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JesUs M. F. CASTILLO (*)

A variation on Schreier’s space (**)

1 - Introduction and preliminaries

The Schreier’s space [11] is one of the earliest examples of pathological Ba-
nach spaces, so frequent nowadays in the literature. It is the first example of a
Banach space not having the weak Banach-Saks property, i.e., it contains a
weakly null sequence without Banach-Saks subsequences, which is an abbrevia-
ted form of calling the subsequences having norm convergent arithmetic means.
The importance of Schreier’s space, however, has not decreased. On one hand,
the notion of admissible set is at the basis of many other notorius examples:
Barnstein’s spaces and Tsirelson’s space among others. On the other hand, new
features of this space are uncovered every now and then [3], [8], [9].

In this note we construct a Banach space, inspired by Schreier’s space,
which shares some of its features, improves others, and is a new counterexam-
ple, simultaneously, to several questions previously solved with ad hoc con-
structions (see [2], [3], [6], [11D.

The properties shared by the space L are: its canonical basis is a weakly null
sequence without Banach-Saks subsequences and the space has not the Dun-
ford-Pettis property, although it is cy-saturated as well as its quotients. More-
over, the questions addressed are, in cronological order: a space with the surjec-
tive Dunford-Pettis property [6] without the Dunford-Pettis property (the pre-
vious example was an ad hoc space constructed by Leung); that the Dunford-
Pettis property is not a three space property (proved in [3] with a construction
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similar to the present one, but using Schreier’s space) and a 2-Banach-Saks
sequence without subsequences contained inside the range of vector measure
(the previous example in [2] used a Lorentz sequence space constructed by
Rakov [10]).

Let AcN be a subset. The range of A is defined as
r(A)=inf{b—~a|b,aecd, a<b}.

The set A is said to be lunatic if 1 + 7(A) = card A. The space L is defined as
the completion of the space of finite sequences with respect to the morm
lel,= sup > |ay|.
[A lunatic] jeA

It is routine to verify that the canonical vectors (e;) form an unconditional
basis for L. Since L is a subspace of a certain C(K) space with K countable, one
sees that a bounded sequence (x") of L is weakly convergent to x if and only if,
for every j, the sequence of j-th coordinates (x}), .y converges to Z;.

2 - A weakly null sequence without Banach-Saks subsequences (Schreier’s
example [11])

Recall that a sequence having norm convergent arithmetic means is some-
times called a Banach-Saks sequence.

Lemma 1. Any subsequence of (e,) admits a subsequence which is not
Banach-Saks.

Proof. Let EeP,(N). The subset F cE inductively defined as: n,e E
and, if n; € £ then ;. ; € £ such that N +1 > 1; + 7 + 1, satisfies the following: if
A denotes the subset of F formed by the first N elements, then A = U UV,
max U < min V, and V is lunatic. Therefore

| Sal=l S alzl3 eal=X.

3 - The Dunford-Pettis property is not a three space property [3]

A property P is said to be a three-space property if, whenever a closed sub-
space Y of a Banach space X and the corresponding quotient X/Y have P, then X
also has P. In [3], it was shown that the Dunford-Pettis and the hereditary Dun-
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ford-Pettis properties are not three-space. Using the same construction, here it
is another example.

A Banach space X is said to have the Dunford-Pettis property (DPP) if any
weakly compact operator T: X — Y transforms weakly compact sets of X into
relatively compact sets of Y. Equivalently, given weakly null sequences (z,) and
(x,f) in X and X*, respectively, lim (¥, ,) = 0. L; and C(K) spaces are exam-
ples of spaces with the DDP. A Banach space X is said to have the hereditary
Dunford-Pettis property (DPPy) if any closed subspace of X has the DPP. {; and
¢y are example of spaces having the DPP,,. A profound charaecterization, due to
Elton, of this property is: any normalized weakly null sequence admits a subse-
quence equivalent to the canonical basis of ¢,. Using [3], it is enough to prove
that any weakly null sequence (w,) contains a subsequence (x,,) such that, for
some K >0,

N
2zl <K.

Since L is a subspace of a C(K) with K countable, every closed subspace of L
contains a copy of c,. Despite this fact, the sequence (e,) does not admit subse-
quences equivalent to the canonical basis of ¢;, and thus L has not the heredi-
tary Dunford-Pettis property.

Now we prove
Proposition 1. The space L does not have the Dunford-Pettis property.

Proof. The unit vector sequence is weakly null both in L and in L*. This
second assertion immediately follows from the estimate

N
| 3 el < VN

which is true because any set of cardinality N2 can be decomposed into N dis-
joint lunatic sets.

As a second step, we prove that any normalized disjoint sequence of blocks
(wy) such that |lu|l. — 0 contains a subsequence equivalent to the canonical
basis of c,.

Let B, be the support of u, . Since the blocks u,, are normalized and, at the
same time, their sup norm goes to 0, the length of B, necessarily increases to in-
finity. Fix now %; and u;. A lunatic set having nonempty intersection with both
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finity. Fix now u; and u,. A lunatic set having nonempty intersection with both
B, and B, can have, at most, d; » = max B, — min B; elements. Choose then u;
such that cardB; > (d;, »)* and

%]l <min{|uy(k)|,|us(k)|:keN (minimum over the non-vanishing terms)}.

Without loss of generality, it can be assumed that this block is u;. Iterating this
process with card B; > (max{d; 3, d» 3, dy,3})?, ete., and denoting by (u,,) the
final sequence, one has .

1Sl <3.

Since if A is a lunatic set which cuts the support of two different blocks, say, %,
u;, then A cannot have more than d; ; elements. A lunatic set with d; ; elements
can be placed into B; , ;, and since all elements of u; . ; are greater than the ele-
ments of any other u,, k> j + 1, this gives the maximum value that can be
reached.

The third step is to define an operator T [; @ L — ¢4 by means of the formu-
la T(y, x) = q(y) + i(x) where q: I; — ¢, is a quotient map, and ¢ denotes canon-
ical inclusion. Obviously T is a quotient map. We only need to verify that Ker T
has DPPy,. To this end, let (%", ™) be a weakly null sequence in Ker T. Since
T(y™, ™) = 0 and (%™) is norm null, one sees that also ||z"|. — 0. If |z |, — 0,
then the proof ends. If not, the calculations of the second step apply.

4 - Sequences which do not lie inside the range of a vector measure

This problem was treated in [2]. In [1], Ananatharaman and Diestel proved
that every weakly-2-summable sequence, ie., every sequence (x,) satisfying an
estimate

N
H zanxn” = C“(an)”lz

is contained inside the range of a vector valued countably additive vector mea-
sure, and the question was raised if weakly null sequences inside the range of a
vector measure must contain weakly-2-summable subsequences. A counterex-
ample to this question was given in [2].
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A sequence (w,) is said to be 2-Banach-Saks (following [5]) if it satisfies an
estimate

|3 < CVA.

It is clear that every weakly-2-summable sequence is 2-Banach-Saks (see [4] for
a thorough treatment of the relationships between weakly-2-summable and 2-
Banach-Saks sequences). On the other hand, 2-Banach-Saks sequences seem to
be very close of weakly-2-summable sequences; for this reason, the following
improvement of {2] is of some interest.

Proposition 2. The canonical basis of the space L is a 2-Banach-Saks se-
quence such that no subsequence of it is contained inside the range of any
countably additive vector measure.

Proof. To prove the first assertion simply observe that a lunatic set ha-
ving k elements must contain some element greater than k2. Therefore

k=N
1.3 el VA,

To verify the second, note that the lunatic sequence forms an unconditional
basis and does not contain weakly-2-summable subsequences (since every subse-
quence contains a subsequence which is not Banach-Saks). The result follows
now from [1], where it is proved that an unconditional basic sequence inside the
range of a vector measure must be weakly-2-summable.

5 - A space with the surjective Dunford-Pettis property without the Dunford-Pet-
tis property

The surjective Dunford-Pettis property was introduced by Leung [6] as fol-
lows: X has sDDP if every weakly compact operator T: X — Y is completely
continuous. We have already shown that L does not have the classical Dunford-
Pettis property. It does have the sDDP, since

Lemma 2. The space L does not admit infinite dimensional reflexive
quotients.

The proof of Lemma 2 follows closely [8], where only the estimate m = 48
should be replaced by \Vm = 4.
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Remark. Observe that being hereditarily ¢, is not enough to guarantee

the absence of reflexive quotients: Leung [7] has constructed an hereditarily ¢,
Banach space having [, as a quotient.
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Sommario

In questo articolo, é costruito uno spazio di Banach L che ha simulianeamente le
seguenti proprieta: la sua base canonica é una successione debolmenie nulla 2-Banach-
Saks che non ha né sucessione estratta Banach-Saks né successione estratta contenuta
nel rango di una misura; lo spazio L ha la proprietc Dunford-Pettis suriettiva ma non
la classica proprietd Dunford-Pettis; tutti 1 quozienti dello spazio sono cy-saturati. Lo
spazio L & una variazione dello spazio di Schreier.



