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Moves on coloured spines (**)

1 - Preliminaries

Throughout this paper we shall work in the PL category, for which we refer
to [14] and [7]; all manifolds will be closed and connected, unless otherwise sta-
ted. For graph theory see[15].

A singular n-manifold is a compact connected n-dimensional polyhedron, ad-
mitting a triangulation K as a closed n-pseudomanifold such that for each vertex
v of K, the link Ik (v, K) is a closed connected (» — 1)-manifold. A vertex v of K
whose link lk(v, K) is (resp. is not) the (n — 1)-sphere is called regulor (resp.
singular).

Note also that if N = |K| is a singular n-manifold, for each h-simplex o” of
K, with k=1, the link lk(o", K) is always an (» — h — 1)-sphere.

From now on the term graph will be used instead of multigraph (ie. inclu-
ding multiple edges between two distinct vertices, but not loops), whereas pseu-
dograph will denote that both loops and multiple edges are allowed.

A coloured graph is a pair (I, y), where I' = (V(I'), E(IN) is a (pseudo)graph
and y: E(IN —> A4, ={0,1, ..., n} is a map; 4, is called colour-set and y a gene-
ralized edge-colouring on I'. For each B c 4,, a B-residue of (I', y) is a connec-
ted component of the graph I'y = (V(I), ¥ "1 (B)). In the following, for each sub-
set {¢y, ..., ¢, } of the colour-set, we denote by (¢, ..., ¢,) its complement; if
ve V(IN), I'g(v) will denote the B-residue of I" containing v. Moreover we shall
write I'; and I'yy instead of 'ty and I g;.

(*) Dip. di Matem. Pura ed Appl. G. Vitali, Via Campi 213/B, 41100 Modena,
Italia.
(**) Received January 31, 1995. AMS classification 57 M 15. Work performed under
the auspices of the GNSAGA of the CNR and within the project Geometria reale e com-
plessa, supported by MURST of Ifaly.
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An (n + D-crystallized structure is a coloured graph (I, v) such that, for ea-
ch ce 4,, the {c}-residues are cliques (i.e. complete graphs). In particular, if all
cliques have length two, (I, ) is called an (n + 1)-coloured graph.

An (n + 1)-pondered structwre is a triple ¢ = (T, 7, @) where I is an orien-
ted graph, regular of degree 2(n + 1), 7 is a generalized edge-colouring on T,
with colour-set 4, and w: E(I) — {0, 1, 2} is a map, called weight, on T such
that:

1. for each ce 4, the components of ¥ ~!(c) are elementary (generally not
oriented) cycles

2. if ced, — {0}, then for each edge ey *(c), w(e) =1
3. let ¢ and f be 0O-coloured adjacent (oriented) edges:

if e(1) = f(0), then we have the following five possibilities:
we)=w(fH=1, we)=1 o(f)=0, we)=2 wo(f)=0,
we)=0 o(f)=2, owl)=2 o(f)=1

if e(1) =f(1), then w(e) =0, w(f)=1 or w(e) =0, w(f)=2
it e(0) = f(0), then w(e) =0, w(f)=2 or wle)=1, o(f)=2 (see Figure 1).
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Fig. 1.
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Remark 1. If @ is a component of ¥ ~*(d), d being any colour, such that
w(e) = 1 for each edge e in @, then © is an elementary oriented cycle. Hence a
pondered structure whose edges have all weight 1 is an oriented structure in
the sense of [3] and conversely.

Given an (n + 1)-pondered structure @ = (T, 7, w), we can always construct
a unique (n + 1)-crystallized structure (I, y) associated to & in the following
way:

delete all loops of E(I)

for every c e 4,,, replace each component of 7 ~!(c) by the clique over the sa-
me set of vertices, colouring ¢ all its edges.

The above construction can be reversed, but obviously not in a unique way;
therefore a given crystallized structure can produce many pondered structures
(see [1D.

If K is an n-dimensional pseudocomplex [8], the disjoint star std(s, K) of a
simplex s in K is the disjoint union of the n-simplexes containing s, with re-in-
dentification of the (n — 1)-simplexes containing s and of all their faces; the di-
sjoint link of s in K is the subcomplex lkd(s, K)={restd(s, K)|sNr=0}.

A vertex-coloration on K is a map which associates a colour ¢ e 4,, to each
vertex of K and is injective on every simplex of K. If K is homogeneous, the pair
(K, &) is called a coloured n-complez.

Let (I, y) be an (n + 1)-crystallized structure; we can construct a coloured
n-complex (K(I), &) in the following way:

take an n-simplex o(v) for each ve V(I') and label its vertices by 4,

for each ce 4, and each pair v, w of c-adjacent vertices in I, identify the
(m — 1)-faces of o(v) and o(w) opposite to the vertices labelled ¢, so that equally
labelled vertices coincide.

The above construction can be easily reversed in order to associate an
(n + 1)-crystallized structure (I(X), y(K)) to each coloured n-complex (X, &).

Note that, by construction, each (¢, ..., ¢;)-residue £ of (I, ¥) corresponds
to a unique k-simplex s of K(I'), whose vertices are labelled by {¢y, ..., ¢, } and
conversely; moreover K(Z) = lkd (s, K(I).

It is easy to see that (I(K(D), y(K(I))=(I,y); conversely
(K(I(K)), E(I(K))) = (K, &) iff the disjoint star of every simplex in K is strongly
connected. In this case (X, £) is said to be represented by (I, y). Moreover
(I, y) is an (n + 1)-coloured graph iff |K(I)| is a closed pseudomanifold; if
|K(I| is a (singular) manifold N we say that N is represented by (I, y).
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For a general survey on edge-coloured graphs representing manifolds,
see [5].

Let @ = (T, 7, ) be a n-pondered structure (with colour-set 4,, _,); we can
consider an (n + 1)-coloured graph (B(&), 8) defined in the following way:

i. V(B)=WI)x{0,1}
ii. for each ve V(T), join (v, 0) and (v, 1) by an m-coloured edge

iii. let v, w e V(T) be adjacent vertices of T, such that the edge e between
them is directed from v to w; then join (v, k) and (w, k) (h, ke 4,) by an edge
coloured y(e) iff h <k and w(e) =h + k.

(B(P), B) is called the pluri-bijoin associated to the pondered structure .

If (B(®), B) is a crystallization of a closed, connected n-manifold M, then the
n-crystallized structure associated to & represents a spine of M (see [1]). Note
that the pluri-bijoin associated to a pondered structure & doesn’t depend on the
orientations of the edges of weight 0 or 2; therefore, to make the corresponden-
ce between ® and B(®) clear, we drop the orientations on these edges conside-
ring only those on the edges of weight 1.

Let &= (T, 7, ») be a (n + 1)-pondered structure; a generalized weak cycle
wof T; ; (i, jed,)is a cycle of T, whose edges are alternatively coloured ¢ and
j, such that for each pair e, f of adjacent edges of u we have:

a. if both e and f are not 0O-coloured then either e(0) = f(0) or e(1) = f(1)
(note that by eondition (2) in the definition of pondered structure we always ha-

ve w(e) = w(f)=1)

b. suppose that one of the edges, e say, is O-coloured, (i.e. w(f)=1) then
one of the following conditions must hold:

if f(1) is an endpoint of ¢, then either w(e) =2 or w(e)=1 and e(1) =f(1)
if f(0) is an endpoint of e, then either w(e)=0 or w(e)=1 and e(0)=,(0).

2 - Dipoles in singular n-manifolds

Let us recall from [4] and [6] that, given an (» + 1)-coloured graph (I, y)
with #WV(I") > 2, a dipole of type h (or simply h-dipole) involving colours
€y ..., €y (1S h<n)is a subgraph © of I' formed by two vertices x and ¥
joined by h edges ey, ..., e, with y(e;) =¢;, 1<i1<h, such that x and y
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belong to different (c,, ..., ¢;)-residues of I We shall denote such a dipole
by @ = (x, ¥).

By cancelling the dipole © from I we mean performing the following opera-
tions on I

1. delete the vertices « and y, the edges ey, ..., ¢, and the resulting han-
ging edges from I

2. for each ce(cy, ..., C), if v (resp. w) is the vertex of I c-adjacent to x
(resp. to y) then join v and w by an edge coloured c.

The inverse procedure is called adding the dipole ©.

If (T, 7) is an (n + 1)-coloured graph obtained from (I, y) by cancelling the
dipole @, then @ is called proper, iff |K(I)| and |K(I)| are homeomor-
phie.

In [6] the following sufficient condition for @ to be proper is proved:

Proposition 1. Let (I, y) be an (n + 1)-coloured graph and © = (x, y) an
h-dipole of I involving colours cy, ..., c; if either ', _5,)(@) or I, . 5, (y) re-
presents an (n — h)-sphere, then © is proper.

If N = |K| is any singular n-manifold, from now on we shall always suppose
that all singular vertices of K have the same colour, say the «last» colour n;
otherwise we can always perform suitable subdivisions on K, in order to obtain
a triangulation satisfying the above property.

As a consequence of Proposition 1, we have:

Corollary. Let (I, y) be an (n + 1)-coloured graph representing a singu-
lar n-manifold. If © is an h-dipole of I, then:

a. if either h>1 or © doesn’t involve colour n, then @ is proper

b. if h =1 and @ involves colour n, then O is proper iff at least one of the
corresponding vertices of K(I') is non-singular (i.e. if either I';(x) or I';(y) is
an (n — 1)-sphere).

Remark 2. Note that all ¢-residues (¢ € 4,) of I', not containing x and y,
remain unaltered, whereas if = is a c-residue (c € 4,,_ ) containing % or ¥, then,
by deleting @ from I', we cancel a proper dipole from =. Therefore we never af-
feet the disjoint links of the regular vertices of K(I').



152 P. BANDIERI and P. CRISTOFORI [61
3 - Dipoles in pondered structures
Let @ = (I, 7, ®) be a m-pondered structure.

Definition 1. By a dipole of type h, involving colours ¢;, ...,cLed, _;
(1 < h <n—1), we mean a subgraph @ of I formed by a pair (a, b) of vertices,
joined by h edges ey, ..., ¢, directed from a to b, such that:

i for 1<i<h, wleg)=1 and y(e) =c¢;
il T, . a0(@) # g, 5 (0)

We write © = (a, b) to denote the dipole.

Definition 2. Two edges e and f of I" are GW-equivalent with respect to a
subset C of A, -, write e ~¢ f, iff ¥(e), Y(f) e C and there is a finite sequence
e=¢gg, &1, ..., &, = f of edges of T'¢ such that, for each i e {0, ..., » — 1}, &; and
e;+1 belong to the same generalized weak cycle of I'c.

Obviously «~¢» is an equivalence. For each edge e E(I'¢), we shall de-
note by E©(e) the class of ¢ with respect to the GW-equivalence relative to
the subset C, whereas the symbols E\©, ..., E{© denote the elements of
E(Te)] ~¢-

Definition 8. By a dipole of type 1z, we mean a subgraph 6 of T formed
by a vertex x such that there exist p, ge {1, ..., 7} with p # g, such that
for each jed,_,; and for each pair f;, f; of j-coloured edges of T incident
with x, fj e Ef»-* and f";e B

Definition 8'. By a dipole of type hg inwvolving colours ¢, ..., c_1€4, 1
(1< h <n), we mean a subgraph 6 of I formed by a vertex x and » —1
loops ey, ..., €,.; in & such that:

i, for1sish-—1, y(g)=c¢;

ii. there exist p,qe{l,..,r} with p=#gq, such that for each
je(C, ..., ¢,—1) and for each pair fj, f"; of j-coloured edges of T(El’._.,gh_l)
incident with x, f/ € E\® and f";e E{®, where C= (&, ..., C-1)-

From now on, unless otherwise stated, by a dipole of type hp we shall mean
also the case h =1. As in Definition 1 we use the notation 6 = (x).

In the following, given a dipole @ = (a, b) of type h, involving colours
¢y ..., Ch, if ve {a, b} we denote by v’ (resp. by vl), jed,, the vertex, diffe-
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2, - dipole involving colours {0, 1} (cases I and II)

Fig. 2a.

rent from @ and b, j-adjacent to v by an edge either having weight 1 and direc-
tion from v to v} (resp. from v’ to v) or having weight 0 (resp. 2). Moreover, for
eachje 4, _y, call fI (resp. f1), e {+, — }, the j-coloured edges joining af and
a (resp. bl and b).

If 0 = (x) is a dipole of type kg involving colours ¢, ..., ¢, -, then label by
%, (vesp. by '), je (¢, ..., G 1), the vertex j-adjacent to x, either having
weight 1 and oriented from z to x’, (resp. from z’ to x) or having weight 0
(resp. weight 2). Moreover, for each je (¢;, ..., ¢,_1), call fI, ee {+, =}, the
Jj-coloured edges joining x{ and x (see Figures 2 and 3 for the above
notations).

Note that, if ® = (a, b) is a dipole of type &y of T involving colours ¢, ..., ¢,
then we can distinguish the following cases: :

case I. all edges incident with ¢ and b have weight 1

case II. some O-coloured edges, incident with ¢ and b, have weight diffe-



154 P. BANDIERI and P. CRISTOFORI [8]

2, - dipole involving colours {1, 2} (cases III)

Fig. 2.

rent from 1 and the colour 0 is involved in the dipole; in this case we have the
following possibilities:

case Ila. w(f2)=2 ow(fl)=1
case IIb. w(f2)=1 o(f2)=0 or o(f2)=2 w(f2)=0

case III. some O-coloured edges, incident with @ and b, have weight diffe-
rent from 1 and the colour 0 is not involved in the dipole; we can have:

o(f)=0 (=2 o(fY=1 o(f’)=1

or o(fO)=w(f0) =2, o(f})=o(f$)=0
or o(fH=w(f)=1, of?)=2 o(fi)=0.
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Definition 4. If (T, 7, w) is an n-pondered structure and © = (a, b) is a
dipole of type hy of T involving colours ¢y, ..., ¢,, then the n-pondered structure
(T'", 7', ') is said to be obtained from (T, 7, ) by deleting @, iff it is construc-
ted as follows:

i. delete from I the vertices a and b and all the edges incident with them
(including e, ..., &)

ii. add a new vertex a ,

iii. for each je4,_; — {0}, join a’ (resp. b% ) with a by a j-coloured edge
of weight 1 directed from a’ to a (resp. from a to b’ )

iv. for eachje (¢, ..., G), join a%. with b7 by a j-coloured edge. In case I,
II and in case III for j = 0, the new edge has weight 1 and is directed from b to
@’ ; in case III for j = 0 the new edge has weight w(f%) + w(f2) — 1 and, if
such a weight is 1, the direction is from a2 to b°

v. join a® (resp. b%) and a by a 0-coloured edge of weight w(f°) (resp.
w(f2)); if the weight is 1, the new edge is directed from a® to a (resp. from a
to b%).

All the edges of T not incident with @ or b remain unchanged (see Figure 2).

Remark 8. If @ =(a, b) is a dipole of type h, of T involving colours
Cly ooy Cpy let i€ (Cy, ..., 6), ke{l,...,7}, be some colours such that
b% = b% = b. Then, deleting the dipole, join a’% (resp. a*) and a by means of an
i-coloured edge of weight w( f*) (resp. w(f*)); if such a weight is 1, orient the
edge from a to a¥ (resp. from a®* to a).

Definition 5. The n-pondered structure (I'’, 7', ') is said to be obtai-
ned by deleting a dipole 6 = (x) of type 1y from T, iff it is constructed as
follows:

i. delete from I the vertex

ii. for each jed,_;, join . and 2/ by a j-coloured edge of weight
o(f}) + o(fL) — 1. If the weight is 1 the edge is directed from 2/ to 2% or
from 2/, to x’ according to w(f% ) being different or equal to zero.

All the edges of T not incident with & remain unchanged.
Definition 5. The n-pondered structure (I'’, 7', ') is said to be obtai-

ned by deleting a 6 = (x) dipole of type hgy (1 < h < n) from T, iff it is construc-
ted as follows:
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3p - dipole involving colours {1, 8}

Fig. 3.

i. delete from T the vertex « and all the loops and edges incident with it

ii. for eachje (¢, ..., Cy—1), join 2L and z, by a j-coloured edge of weight
(L) + o(fL) ~ 1. If the weight is 1 the edge is directed from z? to x} or
from % to x. according to w(f%) being different or equal to zero.

All the edges of I' not incident with x remain unchanged (see Figure 3).
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Remark 4. Suppose there exists a colour 7 such that x/ = 2/, then by de-
leting 6, the j-coloured edge of ii in Definition 5 and in Definition 5’ is a loop
with 2/ =% as base-point.

Remark 5. If (T, 7, w) is an oriented structure, then we can replace state-
ments iii, iv and v in Definition 4 by:

iii’. for each jed,_;, join a’ (resp. b’ ) with a by a j-coloured edge of
weight 1 directed from al to a (resp. from a to b );

iv'. for each je (G, ..., ), join @’ with bL by a j-coloured edge of weight
1 directed from b7 to a’ .

Note that the new pondered structure, obtained by deleting a dipole of type
hy or hg is still an oriented structure.

Definition 6. A dipole @ = (a, b) (resp. 6 = (x)) of (T, 7, w) of type hy
(resp. hg) is said proper iff |K(B(T'))| = |K(BM)|, (I'',7', »') being the
n-pondered structure obtained from I' by deleting @ (resp. 9).

Proposition 2. With the above notations, if @ = (a, b) (resp. 8 = (x)) is a
dipole of type hy (resp. hg) involving colowrs ¢y, ..., ¢, (vesp. ¢y, ..., Ch_1), then
@ = ((a, 0),(b, 1)) (vesp. 6 = ((x, 0),(x, 1))) is a dipole of B(I') yof type h, invol-
ving colours ¢y, ..., ¢, (resp. €1, ..., Cp.1, M)

Proof. Via bijoin-construction, in B(I') the vertices (a, 0) and (b, 1) (resp.
(x, 0) and (x, 1)) are joined by h edges e, ..., e, (resp. &1, ..., &), With
Ble;) =c;,ie {1, ..., h} (resp. Ble;) = ¢;,ie {1, ..., h — 1} and B(e},) = n). Mo-
reover from iii of Definition 1 (resp. ii of Definition 8), it follows:

BD)a,, ....e0)a, 0) # (B(Dg,, .., 5y )b, 1)

(resp. By, o, 0)X 0= B, ..o, 0 1)).

Proposition 8. If (I, 7, w) is an n-pondered structure, © = (a, b)
(resp. 0 = (x)) a dipole of type h, (resp. hg) of T, © = ((a, 0),(b, 1)) (resp. -
0 = ((z, 0),(x, 1)) the corresponding h-dipole of B(I') and (I'', 7', ') the
n-pondered structure obtained by deleting © (resp. 0) from T, then B(I")
is the (n + 1)-coloured graph obtained from B(I') by deleting @ (resp. 6).
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Proof. With the above notations, to delete @ (resp. 8) from B(T'), we can-
cel the vertices (a, 0) and (b, 1) (resp. (x, 0) and (x, 1)) and join (a, 1) and (b, 0)
by an n-coloured edge. Moreover, if v;, w;, j € (¢1, ..., ), are the vertices j-ad-
Jacent to (a, 0) and (b, 1) respectively (resp. v;, w;, je (¢, ..., €,-1, %), are the
vertices j-adjacent to (x, 0) and (x, 1) respectively) then we must join v; and w;
by a j-coloured edge.

Set now (a, 0) = (a, 0), (b, 1) = (a, 1) and v; = a’, (resp. &%), w; = b (resp.
%’ ). Obviously, by shrinking the colour % in the so obtained (n + 1)-coloured
graph, we obtain I

Remark 6. If |K(B(I))| is a (closed) %-manifold, then all dipoles of type
hy and hg in T are proper.

Remark 7. If |K(B(IN)| is a singular n-manifold, then the corollary of
Proposition 1 assures that every dipole of I" of type hy (resp. kg), with & = 1 (re-
sp. k> 1) is proper. If |K(B(I")| is a singular 3-manifold, & = (x) a dipole of
type 1z in I and B9, E©, (C = (¢y, ..., &,-1)) are the two equivalence classes
of Definition 3, then @ is proper, iff the following equality holds:

(%) > g5 EL) =2+ #WV(ED)

i,jedsy

either for s =p or for s = ¢, §;(B?) being the number of generalized weak
cycles of the subgraph E{®, with 1, j € 4,. In fact, if (*) holds, an easy calcula-
tion on Euler characteristic assures that E{® represents SZ

Remark 8 Matveev and Piergallini defined a complete system of moves
on special (standard) spines of 3-manifolds (see [11], [12] and [13]). Lins, in [9],
studied the relation between Matveev-Piergallini moves on special spines and
moves (dipoles) on 3-gems [10], i.e. 4-coloured graphs representing 3-manifolds.
Therefore Lins’ work, together with Proposition 3, gives the link between dipo-
les on coloured spines and Matveev-Piergallini moves.

In [2] a crystallized structure I is defined, which is associated to an alternate
(balanced) presentation of a group, such that all possible bijoin B on I are non
contracted graphs, since B3 is not connected. Deleting a suitable finite sequence
of dipoles of type 14 in T, we obtain a new ecrystallized structure I'* such
that:

1. T is a spine of a closed 3-manifold M? iff T’ is a spine of M3;
2. if T (and consequently ') is a spine of a closed 3-manifold M3, there
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exists a pondered structure T, associated to T, such that B(I”) is a (seminor-
mal) crystallization of M3,
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Sommario

In questo lavoro definiamo movimenti combinatori su grafi colorati che rappresentano
spine di varietd PL e studiamo gli effetti di tali movimenti sui complessi corrispondenti.
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