(28) y' O =eyd) 0sisT y(0) = 7,

where ¢ is a Lipschitz continuous function of class @%(R). The Crank-Nicholson
scheme applied to (28) yields the implicit finite difference scheme

R O PN § 141y . 1 ! <T< M —
T, (y Y 2qo(y )+ 290(21) OslsM-1.
The application of one step of Newton’s method starting from y' yields the

scheme

1 ey o N R
At(y Y co(y)+2¢(y)(:z/

1+1

(29) - Y

which represents a correction of the forward Euler method. Scheme (29) turns
out to be second order accurate with respect to 4t. In fact, by differentiating
equation (28) with respect to t, we get

d2

OO

Therefore, the exact solution %(t'*!) may be expressed as the Taylor expan-
sion

(Pl(yl)yl(tl)

5 At? + 0(4t®).

(30) y Y =y + plyHat +

Taking into account (30), the local truncation error at point ¢'*! is given by

y(tl+ 1) _ yl

ool -
Tt y°; 4t) i

o) - £ ¢’ (Y E T~y = 04t?).
Therefore, the one-step method is consistent and second order accurate.
Moreover, for ¢ € @*(R) bounded together with its derivatives of order less
than or equal to two, the consistency of scheme (29) implies its convergence and
the order of this convergence is given by the local truncation error.
The absolute stability of method (29) may be analysed on the test equation

(31) y' @)= —-Ayt) t=0 y(0) =y,

where A is a positive real number. Scheme (29) coincides with the Crank-Nichol-
son scheme when applied to the linear problem (31), therefore the scheme is
A-stable.
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Sommario

In questo lavoro si considera un modello macroscopico del processo di eccitazione
nel miocardio anisotropo. Il modello é descritto da un sistema di reazione-diffusione
(RD) costituito da un’equazione parabolica semilineare accoppiata con due equaziont
differenziali ordinarie che, sotto opportune ipotesi sut dati, ammette un’'unice soluzione
classica globale. Viene presentato un metodo nwmerico per l'approssimazione del siste-
ma RD ottenuto combinando il metodo semidiscreto di Galerkin, il metodo di Crank-Ni-
cholson e una tecnica di «quasilinearizzazione». Il principale risultato é lanalisi della
convergenza e la stima dell’errore per le approssimazioni spaziale e temporale.






