PIERRE DOLBEAULT (*)

On CR-moment condition (**)

1 - Introduction

In C^n (coordinates z_1,\ldots,z_n), let γ be a closed compact oriented curve of class C^1 and let M be an embedded Riemann surface of $C^n \setminus \gamma$ whose boundary is γ , then for any holomorphic differential form ω of degree 1 we have $\int\limits_{M} \omega = \int\limits_{M} \omega = \int\limits_{M} \mathrm{d}\omega \text{ from Stokes formula, but } \mathrm{d}\omega \text{ is a holomorphic differential form of degree 2, whose restriction to } M \text{ is zero, then } \int\limits_{\gamma} \omega = 0.$ So a necessary condition for a real curve γ to be the boundary of an embedded Riemann surface in C^n is: for any holomorphic 1-form ω in C^n , $\int\limits_{\gamma} \omega = 0$; this is equivalent to $\int\limits_{\gamma} z^a \, \mathrm{d}z_j = 0$ where $z^a = z_1^{a_1} \ldots z_n^{a_n}$, $a_1, \ldots, a_n \in N$. This condition is called the moment condition.

It is known, from J. Wermer (1958) [10] and many further generalizations (see [5]), that this condition is sufficient for a real curve γ to be the boundary of a holomorphic chain in \mathbb{C}^n . This condition has a meaning on any complex analytic manifold (or space) X, but it is empty if X has no holomorphic 1-form different from zero e.g. $\mathbb{C}P^n$.

It can be generalized as follows: let M be a compact (2p-1)-submanifold of X of class C^1 , then the moment condition is:

For every (p, p-1)-differential form φ such that $d''\varphi = 0$ then $\int_{M} \varphi = 0$ [6].

If M satisfies the moment condition, it is maximally complex, i.e. the complex tangent space $H_z(M)$ to M at z has dimension p-1. If p=1, this last condition is empty.

^(*) Univ. Paris 6, UMR 9994 du CNRS, Tour 46, Etage 5, 4 place Jussieu, 75252 Paris cedex 05, France.

^(**) Received December 14, 1994. AMS classification 32 E 35.

Harvey and Lawson showed that the moment condition is a necessary and sufficient condition for a (2p-1)-submanifold M to be the boundary of a holomorphic chain in $\mathbb{C}P^n \setminus \mathbb{C}P^{n-q}$ with q=p. Maximal complexity is enough for $p \ge q+1$; the same is true for $p \ge 2$ in \mathbb{C}^n [7], [6].

The aim of this talk is:

- 1) to define a moment condition in $E \simeq \mathbb{R} \times \mathbb{C}^{n-1} \subset \mathbb{C}^n$ for a compact submanifold N and in a half-space of E for a closed relatively compact submanifold N, to get a necessary and sufficient condition for solving a boundary problem in low dimensions
- 2) to explain the relation between this condition in $CP^n \setminus CP^{n-q}$, in the simplest case n=2, q=1, and necessary and sufficient conditions to solve a boundary problem in CP^n [3], according to unpublished results of J. B. Poly [4].

We give only results and sketches of proofs; the detailed proofs will appear elsewhere.

Definitions.

A q-subvariety of class C^k with negligible singularities in a Riemannian manifold X is a closed set W of X which contains a closed set σ such that $\mathfrak{I}(\sigma)=0$ (q-dimensional Hausdorff measure) and such that $W\setminus \sigma$ is a closed oriented q-submanifold of class C^k of $X\setminus \sigma$, of locally finite q-dimensional volume. We denote also by W the integration current defined by W. W is said to be CR if $W\setminus \sigma$ is a CR submanifold.

A *q-chain* V of class C^k of X is a locally finite linear combination, with coefficients in \mathbb{Z} , of integration currents $[W_j]$ where W_j is a *q*-subvariety of class C^k with negligible singularities. V is q-cycle if dV = 0. If every W_j is CR of CR-dim r, V is said to be of CR-dim r.

A holomorphic p-chain T of the complex manifold X is a 2p-chain where W_j is a complex analytic set of complex dimension p.

2 - Case of a real hyperplane E of C^n

Let E be the real hyperplane $\{z \in \mathbb{C}^n; \Im m z_1 = y_1 = 0\}$. Let N be a compact (2p-2)-subvariety of class C^1 with negligible singularities of \mathbb{C}^n , contained in E, with CR-dim N=p-2. The integration current defined by N, and also denoted N, is supposed to be d-closed. We look for a maximally complex chain

M of $\mathbb{C}^n \setminus N$, with supp $M \subset \mathbb{C}E$, of finite mass, such that dim M = 2p - 1, having a simple extension to E still denoted M such that dM = N.

The case $p \ge 3$ has been studied previously [1], [2]. Consider the case p = 2. The projection method allows us to consider only the case n = 3, then $\operatorname{codim}_E M = 2$.

Let $j \colon E \hookrightarrow \mathbb{C}^3$ be the canonical injection. We consider the type with respect to (z_2, z_3) and set $d_E'' = \frac{\partial}{\partial \overline{z}_2} d\overline{z}_2 + \frac{\partial}{\partial \overline{z}_3} d\overline{z}_3$. Then, there exist rectifiable currents S and P of $E \setminus N$ and E, respectively, such that

$$M = i_{\#}S$$
 $S = S^{1,1} + dx_1 \wedge (S^{1,0} + S^{0,1})$

$$N = j_{\#}P$$
 $P = P^{2,1} + P^{1,2} + dx_1 \wedge (P^{2,0} + P^{1,1} + P^{0,2})$

and S having a simple extension to E, still denoted S, such that P = dS. Let $\beta = dx_1 \wedge \varphi^{1,0} + \psi^{2,0}$ be a C^{∞} -differential form on E such that $d_E'' \beta = 0$, then

$$\int\limits_{N}\beta=\langle P,\,\beta\rangle=\langle dS,\,\beta\rangle=-\langle S,\,d\beta\rangle=-\langle S,\,\mathrm{d}_{E}^{n}\beta\rangle=0\;.$$

Definition. N (or P) satisfies the CR-moment condition if, for every β as above, such that d_E'' $\beta = 0$, then

(1)
$$\int_{N} \beta = \langle P, \beta \rangle = 0.$$

Remark that $\int_N \beta$ has a meaning for every $n \ge 3$.

Let $k \colon E \to \mathbf{R}$ be the mapping defined by $(x_1, z_2, z_3) \mapsto x_1$ and $k^{-1}(x_1) = Q_{x_1} \simeq C^2$.

Proposition 1. For every x_1 such that the slice $\nu = \langle P, k, x_1 \rangle$ is defined, ν is the direct image by $i: Q_{x_1} \hookrightarrow E$ of a 1-cycle π of Q_{x_1} , with compact support, satisfying the classical moment condition in Q_{x_1} .

In C^2 , let $\pi \in \mathcal{E}^{\bullet}(C^2)$ (current with compact support), to solve

(2)
$$d''s^{0,1} = \pi^{0,2}$$

with supp $s^{0,1}$ compact, we check that the d"-cohomology class $[\pi^{0,2}]$ belongs to $H_c^{0,2}(C^2,C)\simeq H_c^2(C^2,\mathcal{O})\simeq (H^0(C^2,\Omega^2))'$ (Serre duality).

Then equation (2) has a compact solution if and only if we have

(3)
$$\langle \pi^{0,2}, w \rangle = 0$$
 for every $w \in H^0(\mathbb{C}^2, \Omega^2)$.

 $\text{Consider the (Cauchy) kernel } K^{\mathcal{C}}(z_2,z_3) = \delta_0(z_3) \otimes \frac{1}{\pi z_2} \ \frac{\partial}{\partial \overline{z}_2} \quad \text{in } C^2(z_2,z_3).$

Lemma 1. If $\pi_{0,2}$ satisfies (3), and if # means the convolution-contraction, then K^C # $\pi^{0,2}$ is the solution of (2) with compact support.

Proposition 2. If N is C^{ω} and if P satisfies the CR-moment condition, then $d_E^{n}S^{0,1} = -P^{0,2}$ has a solution with compact support which is C^{ω} in x_1 .

For the proof, in $Q_{x_1} \simeq C^2$, consider the kernel K^C , use Lemma 1 and, in E, use the convolution kernel $K = \delta_0 \otimes K^C$.

Theorem 1. Let N be a compact, C^{ω} , CR-subvariety with negligible singularities of C^n , contained in E, such that dim N=2, CR-dim N=0. Assume that N satisfies the CR-moment condition and that:

H. There exists a closed subset τ of N such that $\Re^2(\tau) = 0$ and, for every $z \in N \setminus \tau$, $N \setminus \tau$ is a submanifold transverse to the maximal complex affine subspace of E through z

 β . Either N is smooth or N is the intersection of E and of a maximally complex subvariety with negligible singularities.

Then there exists a unique C^{ω} maximally complex 3-chain M of $C^{n} \setminus N$, supp $M \subset E$, of finite mass and having a simple extension to C^{n} , still denoted M, such that N = dM and M is foliated by holomorphic 1-chains.

Proof. For p = 2, n = 3, analogous to the proof for $p \ge 3$, using Proposition 2. For n > 3, use the classical projection method.

3 - Case of a half-space of E with complex boundary

Definitions. Let $U''=\{z\in C^n; \Re e\, z_1>0\}\subset C^n$ and $U=\{(x_1,z_2,\ldots,z_n)\in E,x_1>0\};$ $\partial U=\{z\in C^n,\,z_1(z)=0\}\simeq C^{n-1}.$ Let N be a CR-subvariety of U'', with negligible singularities, contained in U, defining a d-closed integration current denoted also N, of finite mass, and such that $N\subset E$, dim N=2p-2, CR-dim N=p-2. Assume p=2, n=3. We look for a chain M of $U''\setminus N$, supp $M\subset E$, of finite

mass, dim M = 3, CR-dim M = 1, having a simple extension to U'', still denoted M, such that dM = N.

Let j be the restriction to U of the canonical injection $E \hookrightarrow \mathbb{C}^3$, then there exist well defined rectifiable currents P and S in U such that $N = j_\# P$, $M = j_\# S$, having the same expressions as in Section 2 and satisfying dS = P.

But these currents also act on the space $\mathcal{E}^{\bullet}_{+}(U)$ of differential forms φ of class C^{∞} on U such that supp φ is contained in $\{x_1 > \delta\}$ for $\delta > 0$ small enough. For every 2-form $\beta = \mathrm{d}x_1 \wedge \varphi^{1,0} + \psi^{2,0} \in \mathcal{E}^{\bullet}_{+}(U)$, the expression $\int_{N} \beta = \langle P, \beta \rangle$ makes sense and is equal to $\langle \mathrm{d}S, \beta \rangle = -\langle S, \mathrm{d}\beta \rangle = -\langle S, \mathrm{d}E\beta \rangle$. If $\mathrm{d}E \beta = 0$, then $\langle P, \beta \rangle = 0$.

Definition. N (or P) satisfies the CR-moment condition if

(4) for every
$$\beta \in \mathcal{E}_+^{\bullet}(U)$$
, such that $d_E''\beta = 0$, then $\int_N \beta = \langle P, \beta \rangle = 0$.

A subvariety N with negligible singularities of U'' defined at the beginning of this section, and satisfying the CR-moment condition, has the properties described in Section 2, \mathbb{C}^3 beeing replaced by U'', E by U, and the compactness of N by the relative compactness in E.

4 - Case of a half-space of E with non complex boundary

Definitions. Let w'' be a real linear form on C^n and w its restriction to E. We assume that the real hyperplane $F'' = \{z \in C^n \mid w''(z) = 0\}$ is different from E, then $F = F'' \cap E = \{\zeta \in E \mid w(\zeta) = 0\}$ is a real hyperplane of E; dim E = 2n - 2 and CR-dim F = n - 2, in general. Let $W'' = \{z \in C^n \mid w''(z) > 0\}$ and $W = \{\zeta \in E \mid w(\zeta) > 0\}$ be the half-spaces of C^n and C^n and C^n respectively. In what follows, we assume CR-dim C^n and C^n and C^n as C^n and C^n are C^n and C^n and C^n and C^n and C^n are C^n and C^n and C^n are C^n and C^n and C^n and C^n and C^n are C^n and C^n and C^n are C^n and C^n are C^n and C^n and C^n are C^n and C^n and C^n are C^n are C^n are C^n are C^n are C^n and C^n are C^n and C^n are C^n are

Let G be the maximal complex linear subspace of F, then $G \simeq C^{n-2}$; G is contained in the maximal complex linear subspace H of E. Let C_{z_1} be the z_1 -axis of C^n and $A = G \oplus C_{z_1}$; then $E' = E \cap A$ is a real hyperspace of A and $F' = F \cap A = G \simeq C^{n-2}$. $W' = \{\zeta \in E' \mid w(\zeta) > 0\}$ is a half-space of E' with complex boundary as in Section 3, for the dimension n-1.

Let (u_2, \ldots, u_{n-1}) be complex coordinates of G, then $(z_1; u_2, \ldots, u_{n-1})$ are complex coordinates of A and $F' = \{z_1 = 0\} \in A$. Let C_n be a supplement of A in C^n , with complex coordinate u_n and $h \colon C^n \to C_n$ defined by $z \mapsto u_n(z)$ the projection. Then $h^{-1}(0) = A$ and $h^{-1}(u_n) = A_{u_n} \cong A \cong C^{n-1}$. We set $h_E = h|_E$, then $h_E^{-1}(u_n) = E'_{u_n} \cong E \cap A_{u_n}$.

CR-moment condition. Let N be a C^1 subvariety of W'', with negligible singularities such that $N \subset W$, $N \subset E$, dim N = 2p - 2, CR-dim N = p - 2 with finite (2p - 2)-dimensional volume. Moreover denote also by N the integration current defined by N and assume dN = 0. Suppose p = 3, and that there exists a 5-chain M of $W'' \setminus N$, with supp $M \subset E$ such that CR-dim M = 2, and having a simple extension, still denoted M, such that dM = 0. Moreover we assume n = 4.

Define currents P and S of W, as in section 3, acting on the space $\mathcal{E}_+^{\bullet}(W)$ of C^{∞} differential forms β of W, with supp $\beta \in \{\zeta \in E \mid w(\zeta) > \delta\}$ for $\delta > 0$ small enough depending on β . For every 4-form $\beta = \mathrm{d}x_1 \wedge \varphi^{2,1} + \psi^{3,1} \in \mathcal{E}_+^{\bullet}(W)$ we have $\int_{V} \beta = \langle P, \beta \rangle = -\langle S, \mathrm{d}_E^{\sigma} \beta \rangle$. If $\mathrm{d}_E^{\sigma} \beta = 0$, then $\langle P, \beta \rangle = 0$.

Definition. N (or P) satisfies the CR-moment condition if

(5) for every $\beta \in \mathcal{E}_+^{\bullet}(W)$, as above, such that $d_E''\beta = 0$, then $\int_N \beta = \langle P, \beta \rangle = 0$.

 $\int_{N} \beta$ has a meaning for every $n \ge 4$.

Proposition 3. For every $u_4 \in C$ such that $\mu = \langle P, h_E, u_4 \rangle$ is defined, μ is the direct image by $i \colon E'_{u_4} \to E$ of a 2-cycle ν satisfying the CR-moment condition in E'_{u_4} .

Proposition 4. In the half-space W of E, if N is C^{ω} and if the current P satisfies the CR-moment condition, then the equation $d_E^{\nu}S^{0,1} = -P^{0,2}$ with $d_E^{\nu}P^{0,2} = 0$ has a solution $U^{0,1}$ in W, C^{ω} in x_1 , such that supp $U^{0,1} \subset E$.

The proof uses the solution with compact support of the d_E'' -equation in $E' = E_{u_4}'$ (Section 2, 3), where E' is of dimension 5, that is why, in this section, we have to assume dim E = 7 and dim N = 4.

Theorem 2. Let N be a subvariety with negligible singularities of class C^{ω} of W, with dim N=4, CR-dim N=1, finite 4-dimensional volume, $N\subset E$, satisfying the CR-moment condition, condition H and condition G, as in Theorem 1. Then there exists a unique C^{ω} maximally complex 5-chain M in $W''\setminus N$, of finite mass, such that supp $M\subset W$, supp $M\subset E$, and having a simple extension still denoted M in W'', satisfying:

- i dM = N
- ii M is foliated by holomorphic 1-chains.

Proof. Thanks to the projection method, it is enough to consider the case p=n-1=3. Using Proposition 4, we compute the coefficients as in [2], 3.5. The proof ends as for Theorem 6.9 of [1] for p=n-1. The unicity of M and the existence of the foliation result from the slicing relative to the projections $k \colon E \to \mathbb{R}$ and h_E .

Corollary 3.1 of [2] can be extended for p=3, N satisfying the CR-moment condition.

5 - Boundary problem in \mathbb{CP}^2 and moment condition in $\mathbb{CP}^2 \setminus \mathbb{CP}^1$.

Let γ be a closed, oriented curve of class C^2 (and the integration current defined by the curve) in $\mathbb{C}P^2$. We look for a holomorphic 1-chain S in $\mathbb{C}P^2 \setminus \gamma$ such that exists a simple extension of S, still denoted S, to $\mathbb{C}P^2$ satisfying $\gamma = bS$.

Let (w_0, w_1, w_2) be homogeneous coordinates in $\mathbb{C}P^2$, chosen in such a way that $\gamma \cap \{w_0 = 0\} = \emptyset; z_j = \frac{w_j}{w_0}, j = 1, 2$, be affine coordinates in $\mathbb{C}P^2 \setminus \{w_0 = 0\} \simeq \mathbb{C}^2$, $\widetilde{g} = w_2 - \xi w_0 - \eta w_1$ and $g = \frac{\widetilde{g}}{w_0} = z_2 - \xi - \eta z_1$. Let $D(\xi, \eta)$ be the projective line $\widetilde{g} = 0$; when $(\xi, \eta) \in \mathbb{C}^2$, $D(\xi, \eta)$ describes a Zariski open set of $(\mathbb{C}P^2)'$. In $\mathbb{C}P^2 \setminus \{w_0 = 0\} \simeq \mathbb{C}^2$, consider the affine lines, $D'(\xi, \eta) = D(\xi, \eta) \cap \mathbb{C}^2$.

Lemma 2. Let Σ be a Riemann surface embedded into an open set of \mathbb{C}^2 . Let $(\xi^*, \eta^*) \in \mathbb{C}^2$ such that $D'(\xi^*, \eta^*) \cap \Sigma$ is a finite set, for (ξ, η) in a small enough neighborhood of (ξ^*, η^*) , then:

 $D'(\xi,\eta)\cap\Sigma$ is a finite set with fixed number of points $(f_j(\xi,\eta),\xi+\eta f_j(\xi,\eta)),$ $j=1,\ldots,N$

 f_i is holomorphic and satisfies

(6)
$$f_j \frac{\partial f_j}{\partial \xi} = \frac{\partial f_j}{\partial \eta} j = 1, ..., N.$$

Conversely, if, in a neighborhood of (ξ^*, η^*) , $f(\xi, \eta)$ is holomorphic and satisfies (6), then the point $(f(\xi, \eta), \xi + \eta f(\xi, \eta))$ generates a Riemann surface embedded into an open set of \mathbb{C}^2 .

For the proof, see [3], Lemme 2.3 and [9], Theorem 1.

Lemma 3. Let γ' be a compact oriented curve of class C^2 in \mathbb{C}^2 , then the following properties are equivalent:

$$1. \int_{y'} z_1 \, \frac{\mathrm{d}g}{g} = 0$$

2. γ' satisfies the moment condition in \mathbb{C}^2 .

For the proof, see [3], Corollaire 1.3 and [4] Section 4, for a different proof. According to ideas from J. B. Poly [4], Section 3, we can reduce the proof of the following theorem ([3], Theorem 1.2) to Wermer's theorem.

Theorem 3. Under the hypotheses and notations at the beginning of this section, the following conditions are equivalent:

i there exists a holomorphic 1-chain S such that $\gamma = bS$.

ii there exist $(\xi^*, \eta^*) \in C^2$, holomorphic functions $f_j(\xi, \eta)$, j = 1, ..., N on a neighborhood of (ξ^*, η^*) and constants $\varepsilon_j = \pm 1$ satisfying:

(8)
$$G(\xi, \eta) = \frac{1}{2\pi i} \int_{\gamma} z_1 \frac{\mathrm{d}g}{g} = \sum_{j=1}^{N} \varepsilon_j f_j.$$

Proof.

 $\mathbf{i} \Rightarrow \mathbf{ii}$: the existence of the functions f_j satisfying (7) comes from Lemma 2. Let $p_j^* = (f_j(\xi^*, \eta^*), \xi^* + \eta^* f_j(\xi^*, \eta^*))$, Δ_j be a small enough disc on supp S, centered at p_j^* and $\Gamma_j = b\Delta_j$, then $\gamma - \sum \varepsilon_j \Gamma_j = b(S - \sum \varepsilon_j \Delta_j)$ in $\mathbb{C}P^2 \setminus D(\xi^*, \eta^*) \cong \mathbb{C}^2$, and satisfies the moment condition. (8) follows from Lemma 3.

ii \Rightarrow i: from ii and Lemma 2, for (ξ, η) in a convenient neighborhood of (ξ^*, η^*) , $p_j = (f_j(\xi, \eta), \xi + \eta f_j(\xi, \eta))$ generates a connected Riemann surface Σ_j embedded in an open set of \mathbb{C}^2 such that, for $j \neq k$, either $\Sigma_j = \Sigma_k$ or $\Sigma_j \cap \Sigma_k \neq \emptyset$. Let Δ_j be a disc of Σ_j centered at p_j^* and $\Gamma_j = b\Delta_j$; from Lemma 3 and condition (8), $\gamma - \sum \varepsilon_j \Gamma_j$ satisfies the moment condition in $\mathbb{C}P^2 \setminus D(\xi^*, \eta^*) = \mathbb{C}^2$. Then, from Wermer's theorem, there exists a holomorphic 1-chain T of \mathbb{C}^2 such that $\gamma - \sum \varepsilon_j \Gamma_j = bT$; so $\gamma = b(T + \sum \varepsilon_j \Delta_j)$. From the structure theorem of Harvey-Shiffman [8], $S = T + \sum \varepsilon_j \Delta_j$ is a holomorphic 1-chain of $\mathbb{C}P^2 \setminus \gamma$.

References

- [1] P. Dolbeault, Sur les chaînes maximalement complexes de bord donné, Proc. Sympos. Pure Math. 44 (1986), 171-205.
- [2] P. Dolbeault, On CR analytic varieties with given boundary, Complex analysis and geometry 1993, 195-207, Univ. Ser. in Math., Plenum, New York.
- [3] P. Dolbeault et G. Henkin, Surfaces de Riemann de bord donné dans CP^n , Contributions to complex analysis and analytic geometry, Aspects of Math. 26 (1994), 163-187.
- [4] P. Dolbeault et J. B. Poly, Variations sur le problème des bords dans $\mathbb{C}P^n$, Preprint 1994.
- [5] R. HARVEY, Holomorphic chains and their boundaries, Proc. Sympos. Pure Math. 30, vol. 1 (1977), 309-382.
- [6] R. HARVEY and B. LAWSON, On boundaries of complex analytic varieties I, Ann. of Math. 102 (1975), 223-290.
- [7] R. HARVEY and B. LAWSON, On boundaries of complex analytic varieties II, Ann. of Math. 106 (1977), 213-238.
- [8] R. HARVEY and B. SHIFFMAN, A characterization of holomorphic chains, Ann. of Math. 99 (1974), 553-587.
- [9] G. Henkin, La transformation de Radon pour la cohomologie de Dolbeault et un théorème d'Abel inverse, C. R. Acad. Sci. Paris 315 (1992), 973-978.
- [10] J. WERMER, The hull of a curve in \mathbb{C}^n , Ann. of Math. 68 (1958), 550-561.
