Anna Fino (*)

Almost contact homogeneous manifolds (**)

1 - Introduction

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold. More precisely, M is a \mathcal{C}^{∞} differentiable manifold of dimension 2n+1, φ is a (1,1)-tensor field, ξ is a vector field and η is a 1-form on M such that

(1.1)
$$\varphi^2 = -I + \eta \otimes \xi \qquad \qquad \eta(\xi) = 1$$

where I denotes the identity transformation. The Riemannian metric g is compatible with φ , i.e.

(1.2)
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X) \eta(Y)$$

for all vector fields X, Y. For more details we refer, for example, to [2].

An almost contact metric manifold is said to be an almost contact homogeneous manifold if a Lie group G of isometries acts transitively and effectively on M and φ is invariant under the action of the group G. Applying a result of Kiričenko [9] on homogeneous Riemannian spaces with invariant tensor structures, we have the following infinitesimal characterization of almost contact homogeneous manifolds (see also [4]).

Theorem 1. A connected, simply connected and complete almost contact manifold $(M, \varphi, \xi, \eta, g)$ is homogeneous if and only if there exists a tensor field

^(*) Dip. di Matem., Univ. Torino, Via Carlo Alberto 10, 10123 Torino, Italia.

^(**) Received January 7, 1994. AMS classification 53 C 30. The paper has been partially supported by CNR, Italy.

T of type (0,3) such that

(1.3)
$$\widetilde{\nabla}q = 0$$
 $\widetilde{\nabla}R = 0$ $\widetilde{\nabla}T = 0$ $\widetilde{\nabla}_{X}\varphi = 0$

for every vector field X on M. Here $\widetilde{\nabla} = \nabla - \widetilde{T}$, ∇ is the Levi-Civita connection of M, R is the Riemannian curvature tensor and \widetilde{T} is the tensor field T in the form (1, 2).

Such a tensor T will be called an almost contact homogeneous structure. The compact Lie group $U(n) \times 1$ acts in a natural way on the vector space of tensors with the same symmetries of the almost contact homogeneous structures. In [6], D. Chinea, C. Gonzalez and E. Padron decomposed such a vector space into eighteen invariant and irreducible subspaces. Due to the presence of so-called isotypic components (i.e. isomorphic subspaces), many different decompositions are possible. Of course, a particular choice must be motivated by geometrical reasons: in [8] a new decomposition, which fits nicely with the classes of Riemannian homogeneous structures of F. Tricerri and L. Vanhecke [11], is given.

The main purpose of this note is to use this decomposition in order to obtain some geometrical results about almost contact homogeneous manifolds. More precisely, in Section 2, after a short review of the decompositions described in [8] and [6], we compare them with the classes of Riemannian and almost contact homogeneous structures found in [11] and in [3], respectively. In this way, we get the complete classification of naturally reductive almost contact manifolds divided into 2^6 classes. Among other results, it follows that a naturally reductive almost cosymplectic manifold is cosymplectic; a nearly k-cosymplectic manifold of type \mathcal{I}_2 is cosymplectic; a nearly trans-Sasakian manifold of type \mathcal{I}_2 is trans-Sasakian.

In the last Section we discuss some examples which show that the inclusions between some classes are strict.

2 - Geometrical results

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold of dimension 2n + 1, $n \ge 3$. If ϕ denotes the fundamental 2-form of M defined by

$$\phi(X, Y) = g(\varphi X, Y)$$

for all $X, Y \in \mathfrak{X}(M)$ (Lie algebra of \mathfrak{C}^{∞} vector fields), it is well known that the

covariant derivative ∇¢ verifies

(2.2)
$$(\nabla_X \phi)(Y, Z) = -(\nabla_X \phi)(Z, Y)$$

$$= -(\nabla_X \phi)(\varphi Y, \varphi Z) + \eta(Y)(\nabla_X \phi)(\xi, Z) + \eta(Z)(\nabla_X \phi)(Y, \xi)$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

In [3] Chinea and Gonzalez decomposed the vector space \mathcal{C} of all tensors of type (0, 3), enjoying the same symmetries as $\nabla_x \phi$ in (2.2), into twelve irreducible subspaces \mathcal{C}_i , invariant under the action of the group U(n) (regarded as a subgroup of $U(n) \times 1$). In this way, they characterized some classes of almost contact manifods in terms of invariant subspaces of \mathcal{C} .

We give here a new description of the classes \mathcal{C}_i , which will be useful later. For every $p \in M$, $(T_pM, \varphi_p, \xi_p, \eta_p, g_p)$ is an almost contact vector space. Having fixed an adapted orthonormal basis $(e_1, \ldots, e_n, \varphi e_1, \ldots, \varphi e_n, \xi)$ of T_pM , there is a standard representation of $U(n) \times 1$ on $T_pM = V$. As well known we have $V = \bar{V} \oplus R\xi$ where $\bar{V} = \{X \in V | g_p(X, \xi) = 0\}$. Moreover (φ, g_p) defines on \bar{V} an almost Hermitian structure and \bar{V} behaves like the tangent space to an almost complex manifold. It follows from Theorem 3.1 of [8] that

$$(2.3) \qquad \mathcal{C} \simeq 2 \left[\left[\lambda^{2, 0} \right] \right] \oplus \left[\sigma^{2, 0} \right] \oplus 2 \left[\lambda_0^{1, 1} \right] \oplus 2 \mathcal{R} \oplus 2 \left[\left[\lambda^{1, 0} \right] \right] \oplus \left[\mathcal{A} \right] \right] \oplus \left[\lambda^{3, 0} \right] \oplus \left[\left[\lambda_0^{2, 1} \right] \right].$$

We refer to [8] for more details and to [7] and [10] for the notation adopted. An inspection of their dimensions as a function of n shows that there are the following isomorphisms with the classes of [3]:

As it is shown in [9], a connected m-dimensional homogeneous Riemannian manifold (M, g) admits a Riemannian homogeneous structure T, i.e., a tensor fields which satisfies the first three conditions of Theorem 1. In [11] Tricerri and Vanhecke considered the vector space \mathcal{T} of all tensors with the three mentioned simmetries of T and decomposed it into three irreducible components \mathcal{T}_i , invariant under the action of the orthogonal group O(m). In this way, they obtained a complete classification of the Riemannian homogeneous structures divided into eight classes. For example, the class \mathcal{T}_3 characterizes the naturally reductive homogeneous manifolds. Moreover, when M is an almost contact homogeneous manifold, there is an induced action of $U(n) \times 1 \subset O(2n+1)$ on \mathcal{T} , which further decomposes into eighteen invariant subspaces α_i ([8], Section 2). The connection

between the two decompositions is the following

$$(2.5) \mathcal{I}_1 = \mathcal{C}_1 \oplus \mathcal{C}_2 \mathcal{I}_2 = \mathcal{C}_9 \oplus \ldots \oplus \mathcal{C}_{18} \mathcal{I}_3(V) = \mathcal{C}_3 \oplus \ldots \oplus \mathcal{C}_8$$

where

$$\begin{array}{lll} \mathcal{C}_{1}\simeq\mathcal{C}_{5}\simeq\mathcal{C}_{11}\simeq\mathcal{C}_{18}\simeq\left[\!\left[\lambda^{1,\,0}\right]\!\right] & \mathcal{C}_{2}\simeq\mathcal{C}_{8}\simeq\mathcal{C}_{9}\simeq\boldsymbol{R} & \mathcal{C}_{3}\simeq\left[\!\left[\lambda^{3,\,0}\right]\!\right] \\ \\ (2.6) & \mathcal{C}_{4}\simeq\mathcal{C}_{13}\simeq\left[\!\left[\lambda^{2,\,1}\right]\!\right] & \mathcal{C}_{6}\simeq\mathcal{C}_{17}\simeq\left[\!\left[\lambda^{2,\,0}\right]\!\right] & \mathcal{C}_{7}\simeq\mathcal{C}_{15}\simeq\mathcal{C}_{16}\simeq\left[\lambda^{1,\,1}_{0}\right] \\ \\ & \mathcal{C}_{10}\simeq\left[\!\left[B\right]\!\right] & \mathcal{C}_{12}\simeq\left[\!\left[A\right]\!\right] & \mathcal{C}_{14}\simeq\left[\!\left[\sigma^{2,\,0}\right]\!\right]. \end{array}$$

Thus, the connected, simply connected, almost contact naturally reductive manifolds of dimension 2n + 1, n > 2, are classified into 2^6 classes given by all the invariant subspaces of the decomposition of \mathcal{I}_3 .

Using the methods of [8], Section 2, one can get an explicit description of the various subspaces \mathcal{C}_i . Here, we list only the classes needed for the examples of Section 3.

for all $X, Y, Z \in V$. The traces \overline{c}_{12} such that \overline{c}_{23} are defined by

(2.7)
$$\overline{c}_{12}(T)(X) = \sum_{i=1}^{2n+1} T_{e_i \varphi e_i X} \qquad \overline{c}_{23}(T)(X) = \sum_{i=1}^{2n} T_{X e_i \varphi e_i}$$

where $(e_1, ..., e_{2n+1})$ is an orthonormal basis of V and $(e_1, ..., e_{2n})$ is an orthonormal basis of \bar{V} .

The last condition of Theorem 1 can be written as

(2.8)
$$(\nabla_X \phi)(Y, Z) = -T_{X \phi Y Z} - T_{X Y \phi Z} \qquad X, Y, Z \in \mathfrak{X}(M)$$

and this leads one to consider the homomorphism $h: \mathcal{I} \mapsto \mathcal{C}$ of $U(n) \times 1$ -modules

defined by

$$(2.9) h(T)_{XYZ} = T_{X \circ YZ} + T_{XY \circ Z},$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Let \mathcal{C} be a subspace of \mathcal{T} , invariant with respect to the representation of $U(n) \times 1$. If T is a homogeneous almost contact structure on M and $T \in \mathcal{C}$ for any $p \in M$, we say that M is of type \mathcal{C} and write $M \in \mathcal{C}$.

Now we give some geometrical results. For the definitions of the classes of almost contact manifolds which appear in the theorems, we refer to [3].

Theorem 2.

- i. If $M \in \mathcal{O}_2$, then M is a trans-Sasakian manifold of type \mathcal{T}_1 .
- ii. If $M \in \mathcal{O}_3$, then M is a nearly k-cosymplectic naturally reductive manifold
- iii. If $M \in \mathcal{C}_8$, then M is a trans-Sasakian naturally reductive manifold.
- iv. If $M \in \mathcal{C}_4 \oplus \mathcal{C}_7$, then M is a semi-cosymplectic and normal naturally reductive manifold.
 - v. If $M \in \mathcal{C}_9$, then M is a trans-Sasakian manifold of type \mathcal{T}_2 .
 - vi. If $M \in \mathcal{C}_{10}$, then M is a cosymplectic manifold of type \mathcal{T}_2 .
- vii. If $M \in \mathcal{C}_{13} \oplus \mathcal{C}_{15} \oplus \mathcal{C}_{16}$, then M is a homogeneous semi-cosymplectic normal manifold of type \mathcal{T}_2 .
- Proof. Since the proofs of the above results are very similar, we give the details only for i. If $T \in \mathcal{C}_2 \simeq \mathbb{R}$, then $h(T) \in 2\mathbb{R} \simeq \mathcal{C}_5 \oplus \mathcal{C}_6$ and, from the classification of almost contact manifolds given in [3], we see that $\mathcal{C}_5 \oplus \mathcal{C}_6$ is the class of the trans-Sasakian manifolds.
- Theorem 3. A naturally reductive almost cosymplectic manifold is cosymplectic.

Proof If M is naturally reductive, then $M \in \mathcal{T}_3$. From (2.5) and (2.6) it follows that $T \in [\![\lambda^{3,0}]\!] \oplus [\![\lambda^{2,1}]\!] \oplus [\![\lambda^{1,0}]\!] \oplus [\![\lambda^{2,0}]\!] \oplus [\![\lambda^{1,1}]\!] \oplus R$. Since M is an almost cosymplectic manifold, in [3] it is shown that $h(T) = \nabla \phi \in [\![A]\!] \oplus [\![\sigma^{2,0}]\!]$, then $\nabla \phi = 0$ and M is cosymplectic.

In a similar way, we get

Theorem 4. A nearly k-cosymplectic homogeneous manifold of type \mathcal{T}_2 is cosymplectic. A nearly trans-Sasakian homogeneous manifold of type \mathcal{T}_2 is a trans-Sasakian manifold.

Theorem 5. An almost contact homogeneous manifold is cosymplectic if and only if it belongs to the subspace

$$(2.10) \mathcal{I}_{+} = \left\{ T \in \mathcal{I} \middle| T_{XYZ} = T_{X \subset Y \subset Z} + \eta(Y) T_{X \succeq Z} + \eta(Z) T_{XY \succeq}, X, Y, Z \in V \right\}.$$

Proof. Since $\mathcal{T}_+ = \operatorname{Ker} h$, from (2.8) it follows that $M \in \mathcal{T}_+$ if and only if $\nabla \phi = 0$.

As stated in the Introduction, Chinea, Gonzales and Padron gave another decomposition of \mathcal{I} under the action of $U(n) \times 1$ (see [6], Prop. 2). They first noted that $\mathcal{I} = \mathcal{I}_+ \oplus \mathcal{I}_-$ where

$$\mathcal{I}_{-} = \left\{ T \in \mathcal{I} \middle| T_{XYZ} = -T_{X \circ Y \circ Z} + \eta(Y) T_{X \in Z} + \eta(Z) T_{XY\xi} \right\}$$

and then proved that

$$(2.12) \mathcal{J}_{+} = \mathcal{H}_{13} \oplus \ldots \oplus \mathcal{H}_{18} \mathcal{J}_{-} = \mathcal{H}_{1} \oplus \ldots \oplus \mathcal{H}_{12}$$

each \mathcal{H}_i being an invariant and irreducible subspace. From (2.11) it is easy to see that $\mathcal{T}_- \simeq \mathcal{C}$. This fact and Theorem 3.1 of [8] imply that there are the following isomorphisms

(2.13)
$$\begin{aligned} \mathcal{H}_i &= \mathcal{C}_i & i = 1, 2, 3, 4, 9, 10, 11, 12 \\ \mathcal{H}_5 &= \mathcal{C}_6 & \mathcal{H}_6 &= \mathcal{C}_5 & \mathcal{H}_7 &= \mathcal{C}_8 & \mathcal{H}_8 &= \mathcal{C}_7 \ . \end{aligned}$$

This allows us to find geometrical meaning of some of the classes H_i .

Theorem 6.

- i. If $M \in \mathcal{H}_1$, then M is a nearly k-cosymplectic homogeneous manifold.
- ii. If $M \in \mathcal{H}_2 \oplus \mathcal{H}_9$, then M is an almost cosymplectic homogeneous manifold.
- iii. If $M \in \mathcal{H}_5 \oplus \mathcal{H}_6$, then M is a trans-Sasakian homogeneous manifold.
- iv. If $M \in \mathcal{H}_5 \oplus \mathcal{H}_8$, then M is a quasi-Sasakian homogeneous manifold.

v. If $M \in \mathcal{H}_3 \oplus \mathcal{H}_7 \oplus \mathcal{H}_8$, then M is a semi-cosymplectic normal homogeneous manifold.

vi. If $M \in \mathcal{H}_1 \oplus \mathcal{H}_5 \oplus \mathcal{H}_6$, then M is a nearly trans-Sasakian homogeneous manifold.

vii. If $M \in \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_9 \oplus \mathcal{H}_{10}$, then M is a quasi-k-cosymplectic homogeneous manifold.

viii. If $M \in \mathcal{H}_3 \oplus ... \oplus \mathcal{H}_8$, then M is a normal homogeneous manifold.

ix. If $M \in \mathcal{H}_1 \oplus ... \oplus \mathcal{H}_{10}$, then M is an almost k-contact homogeneous manifold.

x. If $M \in \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3 \oplus \mathcal{H}_7 \oplus ... \oplus \mathcal{H}_{12}$, then M is an semi-cosymplectic homogeneous manifold.

Proof. In all cases we use the following remark: if $T \in \mathcal{H}_i \subseteq \mathcal{T}_-$, then $\nabla \phi \in \mathcal{C}_j$, with i and j such that $\mathcal{H}_i = \mathcal{C}_j$ (see (2.12)).

3 - Examples

A. The following is an example of an almost contact homogeneous structure of type \mathcal{T}_1 which belongs to \mathcal{C}_2 . Let $H^{2n+1}=\{(y_1,\ldots,y_{2n+1})\in I\!\!R^{2n+1}\,|\,y_1>0\}$ be the 2n+1-dimensional *hyperbolic space* endowed with the Riemannian metric

(3.1)
$$g = (cy_1)^{-2} \sum_{i=1}^{2n+1} (dy_i)^2 \qquad c \in \mathbf{R} \quad c > 0.$$

The vector fields $E_i = cy_i(\frac{\partial}{\partial y_i})$, i = 1, ..., 2n + 1, form an orthonormal basis for (H^{2n+1}, g) . Put $\xi = E_1$, then the tensor T given by

$$(3.2) T_{XYZ} = g(X, Y)g(\xi, Z) - g(X, Z)g(\xi, Y) X, Y \in \mathcal{X}(H^{2n+1})$$

is a Riemannian homogeneous structure (see [11]). If we define φ by

(3.3)
$$\varphi E_h = \sum_{k=1}^{2n+1} \varphi_h^k E_k \qquad \varphi_h^k \in \mathcal{C}^{\infty} (H^{2n+1}) \qquad h = 1, \dots, 2n+1$$

then φ satisfies the last condition of Theorem 1 if and only if the components φ_h^k are constant on H^{2n+1} . An explicit computation shows that T is an homogeneous contact metric structure which belongs to \mathcal{Q}_2 .

B. Let G(k) be the connected simply-connected 3-dimensional Lie group of matrices

(3.4)
$$\begin{pmatrix} e^{kz} & 0 & 0 & x \\ 0 & e^{-kz} & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where $x, y, z \in \mathbb{R}$ and $k \neq 0$ is a fixed real number. G(k) is an example of an almost contact manifold which admits an almost contact homogeneous structure which belongs to $\mathcal{H}_5 \oplus \mathcal{H}_6$. To see this, let us consider the linearly independent left invariant 1-forms on G(k)

(3.5)
$$\alpha = e^{-kz} dz \qquad \beta = e^{kz} dy \qquad \eta = dz.$$

The corresponding dual basis of left invariant vector fields is formed by

(3.6)
$$X_1 = e^{kz} \frac{\partial}{\partial x} \qquad X_2 = e^{-kz} \frac{\partial}{\partial y} \qquad X_3 = \frac{\partial}{\partial z} .$$

Since $[X_1, X_3] = -kX_1$, $[X_2, X_3] = kX_2$ and the other brackets are zero, G(k) is a solvable non-nilpotent Lie group and $g = \alpha \otimes \alpha + \beta \otimes \beta + \eta \otimes \eta$ is a left invariant metric. If we put

(3.7)
$$\varphi X_1 = X_2 \qquad \varphi X_2 = X_1 \qquad X_3 = \xi$$

the tensor field T given by

$$(3.8) 2g(T_XY, Z) = g([X, Y], Z) - g([Y, Z], X) + g([Z, X], Y)$$

 $X, Y, Z \in \mathfrak{g}$ (Lie algebra of G(k)), is an almost contact homogeneous structure which satisfies

(3.9)
$$T_{XX_2\xi} = -k\beta(X)$$
 $T_{XX_1X_2} = 0$ $T_{XX_1\xi} = k\alpha(X)$.

One can check that G(k) belongs to the class $\mathcal{H}_5 \oplus \mathcal{H}_6 \subset \mathcal{I}_-$.

C. Let G be the Lie group of real matrices of the form,

(3.10)
$$\begin{pmatrix} e^{-z} & 0 & x \\ 0 & e^{z} & y \\ 0 & 0 & 1 \end{pmatrix}$$

endowed with the left invariant metric

$$(3.11) q = \alpha^1 \otimes \alpha^1 + \alpha^2 \otimes \alpha^2 + \alpha^3 \otimes \alpha^3 \lambda > 0$$

where $\alpha^1=e^z\,dx$, $\alpha^2=e^{-z}\,dy$, $\alpha^3=\lambda dz$. We shall see that G is an almost contact homogeneous manifold which belongs to the class \mathcal{H}_6 . The dual basis of invariant vector fields

$$(3.12) Y_1 = e^{-z} \frac{\partial}{\partial x} Y_2 = e^z \frac{\partial}{\partial y} Y_3 = \frac{1}{\lambda} \frac{\partial}{\partial z}$$

satisfies

$$[Y_3, Y_1] = \frac{1}{\lambda} Y_1 \qquad [Y_3, Y_2] = \frac{1}{\lambda} Y_2$$

and the other brackets are zero. If we define

(3.14)
$$\varphi Y_1 = Y_2 \qquad \varphi Y_2 = -Y_1 \qquad Y_3 = \xi$$

we get an almost contact structure on G such that the tensor T of (3.8) satisfies

(3.15)
$$T_{XY_1Y_2} = 0$$
 $T_{X\xi Y_1} = -\frac{1}{\lambda} \alpha_1(X)$ $T_{X\xi Y_2} = -\frac{1}{\lambda} \alpha_2(X)$

where $X \in \mathfrak{g}$ and \mathfrak{g} is the Lie algebra of G. One can check that G belongs to the class $\mathcal{H}_6 \subset \mathcal{T}_-$. We also note that (G, g) is a 4-symmetric space (see [3]) which is isomorphic to the semi-direct product of R and R^2 , both with the additive group structure.

D. The following example shows that the inclusion \mathcal{C}_7 (or \mathcal{C}_8) $\subset \mathcal{C}_7 \oplus \mathcal{C}_8$ is strict.

Let H(p, 1) be the group of real matrices

(3.16)
$$a = \begin{pmatrix} 1 & A & C \\ 0 & I_p & {}^{t}B \\ 0 & 0 & 1 \end{pmatrix}$$

where I_p denotes the $p \times p$ identity matrix, $A = (a_1, ..., a_p)$, $B = (b_1, ..., b_p) \in \mathbb{R}^p$, and $c \in \mathbb{R}$. H(p, 1) is a connected, simply connected, nilpotent Lie group of dimension 2p + 1, called *generalized Heisenberg group*. A global system of coordi-

nates (x_i, x_{p+i}, z) , $1 \le i \le p$, on H(p, 1) is given by

(3.17)
$$x_i(a) = a_i x_{p+i}(a) = b_i z(a) = c 1 \le i \le p.$$

A basis for the left invariant 1-form on H(p, 1) is

(3.18)
$$\alpha_i = dx_i \qquad \alpha_{p+i} = dx_{p+i} \qquad \gamma = dz - \sum_{j=1}^p x_j dx_{p+j} \qquad 1 \le i \le p$$

and its dual basis of left invariant vector fields is given by

$$(3.19) X_i = \frac{\partial}{\partial x_i} X_{p+i} = \frac{\partial}{\partial x_{p+i}} + x_i \frac{\partial}{\partial z} Z = \frac{\partial}{\partial z} 1 \le i \le p.$$

Define a left invariant metric on H(p, 1) by $g = \sum_{i=1}^{2p} \alpha_i \otimes \alpha_i + \gamma \otimes \gamma$. Put

(3.20)
$$\varphi X_i = X_{p+i} \qquad \varphi X_{p+i} = -X_i \qquad Z = \xi.$$

Then (φ, ξ, η, g) is an almost contact metric structure on H(r, 1). By Theorem 2.1 of [5], all contact homogeneous structures T on (H(p, 1), g) are given by

(3.21)
$$2T = \sum_{i=1}^{p} (\alpha_{i} \otimes \alpha_{p+i} \wedge \eta + \alpha_{p+i} \otimes \eta \wedge \alpha_{i}) + \sum_{i,j}^{p} [a_{ij} \otimes (\alpha_{i} \wedge \alpha_{j} + \alpha_{p+i} \wedge \alpha_{p+j}) + 2b_{ij} \otimes \alpha_{i} \wedge \alpha_{p+j}]$$

where a_{ij} and b_{ij} are 1-forms such that $a_{ij} = -a_{ji}$, $b_{ij} = b_{ji}$ and whose $\widetilde{\nabla}$ -covariant derivative verifies some special conditions (see (2.4) and (2.5) of [5]).

Furthermore, $T \in \mathcal{T}_3$ if and only if $a_{ij} = 0$, for all $i, j, b_{ij} = 0$ for $i \neq j$ and $b_{ii} = \frac{1}{2}\eta$. By explicit calculation, we can check that H(p, 1) belong to the class

$$(3.22) \quad \mathfrak{C}_7 \oplus \mathfrak{C}_8 = \left\{ T \in \mathcal{T} \middle| T_{XYZ} = \eta(X) T_{\xi \varphi Y \varphi Z} + \eta(Y) T_{\varphi X \xi \varphi Z} + \eta(Z) T_{\varphi X \varphi Y \xi} \right\}$$

but T does not belong to \mathcal{Q}_7 nor to \mathcal{Q}_8 .

E. The following is an example of an almost contact homogeneous structure of type \mathcal{I}_2 which belongs to \mathcal{O}_{14} . Let G(a, b) be the 3-dimensional Lie group of real matrices

(3.23)
$$\begin{pmatrix} e^{-az} & 0 & 0 & e^{-az}x \\ 0 & e^{bz} & 0 & e^{bz}y \\ 0 & 0 & 1 & \frac{z}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} .$$

with the left invariant metric

(3.24)
$$q = dz^2 + e^{2az} dx^2 + e^{-2bz} dy^2.$$

The case a + b = 0 corresponds to the hyperbolic space H^3 . The orthonormal basis of left invariant vector fields given by

$$(3.25) Y_1 = \frac{\partial}{\partial z} Y_2 = e^{-az} \frac{\partial}{\partial x} Y_3 = e^{bz} \frac{\partial}{\partial y}$$

satisfies $[Y_1, Y_2] = -aY_2$, $[Y_1, Y_3] = bY_3$, the other brackets being zero. Then the conditions

(3.26)
$$\varphi Y_2 = Y_3 \qquad \varphi Y_3 = -Y_2 \qquad Y_1 = \xi$$

define an almost contact structure on G(a, b) such that the tensor T of (3.8) satisfies

$$(3.27) T_{Y_2Y_2\xi} = -a T_{Y_3Y_3\xi} = a.$$

If $a+b\neq 0$, the homogeneous structure T is of type $\mathcal{T}_1\oplus \mathcal{T}_2$ and belongs to \mathcal{T}_2 if and only if a=b. In this case, an explicit calculation shows that $T\in \mathcal{C}_{14}$.

References

- [1] E. ABBENA and S. GARBIERO, Almost Hermitian homogeneous structures, Proc. Edinburgh Math. Soc. 31 (1988), 375-395.
- [2] D. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer, Berlin 1976.
- [3] D. CHINEA and C. GONZALEZ, A classification of almost contact homogeneous

- manifolds, Differential Geometry. Peniscola 1985, Lecture Notes in Math. 1209, Springer, Berlin 1986, 133-142.
- [4] D. CHINEA and C. GONZALEZ, An example of almost contact metric manifolds, Ann. Mat. Pura Appl. 156 (1990), 15-36.
- [5] D. CHINEA, C. GONZALEZ and J. CARMELO, Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc. 105 (1989), 173-184.
- [6] D. CHINEA, C. GONZALEZ and E. PADRON, Una clasificacion del las variedades homogeneas casi contacto, Dep. de Mat. Fund., Univ. de La Laguna (1993), Preprint.
- [7] M. FALCITELLI, A. FARINOLA and S. SALAMON, Almost Hermitian geometry, Differential Geom. Appl. 4 (1994), 259-282.
- [8] A. Fino, Almost contact homogeneous structures, Boll. Un. Mat. Ital. (1994), to appear.
- [9] V. F. Kiričenko, On homogeneous Riemannian spaces with invariant tensor structure, Soviet Math. Dokl. 21 (1980), 734-737.
- [10] S. Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in Math. 201, Longman, New York 1989.
- [11] F. TRICERRI and L. VANHECKE, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Notes 83, Cambridge Univ. Press, London 1983.

Sommario

Il confronto tra due diverse classificazioni delle strutture quasi contatto omogenee conduce ad alcuni risultati geometrici per diverse classi di varietà quasi contatto omogenee. Alcuni esempi vengono sviluppati dettagliatamente.

* * *