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Some applications of fully-(2, ou)-bases (**)

Introduction

We obtain a characterization for the topological dual of a locally convex space
having a fully-A-base or a fully-A*-base, wherein the more general ou-topo-
logy takes the place of the traditional normal topology.

Sufficient attention has been paid to establish the strong impact of different
types of nuclearities of = on the locally convex space admitting a fully-(a, ou)-
base (or fully-A*-base). A few examples concerning this aspect of the study also
appear in our discussion.

Most of the results are motivated by their eorresponding analogues deve-
loped when 2 is equipped with the conventional normal topology. Some of the
present results extend known propositions regarding A-bases and A-nuclea-
rity.

In order to appreciate the subject matter of this paper one is assumed to
have a rudimentary familiarity with the theory of nuclear spaces (associated nu-
clearities), sequence spaces and Schauder basis as presented in [9], [10] and [7].
However, to have a glimpse into A(Py)-nuclearity we turn to [12]. Lastly for a
detailed discussion regarding ou-topology and related fully-A-base aspects we
adhere to [3] and [5], while for fully-A-bases (Q-fully-2-bases) we refer to [8] in
the case of the normal topology.
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1 - Duals

This Section is devoted to the representation of members of the topological
dual of an Le.TVS having a fully-A-base or a fully-A*-base.

We begin the discussion with the following result which makes use of famous
Cook’s theorem [1].

Proposition 1. Let u be perfect and X be a u-perfect sequence space. If an
LeTVS X has a shrinking fully-2-base {x;, f;}, then X is semi-reflexive provid-
ed that there exist y e \* and z € u* with y; = ¢ > 0, z; 2 1 > 0 for all 4, for some
e and L

Proof. We show that {;, f;} is boundedly complete. Then by Cook’s theo-
rem X will be semi-reflexive.

n
Suppose that the sequence (X «;x;), is bounded in X; take p e Dy, a e A*
i=1
and beu™. Then there exists g e Dy such that

.21 |fi (@) | p(2) | a; b;] < glx) reX.
2
Moreover, there exists X > 0 such that
n
g2 ax)<K wn=12, ...
i=1

Hence > |a;bia;|p(a;) < o for allae x* and beu ™ so {es p(x;) a;} € s, for all
i>1

=

ae2*. Thus {a;p(x;)} er as A is p-perfect. But Ac!' because for xe 2

12

DREARS ls |; y;:%;| < . Thus the series , «;%; converges in X. Conse-
iz1 & iz1 1

quently the base {w;, f;} is boundedly complete.
Note. Notice that this result includes Proposition 3.1 [2].
An inspection of the proof of Proposition 1 suggests.

Proposition 2. Let  be a perfect sequence. Suppose there exist y e A and
zeu  withy; = e>0, 2 21> 0 for all i, for some ¢ and I. If an 1.c.TVS X has
a shrinking fully-A*-base {x;, f;} then it is semi-reflexive.

Note. From this result one can immediately infer that an Le.TVS X with a
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shrinking fully-A *-base is semi-reflexive provided that there exists some y e A
with y; = ¢ > 0 Vi, for some e.

The following result deseribes the structure of continuous linear functionals
on the 1.eTVS possessing a fully-A-base. Precisely, we have,

Proposition 8. Let (u, n(u, » ™)) be a perfect sequence space with K-pro-
perty (i.e. there exists y e ™ with ¥y, = ¢ > 0, for all n, for some ¢) and X be
such that x> cl1'. Suppose X is an Le.TVS having o fully-A-base {,, )
Then the topological dual X* of X consists precisely of those linear functionals f
on X which can be written as

L flx)= glanfn (x)

n=

[#4
where for some p e Dy, the sequence { ——

(@,

Proof. Suppose f is a linear functional on X for which (1) is true. Then
there exists some S e A* such that

f@)] < 3 1@ ealp@) <™ I 1@ 18] pe v

which suggests that fe X* as {=,, f,} is a fully-A-base.
Conversely, if feX™, there exists peDy and K>0 such that
|fle)| < Kp(mn) Vn = 1.But f(&) = 2 anf,(x) where a, = f(x,). The conclu-

nzl

sion that { }e 2* now follows from the inequality
Z| bcnI\KZ‘b Cul < ced, bep”
p( n)
as A ¢!, because { (c)}ey, Veel.

Similar to above analysis is the proof of the following which characterizes the
dual of an Le.TVS with a fully-A#-base.

Proposition 4. Let u be a perfect sequence space and A be a u-perfect se-
quence space with 2*p > cl*. Suppose X is an Le.TVS with a fully-A*-base
{%,, f.}. Then the topological dual X* consists precisely of those linear
functionals f which admit the representation (1), where for some p e Dy,

{ tea

Xy

;)
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Remark 1. Note that the conditions Aw* ¢l' in Proposition 2 and
A#p*cl' in Proposition 8 can be replaced respectively by AeXcl® and A pXcl”
provided (u, n(g, «*)) is nuclear.

2 - Impact of nuclearities of u

From now on A(Py) will be a fixed nuclear G .-space. For notions and termi-
nology on A(Pg)-nuclearity we refer to [12].

From Proposition 8.4 [2] we know that nuclearity of (u, (g, x*)) implies
the nuclearity of a sequentially complete space having a fully-A-base. Now one
would like to expect the A(Pp)-nuclearity of X from the A(Pg)-nuclearity of

(s s 7)),

Proposition 5. Let X be a sequentially complete space with a fully-i-
base. Suppose that there exist a e \* and b eu™ such that a,=¢>0,b,=21> 0
for all n for some ¢ and . Then X is M(Py)-nuclear provided that (., (e, 1)) is
M Py)-nuclear.

For the sake of completeness we give the proof that runs on lines similar to
that of Proposition 3.4 [3].

Proof. Invoking Proposition 8.1 [3] X can be topologically identified with
AMQ) where

Qz{p(xn)anbnlpEDx, aer, bElU.i}

Thus X is A(Po)-nuclear iff A(Q) is A(Py)-nuclear. Since (u, p(g, = *)) is A(Pp)-nu-
clear, inview of Proposition 3.7 [8] to each beu, there correspond, a c e 73,
br(n)
Crtn)
as for any pe Dy, ae2% and bep’ we have

and a permutation = such that { } € A(Py). Consequently, X is A(Pg)-nuclear

P iny) i) Dy
P(Zon)) By Ctm)

}E)\(Po).

A close look at the analysis of the proof of Proposition 5 suggests also

Proposition 6. Let X be a sequentially complete space with a fully-A-base
such that for some a e A* and beu™ we have a; 2¢>0, b; 21> 0, Vi= 1 for
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some ¢ and l. Suppose that, given any b e A*, there exists ¢ € A* and a permuta-

b
tion = with {c—:; } e MPy). Then X is MPy)-nuclear.

Note. For the above two results neither the perfectness of u nor the p-
perfectness of A is necessary.

The following result shows that sequential completeness on X is redundant,
when u ts choosen to be a nuclear G.-space.

Proposition 7. Let A(P) be a nuclear G..-space. Suppose S is a sequence
space such that its A(P)-dual contains an element y with y, = ¢ >0, for all »
and for some e. Then an 1eTVS X having a fully-S-base is A(P,)-nuclear,
whenever A(P) is A(Py)-nuclear.

Proof. Since A(P) is A(Py)-nuclear, invoking Proposition 3.6.12 [12] we get
an a € P such that {a, '} e A(Pp). Also for any p € Dx y € S*P and a € P there
exists g € Dy such that

@) le(xn)lﬁ@(m)l% Yol Sq@) zeX.

In particular, choosing the y from the hypothesis and the above a with
{a; '} exPy)cl' in (2) we find that the base is equicontinuous and
plen) P v 3(Py) which concludes that X is ACPy)-

(
q(xn) Q(xn)
nuclear in view of Proposition 8.10 [8].

< (eay)™!. Therefore {

The foregoing result yields in particular

Corollary 1. Let A(P) be a nuclear G.-space. Suppose S is a sequence
space, whose X(P)-dual contains an element y with y; = ¢ > 0, for all i and for
some e. Then an e TVS X with a fully-S-base is nuclear.

The analysis involved in the proof of Proposition 7 also reveals that

Proposition 8. Let A(P) be a Schwartz G .-space. Suppose S is a sequence
space, whose A(P)-dual has an element z with {271} € \(Py). Then an 1.c.TVS
having a fully-S-base is A(Py)-nuclear.

In particular, this implies
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Corollary 2. Let MP) be a Schwartz G-space and S be a sequence space,
whose A(P)-dual has an element z with {27 '} el*. Then an 1e.TVS having a
Sfully-S-base is nuclear.

The following result, which is a variation of Proposition 7, shows the impact
of the sequential completness of the dual E* with respect to the weak

topology.

Proposition 9. Let A(P) be a nuclear G .-space and y € S** be such that
y; Ze>0, for all i and for some «> 0. Suppose E is an Le.TVS with an
equicontinuous semi-S-base {x;, f;} and E* is weakly sequentially complete. If
S is M(P)-perfect, then E is MPy)-nuclear, provided that MP) is M Py)-nu-
clear.

Proof. Since {;, f;} is a semi-S-base we have

3) > | fite) | pla) | yila; < » VYpeDg, Vae P, Vye S P,
izl

Now identify E with the sequence space 4 = {(f;(2))|x € E}. Then, modifying
the proof of Proposition 2.3 [4], E* can be identified with

4% = {(a;)| 2 a;7; converges for all re A}

where-in the identification is given by
feE¥<{f(x)} e 4?.

Now (3) means that {y; p(x;) a;} € 4°. Thus, what we have proved is, for all
y e S*P pe Dy and a e P there exists fe E* with f(x;) = p(x;) a; y;. Due to the
continuity of f we get some qe Dy and k> 0 such that

@ pla) a|y;| < kqlz).

As A(P) is A(Py)-nuclear, in view of Proposition 8.6.12 [12] there exists a € P
with {a;"'} € A(P,). So taking this ¢ and y, from the hypothesis in (4) we
get

(x;)
q(x;)

(x;) <

k
glz;)) €

Yea(Py).

L Which implies  {
@;

Now Proposition 3.10 [8] applies and the desired conclusion follows.
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Note. Proposition 9 can also be derived by using Proposition 7. It will be
enough to show that the base {w,, f,} is a fully-S-base.

To achieve this let us take any p € Dy, ¥ € S*® and a € P. Then we find that
(4) is satisfied for some ¢ e Dp and k> 0. From the inequality
sup{ | fu (@) p(@n) [ 9a|an} < & sup{lf, (@) q(n)}

nzl

it follows that {z,, f,} is a fully-S-base in view of Proposition 2.1 [3].

From the afore mentioned result it becomes clear that the following is also
true.

Corollary 8. Let MP) be a nuclear G.-space and y € S*? be such that
y; Z e > 0 for all © and for some . Suppose E is an ... TVS with an equiconti-
nuous semi-S-base {x;, f;} and E* is weakly sequentially complete. If S is
M P)-perfect, then E is nuclear.

The method adopted in the proof of Proposition 9 leads to

Proposition 10. Let A(P) be a nuclear G .-space. Suppose S is a A(P)-per-
fect sequence space whose A(P)-dual has an element a with {a; '} € M(Py). If E
s an L.e.TVS with an equicontinuous semi-S-base and E* is weakly sequential-
ly complete, then E is A(Py)-nuclear.

This in turn yields

Corollary 4. Let A(P) be a nuclear G ,-space. Suppose S is a A(P)-perfect
sequence space whose A(P)-dual has an element a with {a; '} el'. If E is an
LeTVS with an equicontinuous semi-S-base and E* is weakly sequentiolly
complete, then E is nuclear.

We conclude this article with the following

Remark 2. Propositions 5, 6, 7 and Corollary 1 remain valid when fully-)-
bases are replaced by Q-fully-)-bases.

Example. Let A(P) be a A(Py)-nuclear G, -space and S be a A(Py)-perfect
sequence space with S*#9 c[®. Then by Proposition 8.6.12 [12] there exists
ce P with {¢;'} € A(Py). Take any a P, y € S*P and be P,. Then for any
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z e M(P) we have the inequality

1
izlpa(ei”(ei: ) y; ;< SEI? 9 'igl |2; |ai0—z‘i§1 ey b; .

Now, since A(P) is a G.-space, we conclude that {e;, ¢;} is a fully-S-base for
AMP) as S is A(Pgy)-perfect.
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Summary

See Introduction.



