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Almost contact homogeneous manifolds (**)

1 - Introduction

Let (M, ¢, & 7, g) be an almost contact metric manifold. More precisely, M
is a @~ differentiable manifold of dimension 2n + 1, ¢ is a (1, 1)-tensor field, & is
a vector field and » is a 1-form on M such that

(1.1) o?=—I+9®¢ n(&) =1

where I denotes the identity transformation. The Riemannian metriec g is com-
patible with ¢, ie.

1.2) 9(eX, ¢Y) =g(X, ¥) — n(X) n(Y)

for all vector fields X, Y. For more details we refer, for example, to[2].

An almost contact metric manifold is said to be an almost contact homoge-
neous manifold if a Lie group G of isometries acts transitively and effectively
on M and ¢ is invariant under the action of the group G. Applying a result of
Kiriéenko [9] on homogeneous Riemannian spaces with invariant tensor strue-
tures, we have the following infinitesimal characterization of almost contact ho-
mogeneous manifolds (see also [4]).

Theorem 1. A connected, simply connected and complete almost contact
manifold (M, o, £, v, g) is homogeneous if and only if there exists a tensor field
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T of type (0, 3) such that
(1.3) Vg=0 VR=0 Vr=0 Vio=0

for every vector field X on M. Here V=V — T, V is the Levi-Civita connection
of M, R is the Riemannian curvature tensor and T is the tensor field T in the
form (1, 2).

Such a tensor T will be called an almost contact homogeneous structure. The
compact Lie group U(n) X 1 acts in a natural way on the vector space of tensors
with the same symmetries of the almost contact homogeneous structures. In[6],
D. Chinea, C. Gonzalez and E. Padron decomposed such a vector space into
eighteen invariant and irreducible subspaces. Due to the presence of so-called
isotypic components (i.e. isomorphic subspaces), many different decompositions
are possible. Of course, a particular choice must be motivated by geometrical
reasons: in [8] a new decomposition, which fits nicely with the classes of Rie-
mannian homogeneous structures of F. Tricerri and L. Vanhecke [11], is
given.

The main purpose of this note is to use this decomposition in order to obtain
some geometrical results about almost contact homogeneous manifolds. More
precisely, in Section 2, after a short review of the decompositions described in
[8] and [6], we compare them with the classes of Riemannian and almost contact
homogeneous structures found in [11] and in [3], respectively. In this way, we
get the complete classification of naturally reductive almost contact manifolds
divided into 25 classes. Among other results, it follows that a naturally reduc-
tive almost cosymplectic manifold is cosymplectic; a nearly k-cosymplectic mani-
fold of type & is cosymplectic; a nearly trans-Sasakian manifold of type &; is
trans-Sasakian.

In the last Section we discuss some examples which show that the inclusions
between some classes are strict.

2 - Geometrical results

Let (M, ¢, & n, g) be an almost contact metric manifold of dimension 27 + 1,
n = 3. If ¢ denotes the fundamental 2-form of M defined by

2.1) ¢(X, ¥) = g(eX, V)

for all X, Y e X(M) (Lie algebra of @ vector fields), it is well known that the
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covariant derivative V¢ verifies
(Vx )Y, Z) = = (Vx$)(Z, ¥)

(2.2)
= = (V)oY 2) + n(Y)(Vx@)(& Z) + n(Z)(Vx eXY, &

for all X, Y, Z e X(M).

In [3] Chinea and Gonzalez decomposed the vector space C of all tensors of
type (0, 3), enjoying the same symmetries as V,¢ in (2.2), into twelve irre-
ducible subspaces &, invariant under the action of the group U(n) (regarded as
a subgroup of U(wn) X 1). In this way, they characterized some classes of almost
contact manifods in terms of invariant subspaces of G.

We give here a new description of the classes @;, which will be useful later.
For every peM, (T, M, ¢,, %y, 7,,9,) is an almost contact vector space.
Having fixed an adapted orthonormal basis (ey, ..., €,, gei, ..., ge,, &) of T, M,
there is a standard representation of U(n) X 1 on T, M = V. As well known we
have V = V@ R¢ where V = {X e V|g, (X, £) = 0}. Moreover (¢, g,) defines on
V an almost Hermitian structure and V behaves like the tangent space to an al-
most complex manifold. It follows from Theorem 8.1 of [8] that

23) =22 )@ 1D2[2 b ND2RD 2DV ]D[A] D [A> ] D [231].

We refer to [8] for more details and to [7] and [10] for the notation adopted. An
inspection of their dimensions as a function of » shows that there are the follo-
wing isomorphisms with the classes of [3]:

e =D @ =[A] G =gl
(2.4) Cy= Cp=[1"7] C;=C;=R Cr=C=[§"]
Cy=[s>7] Cpo=Cy =[2%"].

As it is shown in [9], a connected m-dimensional homogeneous Riemannian
manifold (M, g) admits a Riemannian homogeneous structure T, i.e., a tensor
fields which satisfies the first three conditions of Theorem 1. In [11] Tricerri and
Vanhecke considered the vector space J of all tensors with the three mentioned
simmetries of T’ and decomposed it into three irreducible components J;, invari-
ant under the action of the orthogonal group O(m). In this way, they obtained a
complete classification of the Riemannian homogeneous structures divided into
eight classes. For example, the class J5 characterizes the naturally reductive ho-
mogeneous manifolds. Moreover, when M is an almost contact homogeneous
manifold, there is an induced action of U(xn) X 1 cO(2n + 1) on I, which further
decomposes into eighteen invariant subspaces d; ([8], Section 2). The connection
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between the two decompositions is the following
(2.5) H=08 H=06d..0dg FWN=0;..00
where

==y = =A""] G=dg=d=R da=[>’]

26) Ay=C=[5"] s = Ay =[22°] == Ay =[25"]
Qo == [B] Ay = [A] Ay =[c*°].

Thus, the connected, simply connected, almost contact naturally reductive ma-
nifolds of dimension 2% + 1, n > 2, are classified into 2° classes given by all the
invariant subspaces of the decomposition of ;.

Using the methods of [8], Section 2, one can get an explicit description of the
various subspaces @;. Here, we list only the classes needed for the examples of
Section 3.

Ay ={T € T|Txyz = (X, )UZ) — (X, Z)Y(Y), b e V¥, bop =0}
6 = {T & 7| Ty = 100 Tz + 10N Toiz + 1(2) T, s (1) = 0}
Q={TeT|Txyz= -2—11—7,— (XN @Y, Z)+0(YXX, 9Z)+n(ZXeX, Y)), C3(T)(£)=0}
Qi = {7 & 1 Tavz = 1D Toxeez + (2 Totere = 10 Tz + 1D Taye,

8, Tz =0, @®=0, cx(l)=0}

for all X,Y,ZeV. The traces €5 such that ¢y are defined by

2n+1 2n
@.7) QDX = 2 Togex (DX = 2 Txozn
where (eq, ..., €s,..1) is an orthonormal basis of V and (e, ..., €z,) is an or-

thonormal basis of V.
The last condition of Theorem 1 can be written as

(28) (Vx¢)(Y, Z) = —TXpYZ - TXY?Z X, Y, Z € X(M)

and this leads one to consider the homomorphism A:J+ € of U(n) X 1-modules
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defined by
2.9) W T)xyz = Txoyz + Txyez »

for all X, Y, Ze X(M).

Let @ be a subspace of J, invariant with respect to the representation of
U(n) x 1. If T is a homogeneous almost contact structure on M and 7 e d for
any pe M, we say that M s of type A and write M e d.

Now we give some geometrical results. For the definitions of the classes of
almost contact manifolds which appear in the theorems, we refer to [3].

Theorem 2.
i If Meds,, then M is o trans-Sasakiaon manifold of type 7.

ii. If Medy, then M is a mearly k-cosymplectic naturally reductive
manifold

fii. If M edg, then M is a trans-Sasakian naturally reductive mani-
fold.

iv. If M e 1, @ dy, then M is a semi-cosymplectic and normal naturally re-
ductive manifold.

v. If M edy, then M is a trans-Sasakian manifold of type ;.
vi. If M e Qyq, then M is a cosymplectic manifold of type .

vii. If M € G35 D A5 D Ay, then M is a homogeneous semi-cosymplectic nor-
mal manifold of type .

Proof. Since the proofs of the above results are very similar, we give the
details only for i. If T € @, = R, then A(T) € 2R = @ @ G, and, from the classifi-
cation of almost contact manifolds given in [3], we see that G @ &; is the class of
the trans-Sasakian manifolds.

Theorem 3. A naturally reductive almost cosymplectic manifold is
cosymplectic.

Proof If M is naturally reductive, then M e J;. From (2.5) and (2.6)
it follows that T e[A> ) ®[A3 |B AL ]D[A2 ) DA} 1D R. Since M is an
almost cosymplectic manifold, in [3] it is shown that A(T) = V¢ e [A] @ [+* "],
then V¢ =0 and M is cosymplectic.

In a similar way, we get



326 A. FINO [6]

Theorem 4. A nearly k-cosymplectic homogeneous manifold of type J s
cosymplectic. A nearly trans-Sasakian homogeneous manifold of type J; is a
trans-Sasakian manifold.

Theorem 5. An almost contact homogeneous manifold is cosymplectic if
and only if it belongs to the subspace

@10) I, = {T € T|Txyz = Txorez + 70 Tz + (%) Ty, X, Y, ZeV}.

Proof. Since J, = Kerh, from (2.8) it follows that M € . if and only if
Vé = 0.

As stated in the Introduction, Chinea, Gonzales and Padron gave another
decomposition of  under the action of U(n) X 1 (see [6], Prop. 2). They first
noted that 9= g, @ 9 where

(211) {7; - {T [=3 jl TXYZ = _TX¢Y?Z + I](Y) TXEZ + I)(Z) TXYE}
and then proved that
(212) 51:%13@"'@“){:18. 5‘_:3{/‘1@‘..®36‘12

each ¢ being an invariant and irreducible subspace. From (2.11) it is easy to
see that J_ == @. This fact and Theorem 3.1 of [8] imply that there are the fol-
lowing isomorphisms

;=G 1=1,2,3,4,9,10, 11, 12

(2.13)
3C5z@6 3((;:@5 3C7z68 3C8=GY‘

This allows us to find geometrical meaning of some of the classes H;.

Theorem 6.

i. If MeaC, then M is a nearly k-cosymplectic homogeneous mani-
Jold.

ii. If MedG®a, then M is an almost cosymplectic homogeneous
manifold.

iii. If M e (D g, then M is a trans-Sasakian homogeneous moni-
fold.

iv. If Me ;P G, then M is a quasi-Sasakion homogeneous mant-
Sold.
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v. If M e 3G @ 3G, D 3G, then M is a semi-cosymplectic normal homoge-
neous manifold.

vi. If M e 30 D 3G @ I, then M is a nearly trans-Sasakian homogeneous
manifold.

vii. If M e 96, @ 3G @ 3G D 3, then M is o quasi-k-cosymplectic homoge-
neous manifold.

vili. If MedG® ... B 3G, then M is a normal homogeneous manifold.

ix. If Med, @ ... ® Iy, then M is an almost k-contact homogeneous
manifold.

X IfMed,@IDIGDIGD ... ® Iy, then M is an semi-cosymplectic
homogeneous manifold.

Proof. In all cases we use the following remark: if T'e 3¢, c-J_, ‘then
V¢ e @, with 7 and j such that ¢ = G (see (2.12)).

3 - Examples

A. The following is an example of an almost contact homogeneous structure
of type J; which belongs to @,. Let H2**1 = {(yy, ..., Yon+1) € RZ** 1|y, > 0}
be the 2n + 1-dimensional hyperbolic space endowed with the Riemannian
metric

2n+1

8.1) g = (cy,) 2 '21 (dy,)* ceR ¢>0.

The vector fields E; = cy; ( % »i=1,...,2n + 1, form an orthonormal basis for
i

(H?*1 g). Put £=E,, then the tensor T given by
3.2) Txyz =9(X, Vg5, Z) — 9(X, Z)g(5, V) X, YeXH™')

is a Riemannian homogeneous structure (see [11]). If we define ¢ by

2n+1

(3.3) quh=k2 okE, ofec> @™y  p=1,..,2n+1
=1

then ¢ satisfies the last condition of Theorem 1 if and only if the components o}
are constant on H?**!. An explicit computation shows that 7T is an homoge-
neous contact metric structure which belongs to @,.
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B. Let G(k) be the connected simply-connected 3-dimensional Lie group of
matrices

(34)

[
«
|
o
n
O - OO
_oN W R

where , ¥, 2 € R and k = 0 is a fixed real number. G(k) is an example of an al-
most contact manifold which admits an almost contact homogeneous structure
which belongs to 3G @ 9¢;. To see this, let us consider the linearly independent
left invariant 1-forms on G(k)

(8.5) a«=e "dz B=e"dy n=dz.
The corresponding dual basis of left invariant vector fields is formed by

— kzi = —-kzi
(3.6) Xi=e % X,=e 2y

Since [X;, X351 = —kX;, [Xz, X5] = kX, and the other brackets are zero, G(k) is
a solvable non-nilpotent Lie group and g = a ® « + BQ B + 1 & n is a left invari-
ant metric. If we put

(37) gDXl = X2 ?XZ = X1 X3 = E
the tensor field T given by
(3.8) 29(TxY, Z2) =g(X, Y], Z2) — g(IY, Z], X) + 9((Z, X], V)

X, Y, Z e g (Lie algebra of G(k)), is an almost contact homogeneous structure
which satisfies

(3.9) Tyre= —k8(X)  Torr=0  Typ:=ka(X).

One can check that G(k) belongs to the class IGD IGc I .

C. Let G be the Lie group of real matrices of the form,

e 0 =«
(3.10) ( 0 e* y
0 0 1
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endowed with the left invariant metric
(3.11) g=a1®a1+a2®a2+a3®a3 A>0

where o! = e?dx, «® = ¢ "*dy, «® = Adz. We shall see that G is an almost contact
homogeneous manifold which belongs to the class 9¢;. The dual basis of invariant
vector flelds

) _ g _138
(3.12) Y] =€ e Y2 e ay Y3 % oz
satisfies
_ 1 1
(38.13) [Ys, Y{] = > Y, [Ys, Yol = > Y,

and the other brackets are zero. If we define
(3.14) @Yl = Y2 @Yz = '*Yl Y3 =&

we get an almost contact structure on G such that the tensor T of (3.8)
satisfies

315  Tang,=0  Tyr=— % (X)) Ty = - % 04 (X)

where X € g and g is the Lie algebra of G. One can check that G belongs to the
class 3G c I_ . We also note that (G, ¢) is a 4-symmetric space (see [3]) which is
isomorphic to the semi-direct product of R and R?, both with the additive group
structure.

D. The following example shows that the inclusion @; (or @g) c@; P G5 is
strict.
Let H(p, 1) be the group of real matrices

1 A C
(3.16) a=|0 I, 'B
0 0 1

where I, denotes the pXp identity matrix, A=(a,,..,a,), B=(by,..,b,)eR?,
and ce R. H(p, 1) is a connected, simply connected, nilpotent Lie group of di-
mension 2p + 1, called generalized Heisenberg group. A global system of coordi-
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nates (¥;, ®,+4,2), 1 <i<p, on H(p, 1) is given by
3.17 x;(a) = q; T, 4 (@) = b; 2(a)=c 1si<p.

A Dbasis for the left invariant 1-form on H(p, 1) is
P
(3.18) a; = d; tpsi=dTpss y=dz— 2 %;d2,; 1<i<p
=1

and its dual basis of left invariant vector fields is given by

_ 9
axi

(3.19) X;

2p

Define a left invariant metric on H(p,1) by g= 2 0;Qa; +r®7.
i=1

Put

(320) @XZ = Xp+i gDXp +i = _Xi Z = E

Then (g, &, 3, g) is an almost contact metric structure on H(r, 1). By Theorem
2.1 of [5), all contact homogeneous structures T on (H(p, 1), g) are given by

P
2T = .Zl(ai®“p+i/\‘0 tapi®nNay)

i=

8.21) ,
+ Z[Q/l]@ (ai/\ & + Xp+i /\OCp+j) + Zb,-j@oci /\ 0(1;_'_]‘]
.7
where a; and b; are 1-forms such that a; = —aj;, by = by; and whose V-covariant

derivative verifies some special conditions (see (2.4) and (2.5) of [5]).
Furthermore, T e J; if and only if a; =0, for all 7,4, b; =0 for ¢ =j and

by = %7}. By explicit calculation, we can check that H(p, 1) belong to the

class
(822) A ® Ay ={T e J|Tyyz = n(X) Teyoz + 0(¥) Toxeoz + 0(Z) Toxoy: }

but T does not belong to @; nor to ds.
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E. The following is an example of an almost contact homogeneous structure
of type J; which belongs to d,4. Let G(a, b) be the 3-dimensional Lie group of
real matrices

e™™ 0 0 e %z
0 e bz 0 e bz Y
(3.23) .
0 0 1 5
0 0 0 1
with the left invariant metric
(3.24) g = dz® + e da? + e 27 dy? .

The case a + b =0 corresponds to the hyperbolic space H?. The orthonormal
basis of left invariant vector fields given by

3 Y__e—aza Y___bza

(3.25) Yl = 5 2 = 'é’;v“

satisfies [Y;, Yo] = —aY,, [Y,, Y3] = bYs, the other brackets being zero. Then
the conditions

(3.26) gDYz = Y3 QDY3 = _Yg Y1 = E

define an almost contact strueture on G(a, b) such that the tensor T of (3.8)
satisfies

(3.27) Ty,y,:= —a Ty,y:=0.

If a + b # 0, the homogeneous structure T is of type 9, @ J and belongs
to g if and only if o =b. In this case, an explicit calculation shows that
T S (5114 .
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Sommario

Il confronto tra due diverse classificazioni delle strutture quasi contatto omogenee

conduce ad alcuni risultati geometrici per diverse classt di varietd quasi contatio omoge-
nee. Alcuni esempi vengono sviluppati dettagliatamente.
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