P. BANDIERI and P. CRISTOFORI (*)

Moves on coloured spines (**)

1 - Preliminaries

Throughout this paper we shall work in the PL category, for which we refer to [14] and [7]; all manifolds will be closed and connected, unless otherwise stated. For graph theory see [15].

A singular n-manifold is a compact connected n-dimensional polyhedron, admitting a triangulation K as a closed n-pseudomanifold such that for each vertex v of K, the link lk (v, K) is a closed connected (n-1)-manifold. A vertex v of K whose link lk (v, K) is (resp. is not) the (n-1)-sphere is called regular (resp. singular).

Note also that if N = |K| is a singular *n*-manifold, for each *h*-simplex σ^h of K, with $h \ge 1$, the link $\operatorname{lk}(\sigma^h, K)$ is always an (n - h - 1)-sphere.

From now on the term *graph* will be used instead of *multigraph* (i.e. including multiple edges between two distinct vertices, but not loops), whereas *pseudograph* will denote that both loops and multiple edges are allowed.

A coloured graph is a pair (Γ, γ) , where $\Gamma = (V(\Gamma), E(\Gamma))$ is a (pseudo)graph and $\gamma \colon E(\Gamma) \to \Delta_n = \{0, 1, \dots, n\}$ is a map; Δ_n is called colour-set and γ a generalized edge-colouring on Γ . For each $B \subseteq \Delta_n$, a B-residue of (Γ, γ) is a connected component of the graph $\Gamma_B = (V(\Gamma), \gamma^{-1}(B))$. In the following, for each subset $\{c_1, \dots, c_h\}$ of the colour-set, we denote by $(\widehat{c}_1, \dots, \widehat{c}_h)$ its complement; if $v \in V(\Gamma)$, $\Gamma_B(v)$ will denote the B-residue of Γ containing v. Moreover we shall write Γ_c and Γ_{cd} instead of $\Gamma_{\{c\}}$ and $\Gamma_{\{c, d\}}$.

^(*) Dip. di Matem. Pura ed Appl. G. Vitali, Via Campi 213/B, 41100 Modena, Italia.

^(**) Received January 31, 1995. AMS classification 57 M 15. Work performed under the auspices of the GNSAGA of the CNR and within the project *Geometria reale e complessa*, supported by MURST of Italy.

An (n+1)-crystallized structure is a coloured graph (Γ, γ) such that, for each $c \in \Delta_n$, the $\{c\}$ -residues are cliques (i.e. complete graphs). In particular, if all cliques have length two, (Γ, γ) is called an (n+1)-coloured graph.

An (n+1)-pondered structure is a triple $\mathscr{P}=(\overline{\varGamma},\overline{\gamma},\omega)$ where $\overline{\varGamma}$ is an oriented graph, regular of degree $2(n+1),\overline{\gamma}$ is a generalized edge-colouring on $\overline{\varGamma}$, with colour-set \varDelta_n , and $\omega\colon E(\overline{\varGamma})\to\{0,1,2\}$ is a map, called weight, on $\overline{\varGamma}$ such that:

- 1. for each $c \in \Delta_n$, the components of $\overline{\gamma}^{-1}(c)$ are elementary (generally not oriented) cycles
 - 2. if $c \in \Delta_n \{0\}$, then for each edge $e \in \overline{\gamma}^{-1}(c)$, $\omega(e) = 1$
 - 3. let e and f be 0-coloured adjacent (oriented) edges:

if e(1) = f(0), then we have the following five possibilities:

$$\omega(e)=\omega(f)=1, \qquad \omega(e)=1 \qquad \omega(f)=0, \qquad \omega(e)=2 \qquad \omega(f)=0,$$

$$\omega(e)=0 \qquad \omega(f)=2, \qquad \omega(e)=2 \qquad \omega(f)=1$$

if e(1) = f(1), then $\omega(e) = 0$, $\omega(f) = 1$ or $\omega(e) = 0$, $\omega(f) = 2$ if e(0) = f(0), then $\omega(e) = 0$, $\omega(f) = 2$ or $\omega(e) = 1$, $\omega(f) = 2$ (see Figure 1).

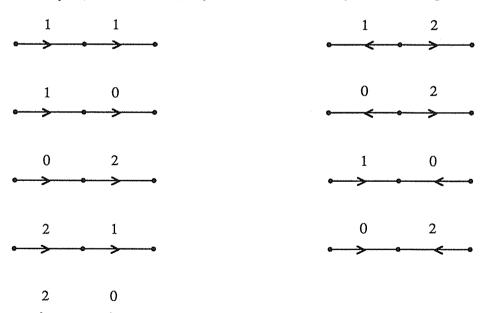


Fig. 1.

Remark 1. If Θ is a component of $\overline{\gamma}^{-1}(d)$, d being any colour, such that $\omega(e) = 1$ for each edge e in Θ , then Θ is an elementary oriented cycle. Hence a pondered structure whose edges have all weight 1 is an oriented structure in the sense of [3] and conversely.

Given an (n+1)-pondered structure $\mathcal{P}=(\overline{\varGamma},\overline{\gamma},\omega)$, we can always construct a unique (n+1)-crystallized structure (\varGamma,γ) associated to \mathcal{P} in the following way:

delete all loops of $E(\overline{\varGamma})$

for every $c \in \Delta_n$, replace each component of $\overline{\gamma}^{-1}(c)$ by the clique over the same set of vertices, colouring c all its edges.

The above construction can be reversed, but obviously not in a unique way; therefore a given crystallized structure can produce many pondered structures (see [1]).

If K is an n-dimensional pseudocomplex [8], the disjoint star std(s, K) of a simplex s in K is the disjoint union of the n-simplexes containing s, with re-indentification of the (n-1)-simplexes containing s and of all their faces; the di-sjoint link of s in K is the subcomplex $lkd(s, K) = \{\tau \in std(s, K) | s \cap \tau = \emptyset\}$.

A vertex-coloration on K is a map which associates a colour $c \in \Delta_n$ to each vertex of K and is injective on every simplex of K. If K is homogeneous, the pair (K, ξ) is called a *coloured n-complex*.

Let (Γ, γ) be an (n + 1)-crystallized structure; we can construct a coloured n-complex $(K(\Gamma), \xi(\Gamma))$ in the following way:

take an *n*-simplex $\sigma(v)$ for each $v \in V(\Gamma)$ and label its vertices by Δ_n

for each $c \in \Delta_n$ and each pair v, w of c-adjacent vertices in Γ , identify the (n-1)-faces of $\sigma(v)$ and $\sigma(w)$ opposite to the vertices labelled c, so that equally labelled vertices coincide.

The above construction can be easily reversed in order to associate an (n+1)-crystallized structure $(\Gamma(K), \gamma(K))$ to each coloured n-complex (K, ξ) .

Note that, by construction, each $(\widehat{c}_0, \ldots, \widehat{c}_h)$ -residue Ξ of (Γ, γ) corresponds to a unique h-simplex s of $K(\Gamma)$, whose vertices are labelled by $\{c_0, \ldots, c_h\}$ and conversely; moreover $K(\Xi) = \text{lkd}(s, K(\Gamma))$.

It is easy to see that $(\Gamma(K(\Gamma)), \gamma(K(\Gamma))) = (\Gamma, \gamma)$; conversely $(K(\Gamma(K)), \xi(\Gamma(K))) = (K, \xi)$ iff the disjoint star of every simplex in K is strongly connected. In this case (K, ξ) is said to be *represented* by (Γ, γ) . Moreover (Γ, γ) is an (n+1)-coloured graph iff $|K(\Gamma)|$ is a closed pseudomanifold; if $|K(\Gamma)|$ is a (singular) manifold N we say that N is *represented* by (Γ, γ) .

For a general survey on edge-coloured graphs representing manifolds, see [5].

Let $\mathcal{P} = (\overline{\Gamma}, \overline{\gamma}, \omega)$ be a *n*-pondered structure (with colour-set Δ_{n-1}); we can consider an (n+1)-coloured graph $(B(\mathcal{P}), \beta)$ defined in the following way:

- i. $V(B) = V(\overline{\Gamma}) \times \{0, 1\}$
- ii. for each $v \in V(\overline{\Gamma})$, join (v, 0) and (v, 1) by an *n*-coloured edge
- iii. let $v, w \in V(\overline{\varGamma})$ be adjacent vertices of $\overline{\varGamma}$, such that the edge e between them is directed from v to w; then join (v, h) and (w, k) $(h, k \in \Delta_1)$ by an edge coloured $\overline{\gamma}(e)$ iff $h \leq k$ and $\omega(e) = h + k$.
 - $(B(\mathcal{P}), \beta)$ is called the pluri-bijoin associated to the pondered structure \mathcal{P} .

If $(B(\mathcal{P}), \beta)$ is a crystallization of a closed, connected n-manifold M, then the n-crystallized structure associated to \mathcal{P} represents a spine of M (see [1]). Note that the pluri-bijoin associated to a pondered structure \mathcal{P} doesn't depend on the orientations of the edges of weight 0 or 2; therefore, to make the correspondence between \mathcal{P} and $B(\mathcal{P})$ clear, we drop the orientations on these edges considering only those on the edges of weight 1.

Let $\mathcal{P} = (\overline{\Gamma}, \overline{\gamma}, \omega)$ be a (n+1)-pondered structure; a generalized weak cycle μ of $\overline{\Gamma}_{i,j}$ $(i, j \in \Delta_n)$ is a cycle of $\overline{\Gamma}$, whose edges are alternatively coloured i and j, such that for each pair e, f of adjacent edges of μ we have:

- **a.** if both e and f are not 0-coloured then either e(0) = f(0) or e(1) = f(1) (note that by condition (2) in the definition of pondered structure we always have $\omega(e) = \omega(f) = 1$);
- b. suppose that one of the edges, e say, is 0-coloured, (i.e. $\omega(f) = 1$) then one of the following conditions must hold:
 - if f(1) is an endpoint of e, then either $\omega(e) = 2$ or $\omega(e) = 1$ and e(1) = f(1) if f(0) is an endpoint of e, then either $\omega(e) = 0$ or $\omega(e) = 1$ and e(0) = f(0).

2 - Dipoles in singular n-manifolds

Let us recall from [4] and [6] that, given an (n+1)-coloured graph (Γ, γ) with $\#V(\Gamma) > 2$, a dipole of type h (or simply h-dipole) involving colours c_1, \ldots, c_h $(1 \le h \le n)$ is a subgraph Θ of Γ formed by two vertices x and y joined by h edges e_1, \ldots, e_h with $\gamma(e_i) = c_i$, $1 \le i \le h$, such that x and y

belong to different $(\hat{c}_1, ..., \hat{c}_h)$ -residues of Γ . We shall denote such a dipole by $\Theta = (x, y)$.

By cancelling the dipole Θ from Γ we mean performing the following operations on Γ :

- 1. delete the vertices x and y, the edges $e_1, ..., e_h$ and the resulting hanging edges from Γ
- 2. for each $c \in (\hat{c}_1, ..., \hat{c}_h)$, if v (resp. w) is the vertex of Γ c-adjacent to x (resp. to y) then join v and w by an edge coloured c.

The inverse procedure is called adding the dipole Θ .

If $(\tilde{\Gamma}, \tilde{\gamma})$ is an (n+1)-coloured graph obtained from (Γ, γ) by cancelling the dipole Θ , then Θ is called *proper*, iff $|K(\Gamma)|$ and $|K(\tilde{\Gamma})|$ are homeomorphic.

In [6] the following sufficient condition for Θ to be proper is proved:

Proposition 1. Let (Γ, γ) be an (n+1)-coloured graph and $\Theta = (x, y)$ an h-dipole of Γ involving colours c_1, \ldots, c_h ; if either $\Gamma_{(\tilde{c}_1 \ldots \tilde{c}_h)}(x)$ or $\Gamma_{(\tilde{c}_1 \ldots \tilde{c}_h)}(y)$ represents an (n-h)-sphere, then Θ is proper.

If N = |K| is any singular *n*-manifold, from now on we shall always suppose that all singular vertices of K have the same colour, say the "last" colour n; otherwise we can always perform suitable subdivisions on K, in order to obtain a triangulation satisfying the above property.

As a consequence of Proposition 1, we have:

Corollary. Let (Γ, γ) be an (n+1)-coloured graph representing a singular n-manifold. If Θ is an h-dipole of Γ , then:

- a. if either h > 1 or Θ doesn't involve colour n, then Θ is proper
- **b.** if h = 1 and Θ involves colour n, then Θ is proper iff at least one of the corresponding vertices of $K(\Gamma)$ is non-singular (i.e. if either $\Gamma_{\bar{n}}(x)$ or $\Gamma_{\bar{n}}(y)$ is an (n-1)-sphere).

Remark 2. Note that all \hat{c} -residues $(c \in \Delta_n)$ of Γ , not containing x and y, remain unaltered, whereas if Ξ is a \hat{c} -residue $(c \in \Delta_{n-1})$ containing x or y, then, by deleting Θ from Γ , we cancel a proper dipole from Ξ . Therefore we never affect the disjoint links of the regular vertices of $K(\Gamma)$.

3 - Dipoles in pondered structures

Let $\mathcal{P} = (\overline{\Gamma}, \overline{\gamma}, \omega)$ be a *n*-pondered structure.

Definition 1. By a dipole of type h_A involving colours $c_1, \ldots, c_h \in \Delta_{n-1}$ $(1 \le h \le n-1)$, we mean a subgraph $\overline{\Theta}$ of $\overline{\Gamma}$ formed by a pair (a, b) of vertices, joined by h edges e_1, \ldots, e_h directed from a to b, such that:

- i. for $1 \le i \le h$, $\omega(e_i) = 1$ and $\overline{\gamma}(e_i) = c_i$
- ii. $\overline{\Gamma}_{(\hat{c}_1,\ldots,\hat{c}_h)}(a)\neq \overline{\Gamma}_{\hat{c}_1,\ldots,\hat{c}_h)}(b)$.

We write $\overline{\Theta} = (a, b)$ to denote the dipole.

Definition 2. Two edges e and f of $\overline{\Gamma}$ are GW-equivalent with respect to a subset C of Δ_{n-1} , write $e \sim_C f$, iff $\overline{\gamma}(e)$, $\overline{\gamma}(f) \in C$ and there is a finite sequence $e = \varepsilon_0, \varepsilon_1, \ldots, \varepsilon_r = f$ of edges of $\overline{\Gamma}_C$ such that, for each $i \in \{0, \ldots, r-1\}$, ε_i and ε_{i+1} belong to the same generalized weak cycle of $\overline{\Gamma}_C$.

Obviously " \sim_C " is an equivalence. For each edge $e \in E(\overline{\varGamma}_C)$, we shall denote by $E^{(C)}(e)$ the class of e with respect to the GW-equivalence relative to the subset C, whereas the symbols $E_1^{(C)}, \ldots, E_r^{(C)}$ denote the elements of $E(\overline{\varGamma}_C)/\sim_C$.

Definition 3. By a dipole of type 1_B , we mean a subgraph $\overline{\theta}$ of $\overline{\Gamma}$ formed by a vertex x such that there exist $p, q \in \{1, ..., r\}$ with $p \neq q$, such that for each $j \in \Delta_{n-1}$ and for each pair f'_j , f''_j of j-coloured edges of $\overline{\Gamma}$ incident with $x, f'_j \in E_p^{\Delta_{n-1}}$ and $f''_j \in E_q^{\Delta_{n-1}}$.

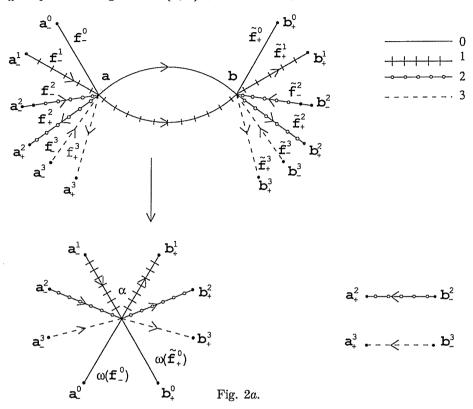
Definition 3'. By a dipole of type h_B involving colours $c_1, \ldots, c_{h-1} \in \Delta_{n-1}$ $(1 < h \le n)$, we mean a subgraph $\overline{\theta}$ of $\overline{\Gamma}$ formed by a vertex x and h-1 loops e_1, \ldots, e_{h-1} in x such that:

- i. for $1 \le i \le h-1$, $\overline{\gamma}(e_i) = c_i$
- ii. there exist $p, q \in \{1, ..., r\}$ with $p \neq q$, such that for each $j \in (\widehat{c}_1, ..., \widehat{c}_{h-1})$ and for each pair f'_j , f''_j of j-coloured edges of $\overline{\Gamma}_{(\widehat{c}_1, ..., \widehat{c}_{h-1})}$ incident with $x, f'_j \in E_p^{(C)}$ and $f''_j \in E_q^{(C)}$, where $C = (\widehat{c}_1, ..., \widehat{c}_{h-1})$.

From now on, unless otherwise stated, by a dipole of type h_B we shall mean also the case h = 1. As in Definition 1 we use the notation $\overline{\theta} = (x)$.

In the following, given a dipole $\overline{\Theta} = (a, b)$ of type h_A involving colours c_1, \ldots, c_h , if $v \in \{a, b\}$ we denote by v_+^j (resp. by v_-^j), $j \in \Delta_n$, the vertex, diffe-

 2_A - dipole involving colours $\{0, 1\}$ (cases I and II)



rent from a and b, j-adjacent to v by an edge either having weight 1 and direction from v to v_+^j (resp. from v_-^j to v) or having weight 0 (resp. 2). Moreover, for each $j \in \Delta_{n-1}$, call f_{ε}^j (resp. $\tilde{f}_{\varepsilon}^j$), $\varepsilon \in \{+, -\}$, the j-coloured edges joining a_{ε}^j and a (resp. b_{ε}^j and b).

If $\overline{\theta}=(x)$ is a dipole of type h_B involving colours c_1,\ldots,c_{h-1} , then label by x_+^j (resp. by x_-^j), $j\in(\widehat{c}_1,\ldots,\widehat{c}_{h-1})$, the vertex j-adjacent to x, either having weight 1 and oriented from x to x_+^j (resp. from x_-^j to x) or having weight 0 (resp. weight 2). Moreover, for each $j\in(\widehat{c}_1,\ldots,\widehat{c}_{h-1})$, call f_ε^j , $\varepsilon\in\{+,-\}$, the j-coloured edges joining x_ε^j and x (see Figures 2 and 3 for the above notations).

Note that, if $\overline{\Theta} = (a, b)$ is a dipole of type h_A of $\overline{\Gamma}$ involving colours c_1, \ldots, c_h , then we can distinguish the following cases:

case I. all edges incident with a and b have weight 1

case II. some 0-coloured edges, incident with a and b, have weight diffe-

 2_A - dipole involving colours $\{1,2\}$ (cases III)

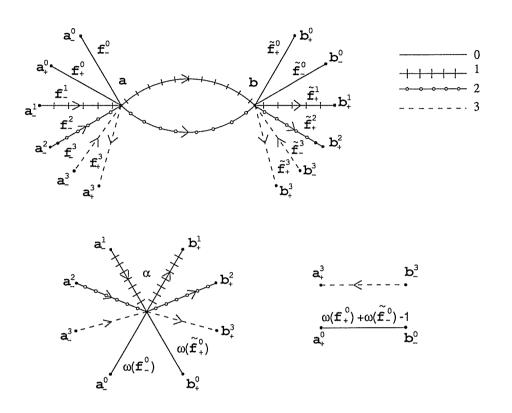


Fig. 2b.

rent from 1 and the colour 0 is involved in the dipole; in this case we have the following possibilities:

case IIa.
$$\omega(f_{-}^{0}) = 2$$
 $\omega(\tilde{f}_{+}^{0}) = 1$ case IIb. $\omega(f_{-}^{0}) = 1$ $\omega(\tilde{f}_{+}^{0}) = 0$ or $\omega(f_{-}^{0}) = 2$ $\omega(\tilde{f}_{+}^{0}) = 0$

case III. some 0-coloured edges, incident with a and b, have weight different from 1 and the colour 0 is not involved in the dipole; we can have:

$$\omega(f_+^0) = 0 \qquad \omega(f_-^0) = 2 \qquad \omega(\tilde{f}_+^0) = 1 \qquad \omega(\tilde{f}_-^0) = 1$$
 or
$$\omega(f_-^0) = \omega(\tilde{f}_-^0) = 2, \qquad \omega(f_+^0) = \omega(\tilde{f}_+^0) = 0$$
 or
$$\omega(f_+^0) = \omega(f_-^0) = 1, \qquad \omega(\tilde{f}_-^0) = 2, \qquad \omega(\tilde{f}_+^0) = 0.$$

Definition 4. If $(\overline{\Gamma}, \overline{\gamma}, \omega)$ is an *n*-pondered structure and $\overline{\Theta} = (a, b)$ is a dipole of type h_A of $\overline{\Gamma}$ involving colours c_1, \ldots, c_h , then the *n*-pondered structure $(\overline{\Gamma}', \overline{\gamma}', \omega')$ is said to be *obtained from* $(\overline{\Gamma}, \overline{\gamma}, \omega)$ *by deleting* Θ , iff it is constructed as follows:

- i. delete from $\overline{\Gamma}$ the vertices a and b and all the edges incident with them (including e_1, \ldots, e_h)
 - ii. add a new vertex α
- iii. for each $j \in \Delta_{n-1} \{0\}$, join a_-^j (resp. b_+^j) with α by a j-coloured edge of weight 1 directed from a_-^j to α (resp. from α to b_+^j)
- iv. for each $j \in (\hat{c}_1, \ldots, \hat{c}_h)$, join a^j_+ with b^j_- by a j-coloured edge. In case I, II and in case III for $j \neq 0$, the new edge has weight 1 and is directed from b^j_- to a^j_+ ; in case III for j = 0 the new edge has weight $\omega(f^0_+) + \omega(\tilde{f}^0_-) 1$ and, if such a weight is 1, the direction is from a^0_+ to b^0_-
- v. join a_-^0 (resp. b_+^0) and α by a 0-coloured edge of weight $\omega(f_-^0)$ (resp. $\omega(\tilde{f}_+^0)$); if the weight is 1, the new edge is directed from a_-^0 to α (resp. from α to b_+^0).

All the edges of $\overline{\Gamma}$ not incident with a or b remain unchanged (see Figure 2).

Remark 3. If $\overline{\Theta}=(a,b)$ is a dipole of type h_A of $\overline{\varGamma}$ involving colours c_1,\ldots,c_h , let $i_k\in(\widehat{c}_1,\ldots,\widehat{c}_h),\ k\in\{1,\ldots,r\}$, be some colours such that $b_+^{i_k}=b_-^{i_k}=b$. Then, deleting the dipole, join $a_+^{i_k}$ (resp. $a_-^{i_k}$) and a by means of an i_k -coloured edge of weight $\omega(f_+^{i_k})$ (resp. $\omega(f_-^{i_k})$); if such a weight is 1, orient the edge from a to $a_+^{i_k}$ (resp. from $a_-^{i_k}$ to a).

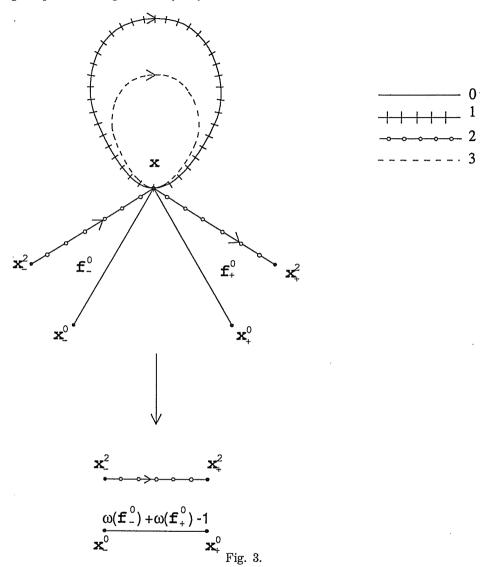
Definition 5. The *n*-pondered structure $(\overline{\Gamma}', \overline{\gamma}', \omega')$ is said to be obtained by deleting a dipole $\overline{\theta} = (x)$ of type 1_B from $\overline{\Gamma}$, iff it is constructed as follows:

- i. delete from $\overline{\Gamma}$ the vertex x
- ii. for each $j \in \Delta_{n-1}$, join x^j_- and x^j_+ by a j-coloured edge of weight $\omega(f^j_+) + \omega(f^j_-) 1$. If the weight is 1 the edge is directed from x^j_- to x^j_+ or from x^j_+ to x^j_- according to $\omega(f^j_+)$ being different or equal to zero.

All the edges of $\overline{\Gamma}$ not incident with x remain unchanged.

Definition 5'. The *n*-pondered structure $(\overline{\Gamma}', \overline{\gamma}', \omega')$ is said to be obtained by deleting a $\overline{\theta} = (x)$ dipole of type h_B $(1 < h \le n)$ from $\overline{\Gamma}$, iff it is constructed as follows:

 3_B - dipole involving colours $\{1,3\}$



- i. delete from $\overline{\Gamma}$ the vertex x and all the loops and edges incident with it
- ii. for each $j \in (\widehat{c}_1, \, \dots, \, \widehat{c}_{h-1})$, join x^j_- and x^j_+ by a j-coloured edge of weight $\omega(f^j_+) + \omega(f^j_-) 1$. If the weight is 1 the edge is directed from x^j_- to x^j_+ or from x^j_+ to x^j_- according to $\omega(f^j_+)$ being different or equal to zero.

All the edges of $\overline{\Gamma}$ not incident with x remain unchanged (see Figure 3).

Remark 4. Suppose there exists a colour j such that $x^j = x^j_+$, then by deleting $\overline{\theta}$, the j-coloured edge of ii in Definition 5 and in Definition 5' is a loop with $x^j_- = x^j_+$ as base-point.

Remark 5. If $(\overline{\Gamma}, \overline{\gamma}, \omega)$ is an oriented structure, then we can replace statements iii, iv and v in Definition 4 by:

iii'. for each $j \in \Delta_{n-1}$, join α^j_- (resp. b^j_+) with α by a j-coloured edge of weight 1 directed from α^j_- to α (resp. from α to b^j_+);

iv'. for each $j \in (\hat{c}_1, \ldots, \hat{c}_h)$, join a_+^j with b_-^j by a j-coloured edge of weight 1 directed from b_-^j to a_+^j .

Note that the new pondered structure, obtained by deleting a dipole of type h_A or h_B is still an oriented structure.

Definition 6. A dipole $\overline{\Theta} = (a, b)$ (resp. $\overline{\theta} = (x)$) of $(\overline{\Gamma}, \overline{\gamma}, \omega)$ of type h_A (resp. h_B) is said *proper* iff $|K(B(\overline{\Gamma}'))| \approx |K(B(\overline{\Gamma}))|$, $(\overline{\Gamma}', \overline{\gamma}', \omega')$ being the n-pondered structure obtained from $\overline{\Gamma}$ by deleting $\overline{\Theta}$ (resp. $\overline{\theta}$).

Proposition 2. With the above notations, if $\Theta = (a, b)$ (resp. $\overline{\theta} = (x)$) is a dipole of type h_A (resp. h_B) involving colours c_1, \ldots, c_h (resp. c_1, \ldots, c_{h-1}), then $\Theta = ((a, 0), (b, 1))$ (resp. $\theta = ((x, 0), (x, 1))$) is a dipole of $B(\overline{\Gamma})$ of type h, involving colours c_1, \ldots, c_h (resp. c_1, \ldots, c_{h-1}, n).

Proof. Via bijoin-construction, in $B(\overline{I})$ the vertices (a, 0) and (b, 1) (resp. (x, 0) and (x, 1)) are joined by h edges e_1, \ldots, e_h (resp. e_1, \ldots, e_h), with $\beta(e_i) = c_i, i \in \{1, \ldots, h\}$ (resp. $\beta(e_i) = c_i, i \in \{1, \ldots, h-1\}$ and $\beta(e_h) = n$). Moreover from iii of Definition 1 (resp. ii of Definition 3), it follows:

$$(B(\overline{\Gamma})_{(\hat{c}_1,\ldots,\hat{c}_h)})(a,0)\neq (B(\overline{\Gamma})_{(\hat{c}_1,\ldots,\hat{c}_h)})(b,1)$$

$$(\text{resp. }(B(\overline{\varGamma})_{(\hat{c}_1,\,\ldots,\,\hat{c}_{h-1},\,\hat{n})})(x,\,0)\neq (B(\overline{\varGamma})_{(\hat{c}_1,\,\ldots,\,\hat{c}_{h-1},\,\hat{n})})(x,\,1))\,.$$

Proposition 3. If $(\overline{\Gamma}, \overline{\gamma}, \omega)$ is an n-pondered structure, $\overline{\Theta} = (a, b)$ (resp. $\overline{\theta} = (x)$) a dipole of type h_A (resp. h_B) of $\overline{\Gamma}$, $\Theta = ((a, 0), (b, 1))$ (resp. $\theta = ((x, 0), (x, 1))$) the corresponding h-dipole of $B(\overline{\Gamma})$ and $(\overline{\Gamma}', \overline{\gamma}', \omega')$ the n-pondered structure obtained by deleting $\overline{\Theta}$ (resp. $\overline{\theta}$) from $\overline{\Gamma}$, then $B(\overline{\Gamma}')$ is the (n + 1)-coloured graph obtained from $B(\overline{\Gamma})$ by deleting Θ (resp. θ).

Proof. With the above notations, to delete Θ (resp. θ) from $B(\overline{\varGamma})$, we cancel the vertices (a,0) and (b,1) (resp. (x,0) and (x,1)) and join (a,1) and (b,0) by an n-coloured edge. Moreover, if v_j , w_j , $j \in (\widehat{c}_1,\ldots,\widehat{c}_h)$, are the vertices j-adjacent to (a,0) and (b,1) respectively (resp. v_j , w_j , $j \in (\widehat{c}_1,\ldots,\widehat{c}_{h-1},\widehat{n})$, are the vertices j-adjacent to (x,0) and (x,1) respectively) then we must join v_j and w_j by a j-coloured edge.

Set now (a, 0) = (a, 0), (b, 1) = (a, 1) and $v_j = a^j_+$ (resp. x^j_+), $w_j = b^j_-$ (resp. x^j_-). Obviously, by *shrinking* the colour n in the so obtained (n + 1)-coloured graph, we obtain $\overline{\Gamma}'$.

Remark 6. If $|K(B(\overline{\Gamma}))|$ is a (closed) *n*-manifold, then all dipoles of type h_A and h_B in $\overline{\Gamma}$ are proper.

Remark 7. If $|K(B(\overline{\varGamma}))|$ is a singular n-manifold, then the corollary of Proposition 1 assures that every dipole of $\overline{\varGamma}$ of type h_A (resp. h_B), with $h \ge 1$ (resp. h > 1) is proper. If $|K(B(\overline{\varGamma}))|$ is a singular 3-manifold, $\overline{\theta} = (x)$ a dipole of type 1_B in $\overline{\varGamma}$ and $E_p^{(C)}$, $E_q^{(C)}$, $(C = (\widehat{c}_1, \ldots, \widehat{c}_{h-1}))$ are the two equivalence classes of Definition 3, then $\overline{\theta}$ is proper, iff the following equality holds:

$$\sum_{i,j\in\mathcal{A}_s} \overline{g}_{ij}(E_s^{(C)}) = 2 + \# V(E_s^{(C)})$$

either for s=p or for s=q, $\overline{g}_{ij}(E_s^{(C)})$ being the number of generalized weak cycles of the subgraph $E_s^{(C)}$, with $i,\ j\in \Delta_2$. In fact, if (*) holds, an easy calculation on Euler characteristic assures that $E_s^{(C)}$ represents S^2 .

Remark 8. Matveev and Piergallini defined a complete system of moves on special (*standard*) spines of 3-manifolds (see [11], [12] and [13]). Lins, in [9], studied the relation between Matveev-Piergallini moves on special spines and moves (dipoles) on 3-gems [10], i.e. 4-coloured graphs representing 3-manifolds. Therefore Lins' work, together with Proposition 3, gives the link between dipoles on coloured spines and Matveev-Piergallini moves.

In [2] a crystallized structure $\tilde{\Gamma}$ is defined, which is associated to an alternate (balanced) presentation of a group, such that all possible bijoin B on $\tilde{\Gamma}$ are non contracted graphs, since $B_{\tilde{2}}$ is not connected. Deleting a suitable finite sequence of dipoles of type 1_A in $\tilde{\Gamma}$, we obtain a new crystallized structure $\tilde{\Gamma}'$ such that:

- 1. $\tilde{\Gamma}$ is a spine of a closed 3-manifold M^3 iff $\tilde{\Gamma}'$ is a spine of M^3 ;
- 2. if $\tilde{\varGamma}$ (and consequently $\tilde{\varGamma}'$) is a spine of a closed 3-manifold M^3 , there

exists a pondered structure $\overline{\Gamma}'$, associated to $\widetilde{\Gamma}$, such that $B(\overline{\Gamma}')$ is a (seminormal) crystallization of M^3 .

References

- [1] P. BANDIERI, Constructing n-manifolds from spines (to appear).
- [2] P. BANDIERI, Geometric group presentations (to appear).
- [3] P. BANDIERI and C. GAGLIARDI, Generating all orientable n-manifolds from (n-1)-complexes, Rend. Circ. Mat. Palermo 31 (1982), 233-246.
- [4] M. FERRI and C. GAGLIARDI, Crystallization moves, Pacific J. Math. 100 (1982), 95-103.
- [5] M. FERRI, C. GAGLIARDI and L. GRASSELLI, A graph-theoretical representation of PL-manifolds. A survey on crystallizations, Aequationes Math. 31 (1986), 121-141.
- [6] C. Gagliardi, On a class of 3-dimensional polyhedra, Ann. Univ. Ferrara, vol. 33 (1987), 51-88.
- [7] L. C. GLASER, Geometrical Combinatorial Topology, Math. Studies, Van Nostrand Reinhold, New York 1970.
- [8] P. J. HILTON and S. WYLIE, *Homology Theory*, Cambridge Univ. Press, Cambridge 1960.
- [9] S. Lins, A 3-gem approach to Turaev-Viro invariant, Proc. Workshop Differential Geom. and Topology, Alghero (Italy) 1992, 1993.
- [10] S. Lins and A. Mandel, Graph-encoded 3-manifolds, Discrete Math. 57 (1985), 261-284.
- [11] S. V. Matveev, Transformations of special spines and the Zeeman conjecture, Math. USSR Izv. 31 (1987), 423-434.
- [12] S. V. Matveev, Zeeman conjecture for unthicknable special polyhedra is equivalent to the Andrews-Curtis conjecture, Sibirsk. Mat. Zh. 28 (1987), 66-80.
- [13] R. PIERGALLINI, Standard moves for standard polyhedra and spines, Rend. Circ. Mat. Palermo Suppl. 18 (1988), 391-414.
- [14] C. ROURKE and B. SANDERSON, Introduction to PL-Topology, Springer, Berlin 1972.
- [15] A. T. White, Graphs, Groups and Surfaces, North Holland, Amsterdam 1973.

Sommario

In questo lavoro definiamo movimenti combinatori su grafi colorati che rappresentano spine di varietà PL e studiamo gli effetti di tali movimenti sui complessi corrispondenti.

* * *