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OcNIAN KASABOV (%)

A characterization of the extrinsic spheres

in a Riemannian manifold (%)

1 - Introduction

In [3] K. Ogiue and R. Takagi propose different criteria for a surface in £3 to
be a sphere and give the following useful and practical condition

Theorem A. Let M be a surface in E3. Suppose that, through each point
pe M there exist two circles of E® such that:
they are contained in M in a neighbourhood of p
they are tangent to each other at p.
Then M is locally o plane or a sphere.

The so-called extrinsic spheres are a natural generalization of the ordinary
sphere in £'™. It is interesting to have a characterization of an n-sphere, or more
generally of an extrinsie sphere, similar to Theorem A. K. Ogiue and R. Takagi
give such a criterion in [3] by means of #? circles through each point of the sub-
manifold. Here we propose an analogue of Theorem A for extrinsic spheres. Na-
mely we prove

Theorem B. Let M be an n-dimensional (n > 2) submanifold of a Rie-
mannian manifold M. Then M is either a totally geodesic submanifold of M or
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an extrinsic spheve of M, if through each point p of M there exist two (n — 1)-di-
mensional extrinsic spheves of M, such that:

they ave contained in M in a neighbourhood of p

they are tangent to each other at p.

Corollary. Let M be an n-dimensional (n > 2) submanifold of the Eucli-
dean space E™. Suppose that through each point p of M there exist two
(n — 1)-spheres of E™, such that:

they are contained in M in a neighbourhood of p
they are tangent to each other at p.
Then M is locally an n-plane or an n-sphere in E™.

2 - Preliminaries

Let 3 be a Riemannian manifold with metric tensor g and let M be an n-di-
mensional submanifold of /. Denote by V and V the Riemannian connections of
M and M, respectively. Then the Gauss formula is

VeV =VyY + 0(X, Y)

for all vector fields X, Y on M, where o is the second fundamental form of M in
M. Let & be a normal vector field. Then the Weingarten formula is

where —A:X and Dy are the tangential and the normal components of Vy£ re-
spectively. Usually A; is called the shape operator, corresponding to £ and D the
connection in the normal bundle. Also g(A:X,Y) = g(o(X, Y), &) holds good.
Recall then that the covariant derivative of o with respect to the connection V
of van der Waerden-Bortolotti is given by

(Vxo) Y, 2) = Dxo(Y, Z) — o(VxY, 2Z) — o(Y, Vx2).

The mean curvature vector H of M in M is defined by H = n ! trace o.

The submanifold M is called totally umbilical, if o(x, y) = g(x, y) H for all
x,yeT,M, peM or equivalently A;x = g(§, H)w for all x r,M,¢&e (T],M)*,
p € M. In particular, if o vanishes identically, M is said to be a totally geodesic
submanifold of M. A normal vector field £ is called parallel, if Dy& = 0 for any
vector field X on M.
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A regular curve 7 = (x,) parametrized by arc length s is called a circle in M,
if there exists a field Y, of unit vectors along 7 and a positive constant %, such
that

Vi X, = kY, V.Y, = —kX,

where X, denotes the tangent vector of 7 [2]. The number & is called the radius
and Y, the main normal of t.

A submanifold M of M is said to be an extrinsic sphere, if it is totally umbili-
cal and has non-zero parallel mean curvature vector. For an extrinsic sphere M
we have

vaXXz VXVXX" g(H, H)X
and hence
@.1) g(VxVxX, ) =0

for any unit vector field X on M and any vector field & normal to M.

3 - General lemmas

In this section we prepare two lemmas (Lemma 2 and Lemma 3) which will
be useful in the proof of our theorem. The first of them shows that an extrinsic
sphere is determined (locally) by its second fundamental form at one point. The
second gives a condition for the second fundamental forms of two hypersurfaces
to coineide.

Lemma 1. Let S be an extrinsic sphere in o Riemannian manifold M and
denote by H its mean cuwrvature vector. Then every geodesic of S through a point
p of S is a circle in M of radius k = (g(H, H))* and its main normal vector at p
is k™' H,.

Proof. Note that k = (g(H, H ))% is a non-zero constant since H is parallel
and non-zero. Let 7 = () be a geodesic of S parametrized by arc length. Denote
by X, its tangent vector and define Y; by H,s = kY,. Then by the Gauss and
Weingarten formulas

Ve X, = kY, Vi, Y, = —kX,

hold good and the lemma is proved.
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Lemma 2. Let M be a Riemannian manifold. Suppose that through a
point p of M there exist two extrinsic spheres S, and Sy of M, which are tangent
to each other at p. If their second fundamental forms at p coincide, then S; and
Sy coincide in a neighbourhood of p.

Proof. Denote by H; the mean curvature vector of S; in M. Note that
H, = H, at p. Let r be a positive number, such that exp; is a diffeomorphism of a
neighbourhood N;(p, r) of the origin of T,S; =T7,S; and a neighbourhood
U;(p,r) of pin §;, 1=1, 2, as in Proposition 3.4, Chapter IV of [1].

For a point ¢ e U, (p, ) let v = (x,), s e [0, so] be the only geodesic of S; in
U, (p, 7) joining p and ¢ and parametrized by arc length. Let 7 = (%,) be defined
by %, = exps (exp; 'a,). Then 7 is a geodesic in S, through p.

According to Lemma 1, 7 and T are circles in M through p of radius
k= (g(H,, Hl))% and its main normal at p is k"’(Hl)p = k_l(Hg)p. But such a
circle is unique [2]. Then t and 7 coincide locally.

Let § = exp, (exp; * q). Since d(p, q) = s, = d(p, @) it follows g =¢G. So g e S,
thus proving the lemma.

Lemma 3. Let S; and S, be two hypersurfaces through o point p of a Rie-
mannian manifold M. Suppose also that S, and S, are tangent to each other
and that there exists a smooth unit vector field N, defined in a neighborhood of
p in M and such that N, restricted to S;, is normal to S;, for i =1, 2. Then the
second fundamental forms of S; and S, coincide at p.

Proof. LetxeT,S,=7T,S;. Since S; and S, are hypersurfaces the Wein-
garten formulas for S; and S, in M imply V. N|s, = —A;i,pac for ¢ = 1, 2, where
A};yp is the shape operator of S; in M and N |, denotes the restriction of N to S;.
But V,N=V,N|s = V,N|s,. Hence Azifp =A§rp and consequently the second
fundamental forms of S; and S, coincide at the point p.

4 - Proof of Theorem B
For a point p of M let S;, and S,, be extrinsic spheres through p as in the
statement of the theorem. Let X be a vector field on S;,. Then a direct calcula-

tion gives

g(VxVx X, E) = g((Vx0)(X, X) + 89(0(Vx X, X), E)
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for any vector field £, normal to M. Because of (2.1) this implies

4.1) (Vyo)X, X) +30(VgX, X) =0

for any unit vector field X on S;,.
Denote by V* the Riemannian connection of S;,,. Let &; be a local normal unit
vector field for S;, in M. Then for all vector fields X, Y on S;, we have

VYV =ViY + (X, V)&

Ry &1 being the second fundamental form of S;, in M. Hence, using the Gauss for-
mula of M in M we find

VY =ViY + (X, V)E + 0(X, V).

Denote by H; the mean curvature vector of S;, in M. Since S, is totally umbili-
cal in M, we get

4.2) g X, VYH,=hX,¥)E +0X,Y).

Note that &, is orthogonal to o(X, Y) for all vector fields X, Y on S,,,. Then (4.2)
shows that Sy, is totally umbilical in M. More explicitly, putting 1, = g(H,, &y),
from (4.2) we obtain

(4.3) X, Y)=21,9X,Y)
4.4) oX,Y)=(H, - 1,&)NgX,Y).

Suppose now that X is a unit vector field on S;,. Then X is orthogonal to
ViX and consequently from (4.1), (4.3) and (4.4) we derive

(4.5) (Vxo)(X, X) +84,0(X, &) =0.
Put £=&,(p). Then by (4.5) we get
(V. 0)®, x) + 341 (p)o(x, &) =0

for any unit vector x in T,S;,=T,S8;,. It is easy to see that we have
also

(V,0)x, x) + 31s(p)o(x, E)=0

where A,(p) & g is the second fundamental form at p of Sy, in M. The last two
equations and Lemma 2 imply

(4.6) o(x, £) =0

for any vector x in 7,8, =1T,S;,.
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According to (4.4) we may write o(x, y) = g(x, y)y for , y € T, S;,,, where
is given by

n=H(p) =24 (p)E=Hy(p) - 22(p)&

H; being the mean curvature vector of S,, in M. Denote & = o(E, £). Then using
(4.6) we find for any »,yeT,M

o, y) = (g, y) — g(x, E gy, ENn + gz, E)gly, E)¢
and hence
4.7 Ap,x=g0, tro)e+ g(§ —n, tro)gle, &) E

for any we T, M. We put uq = g(y, tro), vq = g(¢, tr o). Then according to (4.7)
£ is an eigenvector of 4., at p and the corresponding eigenvalue is v,. Analo-
gously any unit vector x in 7,8y, = T, S, is an eigenvector of A, with corre-
sponding eigenvalue pu.

Suppose that M is not totally umbilical at p, i.e. zy # v(. Let the continuous
functions ¢ and v be eigenvalues of Ay, such that u(p) =, and v(p) = v,.
Then u(q) # v(q) for any ¢ in a sufficiently small neighbourhood U of p in M. It
follows directly or by the implicit function theorem that v is a smooth function
on U. Then its corresponding field N of unit eigenvectors is also smooth on U.

We shall show that the restriction of N to S;, is orthogonal to S;, for i =1, 2.
Indeed according to the definitions of x, v and N

Aot = p(Qx + (v(g) — u(@) g(x, N)N,
for all xe TyM, qe U. Hence
glo(x, y), tro) = (v(q) — u(q)) g(x, N)g(y, N)

for all orthogonal vectors z, y TyM, qe U. On the other hand by (4.4) we have
g(o(x, y), tro) = 0 for all orthogonal vectors x, y € T, Sy,, ¢ € S;,. Consequen-
tly, for arbitrary orthogonal vectors w,y e T,Sy,, g(x, N)g(y, N) =0 holds
good, i.e. at most one of any two orthogonal vectors in 7', S;,, is orthogonal to N,.
Hence it follows easily that in fact any vector in T,S;, is orthogonal to N,. So
the restriction of N to S;, is orthogonal to S;,. Analogously the restriction of N
to Sy, is orthogonal to S,.

Then, according to Lemma 3 the second fundamental forms of S, and S,,, coinci-
de at p. Now using Lemma 2 we conclude that S;, and S, coincide in a neighbour-
hood of p, which is a contradiction. So # = v¢and M is totally umbilical at p. Since p
is an arbitrary point of M, it follows that M is totally umbilical in M.
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It remains to show that the mean curvature vector H of M is parallel. Since
M is totally umbilical, by (4.1) we conclude that D,H =0 for any xe7,S,,,
q € Sy, Suppose that for the above defined vector £ we have D¢ H = 0. Let 77 be
a normal vector field of M, defined in a neighbourhood of p, such that the diffe-
rential form w, given by w(X) = g(DxH, 7) for a vector field X on M is not zero
at any point of U. Define a vector field Y on U by o (X) = g(X, Y). Then Y does
not vanish in U. Denote N = (g(Y, Y))”%Y. Note that the restriction of N to Sy
is normal to S;, for 7 = 1, 2. Using again Lemmas 2 and 3 we conclude that Sip
and S, coincide in a neighbourhood of p, which is a contradiction. So H is paral-
lel. Then M is totally geodesic or an extrinsic sphere in M, according to the len-
gth of H being zero or not. This proves our theorem,
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Sommario

Nel 198} K. Ogiue ed R. Takagi hanno dato una condizione perché una superficie
dello spazio ordinario sia localmente un piano o una sfera. Viene qui ottenuta una con-
dizione dello stesso tipo perché una sottovarieta M di una variett, Riemannione M sia
totalmente geodetica oppure sia una sfera estrinseca.






