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D. CHINEA and J. C. MARRERO (¥)

Conformal changes of almost contact metric structures (**)

Introduction

If M%*!is a differentiable manifold endowed with an almost contact metric
structure (o, £, 0, g), a conformal change of the metric g leads to a metric which
is no more compatible with the almost contact structure (g, & »). This can be
corrected by a convenient change of £ and » which implies rather strong restric-
tions. Such a definition is given by I. Vaisman in [16]. Moreover, he characte-
rize new types of almost contact manifolds and discuss some examples.

The aim of this paper is to continue the study of conformal changes of almost
contact metric structures. In section 1 we give some results on almost contact
metric manifolds. In section 2, we introduce a tensor field u which is a conformal
invariant for almost eontact metric manifolds. Then, if U is a class of almost con-
tact metric manifolds, by using the tensor field u, we determine the class U’ of
all manifolds locally conformally related to manifolds in U (see Theorems 1
and 2). Finally, in section 8 we give some examples of locally conformal cosym-
plectic manifolds.

1 - Preliminaries

Let M be a (2n + 1)-dimensional C® almost contact metric manifold with
metric g and almost contaet structure (o, £ 1). Denote by X(M) the Lie algebra
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of C® vector fields on M. Then we have
=T+ ®F 7O =1 gX, ¢Y)=9X,Y) - nX)0(Y),

for all X, Y e X(M), where I denotes the identity transformation. The funda-
mental 2-form @ of (M, ¢, & v, g) is defined by &KX, Y)=gX, oY), for
X, YeX(M) (see [3]).

Let V be the Riemannian connection of g. The covariant derivative V@ of the
fundamental 2-form @ is a covariant tensor of degree 3 which has various sym-
metry properties. We denote by C(V) the vector space of the tensors with the

0
same symmetries that V®, ie., the vector space of the tensors e ®@V
3

satisfying
11 alx,y,2) = —al®, 2, ¥) = —alx, oy, 02) + 7(y) al, & 2) + n(z) alx, ¥, £).

Here, V denotes a real vector space of dimension 2n + 1 with an almost con-
tact structure (g, £ ) and a compatible inner product (,).

In [9] it has been obtained a decomposition of C(V) into twelve components
C; (V) which are mutually orthogonal, irreducible and invariant subspaces under
the action of U(n) X 1. If (M, ¢, &, », g) is an almost contact metric manifold and
U is one of the invariant subspaces of C(T, M), where T, M is the tangent space
to M at x, we say that M is of class U if (V®), belongs to U, for all x € M. Then,
it is possible to form 22 different classes of almost contact metric manifolds
(where {0} corresponds to the class C of the cosymplectic manifolds). For an ex-
tensive study of these manifolds we refer to [9].

2 - Conformal changes on almost contact metric manifolds

Let (M, ¢, & 7, g) be an almost contact metric manifold. A conformal change
of the almost contact metric structure on M is a change of the form

@D o=9 F=er g =en g =e¥yg,

where ¢ is a differentiable function of M. It is clear that (¢', &, %', g') is again an
almost contact metric structures on M. So we say that (M, ¢, & n, 9) and
M, ¢, &, %', g") are conformally related almost contact metric manifolds. Let U
be one of these 22 classes given in [9]. We denote by U’ the class of all mani-
folds locally conformally related to the manifolds of U. In the words,
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M, o', &, 7', ¢g") belong to U’ if and only if, for each m of M, there exists an
open neighbourhood V of m such that (V, ¢, &, 7', ¢') is conformally related to
V, 9, %, 1,¢9) of U. In such a case, for simplicity, we say that M is lc.U.

If V=M we say that M is globally conformally related to a manifold of U
(or M is g.c.U).

Next, we introduce a tensor field 1, which is conformal invariant for almost
contact metric manifolds and should provide information about the almost con-
tact metric structure after a conformal change.

Let (M, ¢, &, v, g) be an almost contact metric manifold, with dim M = 5.
Then p is the tensor field of type (1, 2) given by

22) g, Y), 2)=xOY, 2)-ULX, Y, Z2)+1I;(X, Y, 2) +I1),(X, Y, Z)),

for X, Y, Z € X(M), where II,, II; and I}, are the tensor fields of type (0, 3)
defined by

20— DILKX, Y, Z)

= g(oX, ¢YYWP(Z) — g(oX, 0Z) RP(Y) — VX, Y)hP(pZ) + DX, Z) hD(pY)
II;X, Y, 2) = %Z@(X, 2)n(Y) — X, Y)n(Z))

Iy (X, Y, Z) = 9(X) n(YXV: D), Z) + 9 X) n(Z)V.: D), &)
where ¢ is the coderivative on M and
hO(X) = ¢P(&) n(X) — ¢P(X) — (V: D), X)

for all X e o(M).
For dim M =3, we define the tensor field x by

X, Y, D) =(Vy®)Y,2)-1I;X, Y, Z) - 11, (X, Y, Z).
We denote also by p the tensor field of type (0, 3) given by
wX, Y, Z) = g(uX, Y), Z),

for X, Y, Z e X(M).
We consider a conformal change of the almost contact metrie structure in M
given by (2.1).
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Proposition 1. For all X, Y, Z e X(M), we have
DX, Y)=e*0(X, Y)
VY =VyY+X@) Y+ Y(0) X —9(X, Y) grad
Vxp) Y = (Vx0) Y + 0¥ (0) X ~ Y(0) X — g(X, 0Y) grad o + g(X, ¥) p(grad o)
(Vx @' XY, Z) = e* (VxO)Y, Z)
+ e (9(X, 0Y) Z(0) + 9(X, Y) 0Z(c) — g(X, 2Z) Y (o) — 9(X, Z) 2Y(3))
3P (X) = ¢P(X) ~ (2n — 1) oX(o)
R O'(X) = hP(X) + 2(n — 1) ¢X(0)
¢'n' = e 7 (gy — 2nE(s))
XY, 2)=e"(LX, Y, Z) + g(oX, oY) 0Z(c) — g(oX, oZ) ¢Y(a))
+e* (0(X, Y) Z() — 0X, Y)1(Z) (o) — O(X, Z) Y(a) + DX, Z) n(Y) &(2))
X, Y, Z)=e* (X, Y, Z) — §@@X, Z)n(Y) — (X, Y)n(Z)))
(X, Y, Z) = e* (12 (X, Y, Z) + 7(X) (Y) 9Z(s) — 7(X) 7(Z) 9Y(5))
where grad ¢ is the vector field defined by g(grad o, X) = X(o).

From Proposition 1 we deduce

Proposition 2. Let (M, ¢, & v, g) and (M, ¢', &, 1", g') be locally confor-
mally related almost contact metric manifolds. Then the corresponding tensor
fields p and u' coincide.

Now, let U be a class of almost contact metric manifolds of the classification
obtained in [9].

Theorem 1.

i) For dmM=5 we have U'cUDC,®C;DC). Thus if
04@0565012(:[], then U=U"'.

i) For dim M =3 we have U'c U@ (Cs D Cy). Thus, if C;P Ciyc U, then
U="U".
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Proof. Let dimM =5. From (2.2) we obtain that M is of type
UBC,BC;DCy, if and only if pe U.

Now, we suppose that M e U’, ie. (M, ¢, & v, 9) is locally conformally
equivalent to a manifold (M, ¢', £, v’, ¢') in U. Then ¢'eU and, by Proposition
2, we deduce that u e U. This proves i).

If dim M =3, than C, = {0}, and ii) follows by a similar device.

Now, suppose that (M, ¢, & 7, ¢) is an almost contact metric manifold of type
Uand o' =¢, ' =e 7% 3 =¢n, g’ = e¥g, is a conformal change of the almost
contact metric structure. Then, from Theorem 1, we obtain the following.

Corollary 1.

a) If (do)t=0, then (M, ¢',&,7',9) e UD(Cy D Crp).
b) If (do) X =0 for all X of X(M), then (M, &', &, 7', g) e U Cs.

Next, suppose that UN(C;®CsDCp)=C. We have shown that
U'cUBCy® Cs D Cyp) (see Theorem 2.1).

The following theorem characterizes those manifolds in U ® (Cy ® C5 D Cyo)
which are contained in U’'. First, we define the 1-forms 6 and « by

6(X) = 5

_(%"l“—T)h(I’(?’X ) aX) = (VD) 9X)

for each X e X(M). Then

Theorem 2. Let U be a class of almost contact metric manifolds and sup-
pose that Uﬂ(C4€BC5®012)=C Let be (M, D, f, 0y g)EU@(C4@C5®Clz)

a) Suppose dim M = 5. Then

) (M, ¢, &, g) e U’ that is (M, o, & 1, g) is locally conformally equiva-

lent to an almost contact metric manifold in U), if and only if 0 = « and 6 + ;;7& 7

is closed.
ity (M, ¢, & n, 9) is globally conformally equivalent to a manifold in U, if

and only if 6 =a and 0 + ;Z

7 18 exact.

b) Suppose dim M = 3. Then
DM, &0 gyelU if and only if « + %87}7} 18 closed.
i) (M, o, & 1, 9) is globally conformally equivalent to a manifold in U, if

and only if o + %ann 18 exact.
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Proof. a) We suppose that (M, ¢, & 9, g) is globally conformally equivalent
to a manifold (M, ¢', &, %', ¢") in U. Since U N (C; & Cs P Cyz) = C, we have

B @' (X)) =0 e'n' =0 (Ve d' )&, X)=0.
From these expressions, using Proposition 1, we obtain

hD(eX) = =2 — ) ?X(a)  én=2mE0)  (V,D)(E oX) = — 02X (o).

Thus 6 =« and 6 + ;Z 7 is exact.
Conversely, if 6 = « and 6 + ;72 7 is exact, then there exists a differentiable

function ¢ on M such that for X e 3(M)

hP(pX) o

- 7 = . I i\i
5= 1) T 2 "0 = (V0 oX) + o ().

do(X) =

We put
o'=¢ =e7¢ n'=e¢n g =e
Then, from Proposition 1, we have
B O (eX) =0 g'n' =0 (V2 0')¢,X)=0,
and hence
M, "8, 7,9)eCiDCDC;RC;DC; D CsDCy® Cyy® Cyy)
NUBC,DC;DCrp)=TU.

This proves ii).
The proof of i) is similar, except that everything is done locally and the
Poincaré lemma is used. b) is proved in a similar way.

Also, from this theorem, if dim M = 5, we obtain

Proposition 3.

DIfMecUBC,®Cy, then M is Le. U if and only if 0 = « and 0 is closed,
and M s g.c.U if and only i, moreover, 0 is exact.

Thus, if MeUD®Cy or MeU®@Cy, then M is le.U if and only if
MeU.
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NIfMeUBC,DC;s0or Me UDC;® Cyg, then M is Le. U if and only if
o7

—{n1s
on

Me U Cs; and %}%q 18 closed, and it is g.c. U if and only if, moreover,
exact. Therefore, if M € Cs then M s l.c.C.

If dim M = 3, then, we obtain

Proposition 4.

) If MeU®C,, then M is Le.U (g.c.U), if and only if %%,; is closed
(exact).

) If MeU®@Cy, then M is lc.U (gc.U) if and only if « is closed
(exact).

3 - Examples

A - Let H**! be the (2n + 1)-dimensional hyperbolic space, i.e.,

H2n+1 — {(xl, s x2n+l)ER2n+l Iml > O}

2n+1
with the Riemannian metric given by ¢ = (x,)™2 > (da;).
i=1
H?*!is an example of Riemannian manifold of constant negative curvature
K=-1.
The vector fields X; = x; 5%— ,1=1, ..., 2n + 1, form an orthonormal basis for
i .
this space. Let (g, £, 7, g) be an almost contact metrie structure on H?**1, and o
the components of » with respect to the basis {X;, ..., X5, 1 }. Let go} = constant
and % = 2. Then, from Corollary 1, we have

@ Ift=m, 5%-, then the almost contact metric structures (g, & v, g) are of
1

class Cs and g.c.C.

2n +1

M) [fe= 2 ki -,
class (Cy @ C19)-(C4 U Cyp) and g.c.C.

2n +1

(i) Ife= > xk; % ,where k; # 0and k; # 0 for somei > 1 (k; = constant),
i=1 i

then the structures (g, & n, g) are of class (C,® C5P Cpp)-(Cy @ Cz) U Cs) and
g.c.C.

(k; = constant), then the structures (¢, & v, g) are of
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B - Let G(k) be the connected simply-connected 3-dimensional Lie group of
real matrices of the form

gl 0 0 =z
a=10 e 0 'y
0 0 1 z
0 0 0 1

where , ¥, ze R and k is a fixed non zero real number. As easy computation
shows that {z = ¢ ¥ dzx, g = e*dy, ¥ = dz} is a family of linearly independent left
invariant 1-forms on G(k). The corresponding dual basis of left invariant vector
fields on G(k) is

YV — kz_a_ Ve p-ke . Tw_ O
{X=e ax’Y e ay’Z 8z}'

We have X, Z1= —-kX [Y,Z]=FY,

and the all the other brackets are zero. Then we easily show that G(k) is a sol-
vable non-nilpotent Lie group.

Now, let B € SL(2, Z) be an unimodular matrix, with positive real eigenvalues
and differents 2 and A~! and let (@, b), (¢, d) € R? the corresponding eigenvectors.
We consider the discrete subgroup I'(k) of G(k) which consist of the matrices of
the form

AP 0 0 na + mb
0 ATP 0 ne + md
0 0 1 pk~11n A
0 0 0 1

with n, m, p e Z. We denote by M) = I'(k)\\ G(k) the space of right cosets.
Thus M(k) is a compact solvmanifold of dimension 3.

If =1 G(k) - M(k) is the canonical projection, then we have a basis {«, 8, y} of
1-forms on M(k) verifying

a=a #*f=f wFy=7%
da=ka Ny d8=-kfNy dy=0.

The corresponding dual basis of vector fields is denoted by {X, Y, Z}, and we
have [X, Z] = — kX, [Y, Z] = kY, being all the other brackets zero.
Alternatively, the manifold M(k) may be seen as the total space of a 7' 2-bundle
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over S*. In fact, let T2 = R? /H? the 2-dimensional tori, where H* = Z® is the dis-
crete subgroup of the integral linear combinations of the basis of R? given by
{(a, ¢),(b, d)} and let p: Z — Diff (T'?) be the representation defined as follows:
o(n) represents the transformation of 7' covered by the linear transformation of
R? given by the matrix
( A" 0 )
0 AR y
This representation determines an action A of Z on R X T2 which is defined as
follows:

A(n, (2, [z, yD) = (& + n, o)z, y]).

Then p: R x;T?— 8! is a T%bundle where the projection p is given by
plz, [z, y1] = [2].
Now, it is easy to see that ¢:RX;T%2—M(k) given by

Sz, [z, y1D = [, ¥, l—nk—)iz] is a diffeomorphism, in such a way that p: M(k) — S,

plz, 4, 2] = [T%], is a T%bundle over S'.

Now, let (g, n, & @) be the almost contact metric structure on M(k) given
by

0=a@®@Z~-vyQX &t=Y n=88 and g=a®az+BR8+yQy.

Then (o, & 1, g) 1s an almost contact metric structure on M(k) l.c.C of class Cyp
and it is not g.c.C.

Remark. It is known that M(k) has no cosymplectic structures. In fact,
M(k) can have no normal structures, since M(k) X S* can have no complex struc-
tures (see [13], [7], [6]). A generalization of M(k) is given in [8].

C - Let (M, J, h) be an almost Hermitian manifold, dim M = 2n (n = 2), and 6
an arbitrary 1-form on M. In M X R we consider the almost contact metric struc-
ture (g, & n, g) given by

4
T de

(X, a-(%), , b%)) =X, Y)+ab+t20X)0Y) + 0X)b + 6(Y)a) ¢

dy_x - dy o X, oLy =
@(X,aa)—(JX, X)) £=0 q(X,adt) t0X) + a

3.1

where ¢ and b are C® functions on M X R, X, Y € X(M). Then, if M is a locally
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conformal Kéhler manifold (i.e., M is of type W, of the Gray-Hervella classifica-.
tion for almost Hermitian manifolds [10]), with Lee form w, and if we put
w
2
Cy @ Cys, and, by Proposition 8, it is l.c. C. Moreover, if M is not globally confor-

mal Kéhler, then M X R is not globally conformal cosymplectic.

8 = — —, then the above almost contact metric structure (o, &, n, g) is of class

In order to construct examples of locally conformal cosymplectic manifolds, let
us consider the following manifolds, which are compact locally conformal Kéhler
manifolds, but do not admit Kihler structures.

- The Hopf manifolds (see [15]), which are defined as quotients
H=(C"-{0})\ 4, where 4, is the group generated by z—kz (keC,
|k| = 0, 1), with the Hermitian metric

h = (f zjij)‘l(ﬁ:l dzt® dz').

j=1

— The Inoue surfaces Sy, S§'), 4 » : and S§7), , » which are the quotient mani-
folds (H x C)\ G, where H is the upper half of the complex plane C and G is a
group of analytic automorphisms of H X C (see [11]). The surfaces Sy, are locally
conformal Kéhler manifolds with the metric

b= (wy) % (dw @ dw) + wydz ® dz

and the surfaces S§'), , ».; and S§), , » also are locally conformal Kéhler with the
metric

_ 1+ (22)2

h
(202 )2

dw ® 4 — %(dw®d§+dz®dm+dz®d§

where (w, z) are the coordinates in H X C, ws = Im (w) > 0 and z, = Im(z) (see

[14].

— The compact locally conformal Kihler nilmanifolds N(r, 1) x S', where
N, 1) =@, 1)\ H(r, 1) are compact quotients of the generalized Heisenberg
group H(r, 1) by the subroup I'(, 1) of matrices of H(r, 1) with integer entries
(see [5]). These nilmanifolds are examples of generalized Hopf manifolds.

— The family of compact locally conformal Kéhler solvmanifolds M*(k, n),
where M*(k, n) is a nontrivial circle bundle over the three-dimensional solvmani-
fold M2 (k) considered in B (see [1]).
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Then, if M is one of the manifolds above described, we obtain examples of
locally conformal cosymplectic manifolds of class Cy@ Ci2, which are not
globally conformal, by considering on M X R the almost contact metric structure
given n (3.1).

D - A interesting example is the (2n + 1)-dimensional real Hopf manifold
RH?*1 (see [17]), which are defined as follows. We consider the transformation
SIJZ: R2n+1 - {0}_>R2n+1 . {0} given by

zi=2x' 2eR A1>0 =1
and denote by ¥, the infinite cyclic group generated by ¢;. Then
RH2n+1 R2n+1 {0})/11/
Using the diffeomorphism f of R#**! — {0} on S* X R given by

In ||z |
Inx

, i
@)= ([T )
we obtain that RH2** 1 is diffeomorphic to $** X S*, which proves that RH** *1 i
a compact connected differentiable manifold.

Now, we consider in R**! — {0} the metric

2n+l 2n +1 .
g=(2 @M (X @)
j=1 i=1
where (x!, ..., 2%**1) are the coordinates in R®"*! — {0}. The vector fields
2n + 1 1

X;=(2 @))?

j=1

i1=1..,2n+1

form an orthonormal basis for the Riemann manifold (R***!— {0}). Let
(o, £ 7, g) the almost contact metric structure on R***!~ {0} given by

oX;=X,.i ¢Xpri=—Xy t=1,.,7
2n+1

=X2n+1 77—(2(%‘ )2) 2dx2n+1

The structure (g, & 7, g) is g.c. C. of type C; @ Cs @ Cy2, where the Lee form w
is given by

2n +1

cu—( 2 (m])z) H( E w; da’).
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Then the tensors ¢, & » and g on R**! — {0} all descend to RH** 1, We de-
note by (g, & 7, g) the structure induced on RH***!. Thus, (3, &, 7, §) s Le.C. of
class Cy @ C; D Cro. Now, by the definition of the diffeomorphism f, one gets
w= ~InAf*di, and consequently, by descend to RH**!, the structure
(%, £ 7, §) is not globally conformal cosymplectic.

Remarks.

1 - Since RH**1 = 8§ x §! the Betti numbers of RH**! are
bO:b1=b2n.=b2n+1=1 bl:'O 2$Z$27’I/—1,

and thus, RH***! can not have cosymplectic structures for n =2 (see [4]).

2 - It is easy to check that f*(de®+ (In 2)2dt?) = g, where do?is the metric of
S%" and ¢ is the coordinate in R. Thus, (RH?**1, §) is isometric to (S?* x S*, &),
being % the metric given by % = ds?+ (In 2)?0% where 0 is the length element
of St.
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Summary

In this paper conformal changes of metrics on almost contact metric manifolds are
studied and some examples are given.






