JINGCHENG TONG (*) # The construction of the similar Ceva-triangle (**) # 1 - Introduction Let ABC be a given triangle. If A_1 , B_1 , C_1 are three points on the sides BC, AC, AB respectively, then $A_1B_1C_1$ is said to be an inscribed triangle in ABC. If furthermore, the lines AA_1 , BB_1 , CC_1 are concurrent, then $A_1B_1C_1$ is said to be a *Ceva-triangle* in ABC. In [3], K. Seebach proved an interesting theorem. Let $A_0B_0C_0$ be a triangle. Then there is one and only one Ceva triangle $A_1B_1C_1$ inscribed in ABC such that $A_1B_1C_1$ is similar to $A_0B_0C_0$ with $\widehat{A}_1=\widehat{A}_0$, $\widehat{B}_1=\widehat{B}_0$, $\widehat{C}_1=\widehat{C}_0$. A very natural problem arises: How to construct the unique Ceva triangle $A_1B_1C_1$ if ABC and $A_0B_0C_0$ are given? In this note, using the idea in [4], we prove that, in general, the above mentioned problem is an impossible construction by ruler and compass. We first deduce a cubic trigonometric polynomial, then give a counterexample to show that, for some given ABC and $A_0B_0C_0$, the uniquely determined Ceva-triangle cannot be constructed by ruler and compass. ## 2 - A cubic trigonometric equation Let ABC and $A_0B_0C_0$ be the given triangles, and $A_1B_1C_1$ be the inscribed Ceva-triangle such that $\hat{A}_1 = \hat{A}_0$, $\hat{B}_1 = \hat{B}_0$, $\hat{C}_1 = \hat{C}_0$. All triangles occurring in the paper are assumed to be *oriented triangles*. For example, AB, BC, CA are re- ^(*) Dept. of Math. and Stat., Univ. North Florida, Jacksonville, Florida 32224, USA. ^(**) Received August 30, 1993. AMS classification 51 M 15. garded as positive segments. Correspondingly the angles *BAC*, *CBA*, *ACB* shall be regarded as positive angles. Denote by ϕ the angle B_1C_1A . Then it is easily seen that $$\text{angle }AB_1\,C_1=\pi-\widehat{A}-\phi$$ $$\text{angle }BC_1A_1=\pi-\widehat{C}_0-\phi \qquad \text{angle }BA_1\,C_1=\widehat{B}-\widehat{C}_0-\phi$$ $$\text{angle }CA_1B_1=\widehat{B}+\widehat{B}_0-\phi \qquad \text{angle }CB_1A_1=\widehat{B}_0-\widehat{A}_0-\phi\;.$$ Since $A_1B_1C_1$ is a Ceva-triangle, we have $$AC_1 \cdot BA_1 \cdot CB_1 = -AB_1 \cdot BC_1 \cdot CA_1.$$ It is easily seen that in the triangles A_1BC_1 , A_1B_1C and AB_1C_1 we have (2) $$\frac{BA_1}{\sin(\hat{C}_0 + \phi)} = -\frac{BC_1}{\sin(\hat{C}_0 - \hat{B} + \phi)}$$ (3) $$\frac{CB_1}{\sin(\hat{B} + \hat{B}_0 - \phi)} = -\frac{CA_1}{\sin(\hat{A} - \hat{B}_0 + \phi)}$$ $$\frac{AC_1}{\sin(\hat{A}+\phi)} = -\frac{AB_1}{\sin\phi} .$$ Hence (5) $$\sin(\widehat{A} + \phi) \sin(\widehat{C}_0 + \phi) \sin(\widehat{B} + \widehat{B}_0 - \phi) \\ = \sin\phi \sin(\widehat{C}_0 - \widehat{B} + \phi) \sin(\widehat{A} - \widehat{B}_0 + \phi).$$ Changing the product to be difference, we have (6) $$[\cos{(\hat{A} + \hat{C}_0 + 2\phi)} - \cos{(\hat{A} - \hat{C}_0)}] \sin{(\hat{B} + \hat{B}_0 - \phi)}$$ $$= \sin{\phi} [\cos{(\hat{C}_0 + \hat{A} - \hat{B} - \hat{B}_0 + 2\phi)} - \cos{(\hat{C}_0 + \hat{B}_0 - \hat{A} - \hat{B})}]$$ (7) $$\sin(\hat{A} + \hat{B} + \hat{B}_0 + \hat{C}_0 + \phi) - \sin(\hat{A} + \hat{C}_0 - \hat{B} - \hat{B}_0 + 3\phi) \\ -2 \cos(\hat{A} - \hat{C}_0) \sin(\hat{B} + \hat{B}_0 - \phi) \\ = \sin(\hat{C}_0 + \hat{A} - \hat{B} - \hat{B}_0 + 3\phi) - \sin(\hat{C}_0 + \hat{A} - \hat{B} - \hat{B}_0 + \phi) \\ -2 \cos(\hat{C}_0 + \hat{B}_0 - \hat{A} - \hat{B}) \sin\phi.$$ Since $$\hat{A} + \hat{B} + \hat{B}_0 + \hat{C}_0 = 2\pi - (\hat{C} + \hat{A}_0)$$ one gets $$\sin(\hat{A} + \hat{B} + \hat{B}_0 + \hat{C}_0 + \phi) = \sin(2\pi - (\hat{C} + \hat{A}_0 - \phi)) = -\sin(\hat{C} + \hat{A}_0 - \phi)$$ and relation (7) becomes (8) $$-\sin(\hat{C} + \hat{A}_0 - \phi) - 2\cos(\hat{C}_0 - \hat{A})\sin(\hat{B} + \hat{B}_0 - \phi) - 2\sin(\hat{P} + 3\phi)$$ $$= \sin(P + 3\phi) - 2\cos(C - A_0)\sin\phi$$ where $\hat{P} = \hat{A} - \hat{B} + \hat{C}_0 - \hat{B}_0$. Now, using the formulas $$\cos 3\phi = 4\cos^3\phi - 3\cos\phi \qquad \qquad \sin 3\phi = 3\sin\phi - 4\sin^3\phi$$ we obtain (9) $$K\cos^3\phi + L\sin^3\phi + M\cos\phi + N\sin\phi = 0$$ where $$(10) K = 8 \sin \hat{P} L = -8 \cos \hat{P}$$ (11) $$M = \sin(\hat{C} + \hat{A}_0) + 2\cos(\hat{A} - \hat{C}_0)\sin(\hat{B} + \hat{B}_0) - 7\sin\hat{P}$$ (12) $$N = -\cos(\hat{C} + \hat{A}_0) - 2\cos(\hat{A} - \hat{C}_0)\cos(\hat{B} + \hat{B}_0)$$ $$+ 5\cos\hat{P} - 2\cos(\hat{C} - \hat{A}_0).$$ Remark now that, since we have $\cos^2 \phi = (1 + \tan \phi)^{-1}$, then relation (9) results to be equivalent to (13) $$K\cos^2\phi + L\tan\phi\sin^2\phi + M + N\tan\phi = 0.$$ Hence we have the trigonometric equation (14) $$(N+L)\tan^3\phi + M\tan^2\phi + N\tan\phi + (K+M) = 0.$$ ### 3 - A counterexample Suppose that, given the triangles ABC and $A_0B_0C_0$, the Ceva-triangle $A_1B_1C_1$ can be constructed by ruler and compass, then surely the angle ϕ can be constructed by ruler and compass too. Therefore the number $\tan \phi$ must be a constructible number (see [1] or [2]). But the following counterexample shows that for some triangles ABC and $A_0B_0C_0$, the number $\tan \phi$ is not constructible. Let ABC be an equilateral triangle with unit side. Let $A_0B_0C_0$ be a triangle with $$\hat{A}_0 = \frac{\pi}{6}$$, $\hat{B}_0 = \frac{\pi}{3}$, $\hat{C}_0 = \frac{\pi}{2}$, and consequently $\hat{P} = \frac{\pi}{6}$. Then $$K = 8 \sin \frac{\pi}{6} = 4$$ $$L = -8 \cos \frac{\pi}{6} = -4\sqrt{3}$$ $$M = -\sin \frac{\pi}{2} + 2 \cos \frac{\pi}{6} \sin \frac{2\pi}{3} - 7 \sin \frac{\pi}{6} = -1$$ $$N = \cos \frac{\pi}{2} - 2 \cos \frac{\pi}{6} \cos \frac{2\pi}{3} + 5 \cos \frac{\pi}{6} - 2 \cos \frac{\pi}{6} = 2\sqrt{3}$$. Therefore $\tan \phi$ is the solution of the cubic equation. (15) $$2\sqrt{3}x^3 + x^2 - 2\sqrt{3}x - 3 = 0.$$ Let $x = \sqrt{3}y$. Then we have (16) $$6y^3 + y^2 - 2y - 1 = 0.$$ Now we check that the polynomial $6y^3+y^2-2y-1$ is *irreducible in rational numbers*. Suppose the contrary, $6y^3+y^2-2y-1=(y-r)$ (ay^2+by+c) , then r must be a rational solution of the equation (16). By a well known result ([2], p. 160), r must be one of ± 1 , $\pm \frac{1}{2}$, $\pm \frac{1}{3}$, $\pm \frac{1}{6}$. It is easily checked by syn- thetic division that none of them is a solution of equation (16). This shows that $6y^3+y^2-2y-1$ is an irreducible cubic polynomial. Therefore y is not a constructible number. Since $\tan\phi=\sqrt{3}\,y$, ϕ cannot be constructed by ruler and compass. #### References - [1] J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley, Reading, Mass., USA 1976. - [2] T. W. HUNGERFORD, Algebra, Holt, Reinehart and Winston, Inc., New York 1974. - [3] K. SEEBACH, Ceva-Dreiecke, Elem. Math. 42 (1987), 132-139. - [4] J. Tong and S. Hochwald, Some developments of Fagnano's problem, Nieuw Arch. Wis. 10 (1992), 11-18. #### Sommario Un controesempio mostra che, assegnati due triangoli ABC e $A_0B_0C_0$, non è possibile, in generale, costruire con riga e compasso un triangolo di Ceva $A_1B_1C_1$, inscritto in ABC e simile ad $A_0B_0C_0$. *** | , | | | | |---|--|--|--| |