Riv. Mat. Univ. Parma (5) 2 (1993), 313-318

V. ANDRIANO and A. BAaccIoTTI (%)

A topological criterion for global asymptotic stability (**)

1 - Introduction

The main goal of this paper is to present a eriterion for checking global
asymptotic stability of an equilibrium point of a dynamical system.

Let E be a locally compact metriec space and consider a dynamical system =,
that is map n: ¥ X R — E such that:

dsl =(x,0)=x for all xe X
ds2 n(=n(x,t),s)=n(x,t+s) for all xeF and all ¢ and s in B
ds3 = is continuous.

An equilibrium point of =, is a point ¥ € E such that =(x, t) =z for all
teR.

We say that an equilibrium point x is globally asymptotically stable for the
system = if

asl  is stable: for each neighborhood U of w, there exists a neighborhood V
of x such that, for all # in V and for all t>0, =(z,t)eU
as2 ¥ is a global attractor: for all xe E: =(x, t) - when t— + .

It is well known that the problem of checking global asymptotic stability is
equivalent to the one of finding a Liapunov function. Precisely, we have the fol-
lowing result (see for example [5]).

(*) Dip. di Matem., Politecnico Torino, Corso Duca degli Abruzzi 24, 10129 Torino,
Ttalia.
(**) Received April 23, 1993. AMS classification 58 F 10.
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Theorem 1. An equilibrium point x c E is globally asymptotically stable
if and only if there exists a continuous uniformly unbounded function ¢(x) de-
fined on E such that

i ¢x)=0 and ¢x)>0 for x =2
“ mlw, t)) < ¢(x) for x=x and t> 0.

A continuous uniformly unbounded function ¢ which satisfies ¢ and i is often
called a strong Liapunov function. In this note we give a criterion for global
asymptotic stability without using Liapunov functions. Of course, it is just the
case of remarking that by virtue of Theorem 1, our criterion actually implies the
existence of a strong Liapunov function. However, it is usually difficult to find
explicitly strong Liapunov functions. Thus, our criterion may be useful in some
cases. As illustrative examples, we consider two applications to the stabilization
of nonlinear systems.

2 - Main result

For a subset M of E, we use the notation

diamM = sup d(x, ¥)
v, yeM
where d is the distance of E. Moreover we denote by y * (x) the positive trajec-
tory issuing from z, ie, y* (@) ={yekE: y ==, x), t = 0}.

Theorem 2. Let E be a locally compact metric space, and n: E X R—E
a dynamical system. Assume that there exists a family of sets {M;};.p+ with
the following properties:

al for all i, M; is a compact neighborhood of x

a2 for all >0 there exists je R™ such that diamM; <e

a8 M;cM; if i<j

a, for all xeE there exists ic R™: x e dM; and x ¢ M; for all j <1

a5 for all i, for all x e M;: =(t, ) e M; for all t > 0 and there exists T > 0
such that =(T, x) e int M;.

Then x is a globally stable attractor for the system r.
Proof. The proof is accomplished in several steps.

From a5 it follows that M, is a positive invariant set (see for example [5]) for
all ieR*.



[3] A TOPOLOGICAL CRITERION FOR GLOBAL ASYMPTOTIC STABILITY 315

Stability. First observe that N M;= {x} for al and a2. Now, for all

¢ >0 there exists j such that M;c B(x, ¢) (for a2) and from al there exists
¢: ¥ € B(w, &) c M;. Thus, for all p e B(x, ¢), for the positive trajectory from p,
y*(p), we have vy~ (p) c M;cB(x, ¢).

{x} is a global attractor. Let x e E and j such that 2 e dM;. The positive
trajectory y* (x) is bounded, thus the limit set I'* & = (. We have to prove that
I''z={x}. Let yelI'*x, y#x. Then there exists a sequence {{,}cR",
t, — + o such that n(f,, ) > y. For a} there exists i such that y e OM; but
ye M, for h <i.

Then we prove that y*(x) NintM;=0. Let =(s,x) =2 eintM;. Let
h be such that x' € 9M,. According to a5, there exists T >0 such that
(T, 2')==(s+ T, x)eint M, and hence =(i,z)eM, for every t>s+T.
Sinece t, — + ®, we have in particular that for some integer N,, =(t,, ®) e M,
for all n > N;. Now let U be a neighborhood of y such that U N M, = . Since
=(t,, ) >y, for some N, we have n(t,, ) € U for all » > N,. In conclusion, for
n > max {N;, N;} we must have =(¢,, x) e UN M, and this a contradiction.

Now, consider the trajectory =(f,y), and let T be such that =(T,y)eint M;.
For all neighborhood V of i, we have y ¥ () N V = §. Thus, since = is continuous,
y ¥ (x) must intersect each neighborhood of =(7, %). So there exists ¢ > 0 such
that =(f, ) e int M;. And this contradicts y™* (x) N int M, = @.

Therefore we conclude that ¥ = x and Theorem 2 is proved.

The following corollary is an obvious consequence of Theorem 2.

Corollary 1. Let E be a locally compact metric space and let = be a dy-
namical system. Assume that there exists a family of compact sets {M;};cp+
with the following properties:

cl ﬂ M i = 95

i>0
c2 for all i,jeR* with i <j M;cintM;
c3 for all xeE there exists je R* such that « e dM;
¢ forall ie R* and for all x € OM;, x is an enter point for M;, i.e. there
exists T # 0 such that =(t, x) e int M; for all t€]0, T1.

Then x is a globally stable attractor for the system =.
Remark. Under the assumptions of Corollary 1, the family {M;} can be

eagily interpreted as the family of the level sets of a uniformly unbounded
strong Liapunov function. Thus, Corollary 1 is also a consequence of Theorem 1.
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On the contrary, under the assumptions of Theorem 2 there is not in general a
strong Liapunov function, whose level sets coincide with the M)’s. Of course,
strong Liapunov functions exist by virtue of Theorem 1, but none of them can
be recovered from the family {M;}. Relationship among attraction, esistence of
Liapunov functions and families of nested sets is studied in [6], as well. How-
ever, in the present setting the construction of Theorem 4.1 of [6] can not be
used to obtain a continuous Liapunov function.

3 - Piecewise continuous stabilization

In the control theory literature there are many examples of systems which
can be stabilized at an equilibrium point by applying piecewise constant feed-
back laws. Consider for instance the two dimensional system

ey = —4y y=4dx+3ux.

A simple geometric argument shows that setting v =u*= —sgnay, (1)
gives rise to a continuous dynamical system =¥ with a globally asymptotically
stable equilibrium at the origin ([2]). However, apparently there is not an obvi-
ous strong Liapunov function which allows us to prove formally this statement.
This can be done by applying Theorem 2. Indeed, there is a family of ellipses
(for instance, the trajectories of (1) with % = 1) which have all the required
properties with respect to the above defined dynamieal system =*.

More generally, the following statement is easily proved.

Theorem 8. Let =, and =» be two dynamical systems on a complete me-
tric space E, with a common equilibrium position x. Let S be an unbounded
open subset of E such that x e 3S, and let B = E\S. Assume that

(2) n*=n, on R =7y om S

still defines a dynamical system on E.

Let {M;} be a family of compact sets satisfying assumptions al, a2, a3, ai
of Theorem 1. Assume that for each i and each x € OM; N R, there exists T > 0
such that =, (T, x)e dM; NS and ={(t, x) e OM; for all t < T.

Assume finally that each x € AM; N S is an enter point for my. Then, T is a
globally asymptotically stable equilibrium point for (2).
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4 - Stabilization of the rigid body

In this section we are concerned with the global feedback stabilization of the
angular velocity of a rigid body. We consider the particular case when there are
two control torques acting on the body. The corresponding equations are (see
[3] for references)

3) 951=J1m2x3 5132::]2%11173‘{"% a'73=J3x1:X,‘2+’v

12_13 _13‘“11 _II_IZ
L kT BT

where Ji =

and we suppose that I3 > I; > I, so J; < 0 and J,, J; are positive. We recall that
our problem is to find two smooth functions u(zx) and v(x), u(0) = v(0) = 0, such
that the origin becomes a globally stable equilibrium point for (3). Observe that
the result of Aeyels and Szafranski [1] does not apply to system (3).

In [4] it is proved, using center manifold theory, that the linear feed-
back

4) u(x) = — 0y v(x) = 2, — T3

makes system (3) locally asymptotically stable at the origin.

In [3] it is proved that the same function actually is a global stabilizer, pro-
vided that (8) is symmetrie, that is J; = —J; and J; = 0. We prove here that
this last restriction can be removed. In other words, (4) is a global stabilizer for
(8), for each choice of J; <0 and J,, J3 > 0.

To this purpose, consider the family of compact sets:

M, ={(2, 5, 23) | V(@) =Jpaf — Jywf<c? and B(x)=wf< (S K2+ K.+ K2’}

c c_y
V=71 Vi

M s are compact sets that satisfies hypothesis ¢, ¢2, ¢3 of Corollary 1. We
have to prove that the points on the surface are enter points.

On the cylinder we have V(x) = 2J,%Z < 0, and if there exists a trajectory
x(t) = (x; (£), 2o (t), 23(¢)) on the surface of the cylinder V() = ¢? we have:
2 () =0, @ () = ——, x3(t) =0 and (—=, 0, 0) is an equilibrium point.
VT, Ve

By direct substitution in (8) (4), we see that this is impossible.

where ¢ > 0 and K, = max (
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On the bases we have B(x) = (J3KZ + K, + K2)* and
B(.’)c) = 23’:3{1’}3 - 2%3(:]35(1‘1.'172 + 2 — xg) < —2K02(J3K02 + Kc + KCZ) <0.

Thus on the bases the points are enter points.
From Corollary 1 the origin is a globally asymptotically stable equilibrium
point for system (3).
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Sunto

Questa nota fornisce un criterio di stabilitd asintotica globale di punti di equilibrio
di wn sistema dinamico. Il risultato viene applicato ad alcuni problemi di stabiliz-
zazione.
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