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MARIA A. RaGgUSA (%)

Regularity for weak solutions
to the Dirichlet problem in Morrey space (*%)

1 — Introduction

In this paper we consider the Dirichlet problem for the equation
(1.1) L + byug, — (d;u), + cu = (f))y,

in an open bounded domain Q c R"” with n = 8, where L is an elliptic operator in
divergence form defined by

9
axi

= -9 (.
L= axj(% )

and a; are measurable bounded functions in Q while b;, d; ¢, f; belong to certain
Morrey spaces. Regularity results for loeal solutions to (1.1) or to the related
Dirichlet problem, with hypoteses which do not imply high integrability of the
coeffients or of f; have been proved in recent times by many authors in particu-
lar cases, for example for Poisson and Schriodinger equations (see e.g. [1], [2],
[4], [5], ...) who generalized classical results by [8], [11], [10].

Aizenman and Simon in [1] studied continuity properties of solutions to equa-
tions of the form -—Au+ Vu=f where V, f belong to the Stummel-
Kato class. This assumption does not require high integrability (V, fe LP(Q),

D> —721) as in previous works (see e.g. [8], [11]). We recall that the Stummel-

(*) Dip. di Matem., Univ. Catania, Viale A. Doria 6, 95125 Catania, Italia.
(**) Received March 11, 1994. AMS classification 35 J 25.
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Kato class S(2) is the set of the locally integrable functions f such that

lim sup I} Ay |z —y|>~"dy = 0.

e 0 peQ {yel: jo—-y| <e}

This work has been extended by [2], who replaced 4 with A, where A is a
second order elliptic operator in divergence form.

In the paper [4] it was shown that the Stummel-Kato class may be considered as
a limiting case of the scale of Morrey spaces L*(Q), 0 < A < n, precisely

LY*(Q2)cS(Q)cLY*(Q) Ospusn—-2<a<n.

In [4], [5] Di Fazio studied various kinds of regularity of solutions to special ca-
ses of equation (1.1).

In this paper we assume that the coefficients bZ, d?, ¢ belong to L'7(Q)
with y eln — 2, nl[, proving various regularity results (L?, BMO, ...) for the
solutions of the Dirichlet problem, assuming f; e L *(Q), 0 < A < n. We remark
that we must require y > % — 2 because we want to give a weak statement to
the problem (see Lemma 1) and because if y < n — 2 we do not have regularity
results. In fact for example

2n

w(x) = 1 + k|| (2% =
n—2

|=| 2 log |x]

)

in B1 (0) = B, for convenient k belongs to Hj (B) and is a weak solution to the
2

Dirichlet problem

Sy, vy, + diuw,,) doe = — [ fiv,, do
B B

. 1 . =n 1 @y 2 n—2 .
= (= , B = ey (————
with d; ] (2* Tog |7] ) ] el (B) while f; k”cl(10g ]

are regular functions but neither u e L?(B) for p >2* nor ueL?*(B) if
2> 0.

The same problem has been discussed in [6] by Di Fazio, who assumed
bi = ¢ =(, 4

‘We have been able to remove this restriction refining an iteration argument
he used by means of various technical lemmas we collected in Sec. 3.

‘We wish to thank Prof. E. B. Fabes for some helpful conversation on these
topics.

(2
+2+ 25)
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2 - Preliminaries

Let Q be an open bounded domain in R"(n = 3) such that
[Qx, m)| = {yeQ: la—y| <r)| = 4r"

for » €]0, ¢] where ¢ is the diameter of 2 and A is a positive constant indepen-
dent of xQ and r. Here and in the sequel we denote by |E| the Lebesgue
measure of a measurable set E cR".

For pe[1, + »[ and 2 [0, n[ we set

1
I = swp = [ |f(yp|dy
rel, o> " B (x)nQ
where B,(x) = {y e R": |y — x| <p}. The subset of those functions of LP(Q)
satisfying || |, » < + o will be called the Morrey space L?*(Q), while the set of
those measurable functions f such that

sup t? [{yeQ: | f(y)| >t} NB,(x)| < Co?
t>

for some C > 0 independent of o > 0 and x € 2 will be called the weak Morrey
space LE*(Q).

Obviously we have LP*(Q)cLE*(Q)cL%*(Q) for 1Sp<g< +o and
0<a<mn.

For every feLl.(Q) we set

_ 1 _
”f”*'g"gﬂf?cg @) Bp(fw) | f(y) — fzl dy.

If fis an integrable function in £ we put fz= . [ fy)dy.

lE| &
We will call BMO(Q) (see eg. [7]) the subset of LJ.(Q) such that
[£lls,0 < +o0.
Let us now consider functions ay b;, ¢, f; (4,7 =1, 2, ..., n) defined and

measurable in Q with the hypotheses

L. ay=oa; with ,7=1,2, ..., 7 and u ' |¢|? < a;&;¢; < p|&|? for every
EeR" ae. in ; p is a real positive constant.

L. b7, df, ce L¥7(Q) for i,j=1,2, ..., n with yeln ~ 2, n[.
L. fieL®*(Q) for i,5=1,2,...,n with Ae[0, n[.
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The purpose of our work is to study the regularity of the weak solutions of
(1.1), i.e. the solutions u € H} (Q) to the equation

2.1) J (@ 0, + Dy v + dy vy, + cwv)dw = — [ fiv,, de, Vv e Hi (Q).
0 a

We observe that (2.1) makes sense by virtue of I, Iy, I; (see also the following
Lemma 1).

3 - Preliminary lemmas
We will now give some technical lemmas.

Lemma 1. Let feL*7(Q) with n —2<y<n and uweL?**2(Q) such
that |Vu| e L% (Q) with 0 < v <n —2; then fueL®>7*' " "*2(Q) and

@D futlle, 4+ -2 < CliFlle, , IVlle,, + el 2)

where C is a constont independent of f and u.
For the proof see [6] Lemma 4.1.

Lemma 2. Let feL*»7(Q) with n —2<y<n and weL?’"2(Q) such

v—n+2

that |Vu|eL®*(Q) with 0<v<n—2; then flueL“" 2 (Q) and
+ v
Fun e LV 2 (Q).

Proof. Since

1 1 v—n+2
[ Pluldes(E [ ofrdnr(—L— [ fluldezs e
B.AQ e B,no Tt mt2 pAg
1 9 1 1 9 1 xrtv
and J |fuglde< (= [ fPdn)2 (5 [ widw)z e e
B.NQ e N0 ¢’ BN

where B, is any ball centered at x €2, the result follow from Lemma 1.

2n
Lemma 8. Let ueLn-2""(Q)NLY*(Q) with 0<v<n and 0 Su<mn;
4 + v(n — 2)

2,¢ : —
then we L*°(W) with ¢ P
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Proof. Let B, be any ball centered at x eQ, then we have

2n_ A4
J w?de= [ |ul»vz ju|%+z de
B.NQ B,N0

1 2n n—2 1 4 g +v(n - 2)
s(= f }u{n—2 de)n+2 (= f Iuldx)n+2 p mte
N0 " B.Ao

v

2n du + v(n - 2)
sllullmg?  lulprz o~ o
n-2’

Lemma 4. Let feL*>7(Q) with n—2<y<n and we L>**2(Q) such
that |Vu| e L2 (Q) for 0 <v<2n—y—4. Then

FEyuly)

|o —y|"~2

L(f?u) =] dy e L *(Q)
Q

. _ _ _1_ 1
with pu=y+v—n+2 and = pu 2 " m-g

Flp uy, (y)

. Further

L( fu,) = Qf dy e LI+ (Q)

@ —y|" 2
_1_ 1
with K =S T w=v
Proof. We have
2 2 2 2
() {u(y) (y) 1 (Pu(y) . 1L
L] < f LD g o LW g P@vw)
9 |e—-yl" Q le—y|® o |z—y|"

_1.
2

(I,z(f‘g)(’t:))2 (L (fPu®) @)

From Lemma 1 in [4] we have that I,(f?) is a bounded function. Since
@ <mn -2, we have, as in the proof of Theorem 2 in [3]

Iy ( fzuz)(x))% < C(M<f2u2)(x))*—7§&“_;f

where M(f2u?) is the Hardy-Littlewood maximal function of fiu Zyt,

Since by Lemma 1 f2u2e L7+~ "*2(Q), we have (I,(f2u 2))2 e LPo#(Q)
(see e.g. Theorem 1 in [3]).

Similarly for I,( fu,,).
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Lemma 5. If u is a weak solution of (1.1) let u, be the weak solution of
Lw = —(d;u + f)),, then u —u, = u, is a weak solution of Lw = —(b;u,, + cu)
and there ewists a constant C such that

2 [ |[Vu|Pde<C(E | widv+ | druide+ [ fPdw)
0

B;r‘\ e ngnQ ngﬂﬁ Bg._,n.Q
and
S |Vu,|?dw
B.NQ
3.3) 1
<C(5 [ wide+ [ |Va|Pde+ [ blutde+ cu? dz)
&" B NQ By, N2 BgFﬂ.Q BQ;nQ

where B,(x) is any ball centered at x and B, is the concentric ball of
radius 2¢.

The proof of this last lemma follows from standard arguments using cut-off
functions » and test functions v = u; 7% and v = uy® for (3.2) and (8.3) respect-
ively.

4 - Regularity results

Given feL'(Q), f,ieL?*(Q) i=1,2,,...,n, we recall that a function
uwe LY (Q) is a very weak solution to the Dirichlet problem (see [9])

(4.1) Lu=f+(f), inQ Ulon =0
if for every ¢ e C°(Q) N H(Q) such that L¢ e C°(Q) we hawe

Qf w(x) Le(x) de =Qf (f(@) ¢() — fi () ¢, () da.

If we suppose that f, fZe L¥*(Q) with 0 <) < =, the problem (4.1) has a
unique solution %. Then we can suppose that = u; + u, with 4, being the very
weak solution of the problem

4.1") Lu=(f), 1in& Ulgg =0
and u, the very weak solution of the problem

4.1" Lu=f inQ Ul =0.

Theorem 1. The solution u; of (4.1") has the following regularity
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1
7’&*—)\

i If 0 <) <mn—2, then u; e LE*(Q) where 1 _ :21_ -

Ds
exists a constant C such that ’

and there

P |[{a e Q: |uy ()| >t} N B, (xp)| < Co?|l f; 15

p/
2, x

Jor any t>0 and any ball B,(xy) centered at x,ell

il. If A=mn—2, then u, e BMOy.(Q) i.e. uy e BMO(Q'") for every Q' ccQ
and there exists a constant C = C(n, u, d, diam Q) where d = dist (Q’, 3Q) such
that

1
luslls, 0 < ClFENZ,
iii. If n —2 <X <m then u, s locally Holder-condinuous.

Proof. For the proof of i and iii see respectively [6] Th. 4.3 and
[10].
Now we prove ii. Let B =B (x,) be a ball centered at z,eQ’ with

0<p< —1%— Put B* = By, (xy) and B** = B, (x) for every « € B. Then we have

u, =% + % where % and % are very weak solutions respectively to

4.2) Lu= —(fixp+), in 0 Ul =10
(4.3) Lu= —=(fi(1=y5:)y inQ Ulao=0.

For the solution of (4.2) and (4.3) we have the following representation for-
mulas (see [6] Theorem 3.1)

a@) =~ [fi(Pg, @, ndy u@ =~ [ fi(yg,lx, y)dy
B* ON\B*

where g(x, y) is the Green function for the operator L.

) © SP 5p 0
X - s - =
Let B kszl{yeQ. o < |y -] < 2k_l} Y By
5 5 5
and Ry={ye: 2k51$|y—x|<2kf2}.

Using Caccioppoli’s inequality in the annuli we have the following estimate with
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the Hardy-Littlewood maximal function

|u(x)] SB{ lg,. (@, )| | fi(y)| dy <B*f* |9, @, | [ i) | dy

=)

E Ing(% | ] dy < Z(fg“(ﬂc y)dy>2( ff1 (y)dy)

1
2

<C,§1 g_ fg (x, y)dy)2(( )"ffz(y)d?/) ( )2

2k1

< CeM )T (@)

where we have estimated g(x, ) by |z —y|>~" (see e.g. [9] p. 67). Since for
1<qg<x?2

L m—de < -2 1 (ml7ds)T
q 1
|B| J(MfH?2 dx)e

we have to estimate the last integral.

1
Let ¢ = (Mf22, we have ¢ € L2 " 2(Q) and
t2 |{weQ:y(@) >t} N B,(w)| =t*[{¢ >t} NB| < Co" [ fPlli,n-2 t>0
(see [3] Theorem 1).

1

Cq
|B| "

f(Mfiz)% de = —
B

+ o
Then Tt {y>t}NB|d
0

B + o
=Cge ([t |{g>¢t}NBlat+ [ 771 [{y >t} NB|d)
0 &

€ + @
S qu_n(lBldftq-ldt + Clpnuz ”fz'2||1,71,—2 sf tqwsdt)

'2”1,n~2)'

< Cq(Ei +Clp—2 £

L
q

1
Let ¢ = o1 | f2 ”1 ., we have (- lBI JM 2T da)T < —g]]ffllfn_z.
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For the function % we have

A ) —E@) de = - [] T (g, (@ w) — gy (o)) £i(y) dy | da
|B| & |B| 3 o\
=L rr@de
|B| 2
and J@ys [ (g, ) — g, ¥)y,| | fi(y)] dy

ONB*

SQf [(g(, y) = glae, Y, | | ()| dy + [ [(g(, ) — glacg, )y, | | fi(y)| dy
=<d Qd

where Qu={yeQ:dpo<|y—m| <d} and Q%={yeQ:|y—ux|=d}.

Let Qur={yeQq: 2" o< |y —m| <22}
Ogr={yeQq: 2% < |y—wm| <283},

We have

Qf [Cg(z, y) — g(@g, YD), | | fi()] dy
- 1 1
Skgl(gf lg(, ¥) — 9(xy, ¥))y, | dy)2 (Qf | fi(9)]? dy)2

S -2
sz "%c“ Ig(’v Z/) g(xo,y)|2dy) ( f lfz(y)lzdy)2(2k+zp) 2

(2k+2 )n -2

1
<C|sr? ”1 -2 Z ()T ol I g, ) — gz, »|*dy)2

Da,x
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To estimate the first integral we use the fact that g(-, %) is a weak solution of
Lu=01in B3 T (x9) and then we can apply De Giorgi-Nash’s theorem and
=l

Harnack’s inequality. Then we have

1
2

C I g, y) — gz, v)|*dy)

us

1
sC( [ I 9, y)dm)(—l—-————-]-)z“]dy)E

Tk ! 3[:1:0 J]|B|J an | (%)

1 1
<Ce*( S y dy)2

By |2g — ]2n—4+2a

<Gt @i <ot (TR
i (2kp)n——2+a 2k

then
J 9@ ) =g, 1@ dy < Cllfilln-2 2 <§;)a =Coll fille n-2 -

Similarly we can define

Qb ={yeQ:28"1d < |y — x| <28d}
Qb =lye:26"2d < |y — x| <2¢+1d}

and we have T g, v) — g(@o, ¥y, | | fi(y)| dy
Qd

. 1 1
< kEl ( J g, ) — g, 9y, |Fdy)2 (Qf [fi(p)]? dy)2
=1 dk

=3

<
kgl 2k Zd

1
2

1
( f |(g(x, y) — g(xo,y)lzdyﬁ(gflﬁ(y)lzdy)

< 5 DE TIPS 08 il

gzt =
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We get the last inequality observing for ¥ Eéd,k, that
Lg(@, ¥) — 9w, Y| < g, ¥) + g0, ¥)

1 1 n -2 n — 2
$C( |£U yln—z + Iwo_yln 2)<Cd ( )
Now, if o= —1% for 2 e[0,n — 2[, from [6] p. 5 we have

1._._..

lus (@) < Cll A, 2 (NP » ()
where M(f?) is the Hardy-Littlewood maximal function of f7.

1
For e = (p -2 ”fzz ”1, n-— 2) P we have

-2 1
[l do < CIFEL, P o MDY do

-

J ‘“ulBJ dz <

1
lB,:l B

< L Is2ls (SHrnm > Bl IO > 6 0 B Ja

IBI

N

-2 te =2
—ogn'”f;“é)p) (le |dt+"n 2”fi2”1,n~2 _f t—p}'dt)$0d P “ﬁ”Z,n—2-

Remark 1. The solution u; of (4.1') also belongs to L2**3(Q) if 0<i<n—2.

In fact, if we let ¢ > 0,2, = {® e Q: |u, ()| >t} and B, (x) any ball centered
at x € Q2 then we have

4+ o
J ufde=2 [ ¢|(Q,NB,)|dt
0

B,NQ

g +
=2[t|(Q,NBY|dt+2 [ t|(Q,NB,)|dt < Cle?p™ + p*e? P ﬁl
0 e

L+ 2
=3 | £illo, >, the result follows.

and choosing ¢ =
Theorem 2. The solution us of (4.1") has the following regularity

i If0 <2 <n—2then uy e L *(Q) where Ql“ =% nik
exists a constant C such that D

P |{.'17 e : lul (a:)l > t} N Bc(xo)l = CP7”f“§)f;

and there

ii. If A=n—2 then uy e BMOy (Q); i.e. use BMO(Q') for every Q'ccQ
and there exists a constant C = C(n, ., d, diamQ) where d = dist(Q', Q) such
that g, 00 < C|flli,n—2-

fi. Ifn—2<2x<n then up is locally Hoélder-continuous.
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Proof. For the proof of i and iii see [5]; ii is partially studied in [5]. In parti-
cular in [5] Theorem 2.2 it is shown that if 2, € Q' ccQ and B, (%) is a ball cen-

tered at @y with 0 < ¢ < g, then

1 I o0 @) = v e | do < CJ Flly o

(4.4) _
|B. ()| B,

We will now prove (4.4) for % < p < diam Q.

Since u, is the very weak solution of (4,1”), we have the reprensentation for-
mula (see e.g. [5])

g (%) =Qf g(x, y) f(y)dy

where g(«, ) is the Green’s function of L.
As in Theorem 1 we can estimate g(z, %) by |z —y|*~". We have

il

luz ()| < Cf =
2 |le—yl"

dy = CL(f)(x).

From a result about Riesz’s potentials (see [3] Theorem 2), since

FeLb™~2(Q) for 0 < 2 < n — 2 we have I,(f) e L& *(Q) where % -1- %
and '

t7[{w e Q: lup(@)] >t} N B, (w)| =t [(Juz| > 1) N B,| < G*| 1),

for any ball B, (x,) centered at xye Q' and any ¢ > 0.
Then from

l_éT [ us—usp| dxs—% Jup| de<Cd™"[ |up|de=Cd ™" |(|us| >t)NB,| di
B, e" B, B, 0

€ -+ oo
=Cd"([|(Jug| >t)NBJdt+ | |(Juz| >¢) N B,|db)
0 &

gl™¢

+
SCA™ (B e+ C Al [ 170d) < Ca™ e+ M FI =3

)

A_
choosing ¢ = an | 7ll1,, we drow the conclusion.

Remark 2. The solution u, of (4.1") also belongs to L *¥Q) if 0<A<n—2.
The proof is similar to that of Remark 1.



[13] REGULARITY FOR WEAK SOLUTIONS... 367

(Main) Theorem 8. Let u be a weak solution of (1.1) and f;,e L**(Q).
Then

. . 1 1 1 .
i. ueLu’jf-”‘(Q)wheTe—?—D;=§~n__)\2f0<)\<n—2
il. ueBMO, (Q)ifr=n—2

ii. u ts locally Holder-continous if n —2 < <m,.

Proof. To prove i we consider the weak solution « of the Dirichlet problem
for the equation (1.1) as u; + u,, where % is the weak of the Dirichlet problem for
the equation Lw = —(d;u + f;),, and u, is the weak solution of the Dirichlet prob-
lem for the equation Lw = —(b;u,, + cu).

We will note that u; and u, are moreover the very weak solutions of the same
problems. We now use an iteration process. We will show the first step of this
process.

We can suppose I, to be satisfied with y =n — 2 + 7);—, with & e N such that

1 n—2

5 < T 1. With such a choice we get n—-2<y<min@rn—4-1,n—2+2).

As u is a weak solution of (1.1) we have ue L*%(Q), |Vu| e L%°(Q)
and, from Lemma 1, d;u e L%7~"*2(Q). From Theorem 1, u, e LPr7o(Q), where

Yo=y—n+2 and 1 _1_ 1  prom Remark 1, uye L>7*2(Q) and

p*/o h 2 =7
from (8.2) |Vu;| e L270(Q). , py L
From Lemma 2 b;u, + cueL" 2 (Q), and from Theorem 2. u, eL,z 2(Q)

X
where 51— =1- 2 > It follows from Remark 2 that uzeLI' 2 +2(.Q).
e
3 n- g
2
Then applying Lemma 3 uy e L®°0*2(Q), where op= —1%
n+ 2
From (3.3) we have
I | Vug|tde < C( 1 [ ulde + 1 [ ufde
B.AO pT0*2 B, no e 2B, no
+-L I |Vuy|®de + i [ bfuldx + L [ cuPdwx)p.
o7 By N0 e B 0o e B, N0

We now observe that |Vauy| e L% (Q), because u; e L*>70*2(Q), b;u and

1
|c| 2w belong to L®7(Q) and |Vu,| e L%70(Q).
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r, 2
So by Lemma 2 biuxi+cueL1’ 22 (Q). Then, from Theorem 2,
. =Y g % 14
we L (@, a= L + 3, So=1- 25

From the representation formula we have

and from Remark 2 u, e L1**2(Q).

[ug ()] = | Qf(bi(y)ux,-(y) + c(y)uly) gz, y)dy|

b; (y) g (y) c(y)uly)
<oy W@ g 4 1D gy o b ) + Leaa.
a  |e—yl|" 2 |z-y|"
F Pulr — 1 . 1 1
rom Lemma 4 I,(cu) € L (), where u = y4 + oq, 7o T m—g and
L (biu,) € LPv 0 (Q), where - = = — —L— Then u, e L2 ™(Q) and, with

P, 2 M—a

a proof similar to Remark 1, uzeLz*’ n—2 (Q).

Then applying Lemma 3 we obtain uyeL®%0*2(Q) and from (8.3)
|Vaig | & L% %0 (Q).

Iterating this process we have u, (and then wu)eL?®70*2(Q) and
|Vau| e L2 10(Q).

Now since u e L%70"2(Q) and |Vu| e L% (Q) it follows from Lemma 1
diu e L0 (Q).

We note that 2y,< 2. As above we obtain 2, e L0 ®0(Q) where

1 _ 1 1
pZ_yo T2 n- 2v¢
e L2 2(Q). After h steps we have the statement.

To prove ii and iii we also observe that uwe L™ *(Q) Vuel0,n—2[,
i’% = -;— - 7771—# Then d;ueL?7"#(Q) because wueL**T2(Q) and
|Vu| e L#*(Q). If u is chosen such that 2n —4 -y <u <n—2 we have
diu+f,ie L¥*(Q) with n —2<t=min(}, yo+py). Then from Theorem 1
%y € BMO,,.(Q) if A=n—2 and u, is locally Holder-continous if A > n — 2.

. As before, we have by iteration u, (and then u)

Y ol
LE+E .
Moreover, because of b;u,, +cueL™ 2 " 2 (Q), if we choose  as above, we

have L + % =2 n — 2 and we obtain the desired result for u,.

2

Remark 3. If b;=c¢ =0 the proof of the last theorem gives a simplified
version of that of Theorem 4.3. in [6]
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Sommario

Si studia la regolarita delle soluzioni dell’equazione (1.1) nell’ipotesi che i coefficien-

ti e i termini noti appartengano o convenienti spazi di Morrey.






