JINGCHENG TONG (*)

The construction of the similar Ceva-triangle (**)

1 - Introduction

Let ABC be a given triangle. If A_1 , B_1 , C_1 are three points on the sides BC, AC, AB respectively, then $A_1B_1C_1$ is said to be an inscribed triangle in ABC. If furthermore, the lines AA_1 , BB_1 , CC_1 are concurrent, then $A_1B_1C_1$ is said to be a *Ceva-triangle* in ABC.

In [3], K. Seebach proved an interesting theorem. Let $A_0B_0C_0$ be a triangle. Then there is one and only one Ceva triangle $A_1B_1C_1$ inscribed in ABC such that $A_1B_1C_1$ is similar to $A_0B_0C_0$ with $\widehat{A}_1=\widehat{A}_0$, $\widehat{B}_1=\widehat{B}_0$, $\widehat{C}_1=\widehat{C}_0$.

A very natural problem arises: How to construct the unique Ceva triangle $A_1B_1C_1$ if ABC and $A_0B_0C_0$ are given?

In this note, using the idea in [4], we prove that, in general, the above mentioned problem is an impossible construction by ruler and compass. We first deduce a cubic trigonometric polynomial, then give a counterexample to show that, for some given ABC and $A_0B_0C_0$, the uniquely determined Ceva-triangle cannot be constructed by ruler and compass.

2 - A cubic trigonometric equation

Let ABC and $A_0B_0C_0$ be the given triangles, and $A_1B_1C_1$ be the inscribed Ceva-triangle such that $\hat{A}_1 = \hat{A}_0$, $\hat{B}_1 = \hat{B}_0$, $\hat{C}_1 = \hat{C}_0$. All triangles occurring in the paper are assumed to be *oriented triangles*. For example, AB, BC, CA are re-

^(*) Dept. of Math. and Stat., Univ. North Florida, Jacksonville, Florida 32224, USA.

^(**) Received August 30, 1993. AMS classification 51 M 15.

garded as positive segments. Correspondingly the angles *BAC*, *CBA*, *ACB* shall be regarded as positive angles.

Denote by ϕ the angle B_1C_1A . Then it is easily seen that

$$\text{angle }AB_1\,C_1=\pi-\widehat{A}-\phi$$

$$\text{angle }BC_1A_1=\pi-\widehat{C}_0-\phi \qquad \text{angle }BA_1\,C_1=\widehat{B}-\widehat{C}_0-\phi$$

$$\text{angle }CA_1B_1=\widehat{B}+\widehat{B}_0-\phi \qquad \text{angle }CB_1A_1=\widehat{B}_0-\widehat{A}_0-\phi\;.$$

Since $A_1B_1C_1$ is a Ceva-triangle, we have

$$AC_1 \cdot BA_1 \cdot CB_1 = -AB_1 \cdot BC_1 \cdot CA_1.$$

It is easily seen that in the triangles A_1BC_1 , A_1B_1C and AB_1C_1 we have

(2)
$$\frac{BA_1}{\sin(\hat{C}_0 + \phi)} = -\frac{BC_1}{\sin(\hat{C}_0 - \hat{B} + \phi)}$$

(3)
$$\frac{CB_1}{\sin(\hat{B} + \hat{B}_0 - \phi)} = -\frac{CA_1}{\sin(\hat{A} - \hat{B}_0 + \phi)}$$

$$\frac{AC_1}{\sin(\hat{A}+\phi)} = -\frac{AB_1}{\sin\phi} .$$

Hence

(5)
$$\sin(\widehat{A} + \phi) \sin(\widehat{C}_0 + \phi) \sin(\widehat{B} + \widehat{B}_0 - \phi) \\ = \sin\phi \sin(\widehat{C}_0 - \widehat{B} + \phi) \sin(\widehat{A} - \widehat{B}_0 + \phi).$$

Changing the product to be difference, we have

(6)
$$[\cos{(\hat{A} + \hat{C}_0 + 2\phi)} - \cos{(\hat{A} - \hat{C}_0)}] \sin{(\hat{B} + \hat{B}_0 - \phi)}$$

$$= \sin{\phi} [\cos{(\hat{C}_0 + \hat{A} - \hat{B} - \hat{B}_0 + 2\phi)} - \cos{(\hat{C}_0 + \hat{B}_0 - \hat{A} - \hat{B})}]$$

(7)
$$\sin(\hat{A} + \hat{B} + \hat{B}_0 + \hat{C}_0 + \phi) - \sin(\hat{A} + \hat{C}_0 - \hat{B} - \hat{B}_0 + 3\phi) \\ -2 \cos(\hat{A} - \hat{C}_0) \sin(\hat{B} + \hat{B}_0 - \phi) \\ = \sin(\hat{C}_0 + \hat{A} - \hat{B} - \hat{B}_0 + 3\phi) - \sin(\hat{C}_0 + \hat{A} - \hat{B} - \hat{B}_0 + \phi) \\ -2 \cos(\hat{C}_0 + \hat{B}_0 - \hat{A} - \hat{B}) \sin\phi.$$

Since
$$\hat{A} + \hat{B} + \hat{B}_0 + \hat{C}_0 = 2\pi - (\hat{C} + \hat{A}_0)$$
 one gets

$$\sin(\hat{A} + \hat{B} + \hat{B}_0 + \hat{C}_0 + \phi) = \sin(2\pi - (\hat{C} + \hat{A}_0 - \phi)) = -\sin(\hat{C} + \hat{A}_0 - \phi)$$

and relation (7) becomes

(8)
$$-\sin(\hat{C} + \hat{A}_0 - \phi) - 2\cos(\hat{C}_0 - \hat{A})\sin(\hat{B} + \hat{B}_0 - \phi) - 2\sin(\hat{P} + 3\phi)$$

$$= \sin(P + 3\phi) - 2\cos(C - A_0)\sin\phi$$

where $\hat{P} = \hat{A} - \hat{B} + \hat{C}_0 - \hat{B}_0$.

Now, using the formulas

$$\cos 3\phi = 4\cos^3\phi - 3\cos\phi \qquad \qquad \sin 3\phi = 3\sin\phi - 4\sin^3\phi$$

we obtain

(9)
$$K\cos^3\phi + L\sin^3\phi + M\cos\phi + N\sin\phi = 0$$

where

$$(10) K = 8 \sin \hat{P} L = -8 \cos \hat{P}$$

(11)
$$M = \sin(\hat{C} + \hat{A}_0) + 2\cos(\hat{A} - \hat{C}_0)\sin(\hat{B} + \hat{B}_0) - 7\sin\hat{P}$$

(12)
$$N = -\cos(\hat{C} + \hat{A}_0) - 2\cos(\hat{A} - \hat{C}_0)\cos(\hat{B} + \hat{B}_0)$$

$$+ 5\cos\hat{P} - 2\cos(\hat{C} - \hat{A}_0).$$

Remark now that, since we have $\cos^2 \phi = (1 + \tan \phi)^{-1}$, then relation (9) results to be equivalent to

(13)
$$K\cos^2\phi + L\tan\phi\sin^2\phi + M + N\tan\phi = 0.$$

Hence we have the trigonometric equation

(14)
$$(N+L)\tan^3\phi + M\tan^2\phi + N\tan\phi + (K+M) = 0.$$

3 - A counterexample

Suppose that, given the triangles ABC and $A_0B_0C_0$, the Ceva-triangle $A_1B_1C_1$ can be constructed by ruler and compass, then surely the angle ϕ can be constructed by ruler and compass too. Therefore the number $\tan \phi$ must be a constructible number (see [1] or [2]). But the following counterexample shows that for some triangles ABC and $A_0B_0C_0$, the number $\tan \phi$ is not constructible.

Let ABC be an equilateral triangle with unit side. Let $A_0B_0C_0$ be a triangle

with
$$\hat{A}_0 = \frac{\pi}{6}$$
, $\hat{B}_0 = \frac{\pi}{3}$, $\hat{C}_0 = \frac{\pi}{2}$, and consequently $\hat{P} = \frac{\pi}{6}$. Then
$$K = 8 \sin \frac{\pi}{6} = 4$$

$$L = -8 \cos \frac{\pi}{6} = -4\sqrt{3}$$

$$M = -\sin \frac{\pi}{2} + 2 \cos \frac{\pi}{6} \sin \frac{2\pi}{3} - 7 \sin \frac{\pi}{6} = -1$$

$$N = \cos \frac{\pi}{2} - 2 \cos \frac{\pi}{6} \cos \frac{2\pi}{3} + 5 \cos \frac{\pi}{6} - 2 \cos \frac{\pi}{6} = 2\sqrt{3}$$
.

Therefore $\tan \phi$ is the solution of the cubic equation.

(15)
$$2\sqrt{3}x^3 + x^2 - 2\sqrt{3}x - 3 = 0.$$

Let $x = \sqrt{3}y$. Then we have

(16)
$$6y^3 + y^2 - 2y - 1 = 0.$$

Now we check that the polynomial $6y^3+y^2-2y-1$ is *irreducible in rational numbers*. Suppose the contrary, $6y^3+y^2-2y-1=(y-r)$ (ay^2+by+c) , then r must be a rational solution of the equation (16). By a well known result ([2], p. 160), r must be one of ± 1 , $\pm \frac{1}{2}$, $\pm \frac{1}{3}$, $\pm \frac{1}{6}$. It is easily checked by syn-

thetic division that none of them is a solution of equation (16). This shows that $6y^3+y^2-2y-1$ is an irreducible cubic polynomial. Therefore y is not a constructible number. Since $\tan\phi=\sqrt{3}\,y$, ϕ cannot be constructed by ruler and compass.

References

- [1] J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, Reading, Mass., USA 1976.
- [2] T. W. HUNGERFORD, Algebra, Holt, Reinehart and Winston, Inc., New York 1974.
- [3] K. SEEBACH, Ceva-Dreiecke, Elem. Math. 42 (1987), 132-139.
- [4] J. Tong and S. Hochwald, Some developments of Fagnano's problem, Nieuw Arch. Wis. 10 (1992), 11-18.

Sommario

Un controesempio mostra che, assegnati due triangoli ABC e $A_0B_0C_0$, non è possibile, in generale, costruire con riga e compasso un triangolo di Ceva $A_1B_1C_1$, inscritto in ABC e simile ad $A_0B_0C_0$.

,			