YASH PAUL (*)

Ideals in antiflexible rings (**)

1 - Introduction

A nonassociative ring A is called antiflexible in case the following identities hold

(1)
$$(x, y, z) = (z, y, x)$$
 (2) $(x, x, x) = 0$

where (x, y, z) = (xy)z - x(yz). Antiflexible rings have been studied by Anderson and Outcalt [1], Celik [2], Rodabough [4] and others.

A straightforward verification shows that any ring satisfies

(T)
$$(wx, y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z$$

which is known as the Teichmüller identity. Also, it is known [1] that an antiflexible ring with characteristic $\neq 2$ satisfies the following identities:

$$(2)' (x, y, z) + (y, z, x) + (z, x, y) = 0$$

(3)
$$(w, (x, y), z) = 0$$

where (x, y) = xy - yz.

2 - In what follows, an expression of the form (A, a, b) means the set of all finite sums (x, a, b) for $x \in A$, analogous arguments are meant for other form of similar expressions. Let A be a ring. Then $M = \{m \in A: (A, m, A) = (0)\}$ is called

^(*) Department of Mathematics, Indian Institute of Technology, Hauz Khas, IND-110016 New Delhi.

^(**) MR classification: 17A30. - Ricevuto: 21-XII-1990.

the middle nucleus of A. (3) implies that

$$(4) (A, A) \subseteq M.$$

Theorem 1. Let A be an antiflexible ring with characteristic \neq 2, and let R be a right ideal of A.

- (a) If R is maximal and nil, then R is a two-sided ideal of A.
- (b) If R is minimal, then either R is a two-sided ideal of A of the ideal generated in A by R is contained in M.

Proof. Suppose first the right ideal R is maximal and nil. If $aR \not\equiv R$ for some $a \in A$, we consider R + aR. This is a right ideal, since using (2)' and (1) we have

$$(aR)A \subseteq (a, R, A) + a(RA) \subseteq (R, A, a) + (A, a, R) + aR$$

 $\subset (R, A, a) + (R, a, A) + aR \subset R + aR$.

Thus $R \subseteq R + aR$ and R maximal imply

$$(5) A = R + aR.$$

Let $a = x_1 + ax_2$ where $x_1, x_2 \in R$. Then n iterations for a in the right side of this equation give $a = x_3 + (((ax_2)x_2)...x_2)x_2$, where $x_3 \in R$ and x_2 is a factor n times. Now $(A, R, R) \subseteq (R, R, A) \subseteq R$ by (1), and so by finite induction we see that $a = x_4 + a(x_2)^n$ where $x_4 \in R$. But since R is nil, $(x_2)^n = 0$ for some n. Thus $a \in R$ which means $aR \subseteq R$, a contradiction. We therefore have $aR \subseteq R$ for all $a \in A$, i.e. R is a two-sided ideal of A.

Let us next assume that the right ideal R is minimal, but not a two-sided ideal. Then there exists an $a \in A$ such that $aR \not\equiv R$. Let $R' = \{x \in R : ax \in R\}$. Now by (1) and (2)' $x \in R'$ imples $xr \in R$ and

$$a(xr) = (ax + xa)r - x(ra) + (xr)a - x(ar) \in R$$

for all $r \in A$. Thus it follows $R' \subseteq R$ is a right ideal, and so by the minimality of R we have R' = (0). Clearly using (2)' and (1)

(6)
$$(A, R, A) \in (R, A, A) + (A, A, R) \in (R, A, A) \in R$$
.

By (1), (T) and (2)' a(x, r, y) = (ax, r, y) - (a, xr, y) + (a, x, ry), (a, x, r)y = -(r, y, ax) - (r, ax, y) - (a, xr, y) + (ry, x, a) - (r, x, a)y and by (3)

(a, xr, y) = (a, rx, y) = -(rx, y, a) - (y, a, rx) = -(rx, y, a) - (rx, a, y).So $a(x, r, y) \in R$. This implies that $(A, R, A) \subseteq R' = (0)$, i.e. $R \subseteq M$.

We next set $W_0=R$ and $W_{i+1}=W_i+AW_i$ for $i\geq 0$. Suppose W_i is a right ideal of A contained in M. Then $W_{i+1}A\subseteq (W_i+AW_i)A\subseteq W_i+(AW_i)A\subseteq W_i+A(W_iA)\subseteq W_i+AW_i=W_{i+i}$, i.e. W_{i+1} is a right ideal. Also, using (3) and $W_i\subseteq M$, $(A,W_{i+1},A)=(A,W_i,A)+(A,AW_i,A)\subseteq (A,W_iA,A)\subseteq (A,W_i,A)=(0)$, i.e. $W_{i+1}\subseteq M$. Thus it follows by induction that each W_i is a right ideal contained in M. Since the ideal generated in A by R is simply $\bigcup_{i=0}^{\infty}W_i$, this completes the proof of the theorem.

A right ideal R of A is called regular if there exists an element $g \in A$, such that $x - gx \in R$ for all $x \in A$. A is called primitive if it contains a regular maximal right ideal, which contains no two-sided ideal of A other than the zero ideal (0). Define an ideal P of A to be a primitive ideal if the ring A/P is a primitive ring. The intersection of all regular maximal right ideals in A is called the radical of A and is denoted by rad A.

Theorem 2. Let A be an antiflexible ring with characteristic $\neq 2$. Then rad A is contained in P for any primitive ideal P of A.

Proof. Suppose that P is a primitive ideal of A. A/P is a primitive ring. Therefore by Theorem 3.5 in [2] A/P is either a simple ring with an identity element or it is an associative ring. In either case rad A/P = (0).

If A/P is simple then by Lemma 3.1 in [1], A/P has no one sided proper ideals. If A/P is associative, by Theorems 6.16 and 6.20(a) in [3], the intersection of all the regular maximal right ideals of the ring A/P is zero. But the regular maximal right ideals of the ring A/P are of the form P_i/P where P_i is a regular maximal right ideal of the ring $A \supseteq P$. Let $\{P_i: i \in \Gamma\}$ be the set of all the regular maximal right ideals of the ring $A \supseteq P$. Then we have

$$\bigcap_{i \in \varGamma} (\frac{P_i}{P} \;) = (0) = \text{zero ideal of} \;\; \frac{A}{P} = P \;.$$

This implies that $\frac{\bigcap\limits_{i\in \varGamma}P_i}{P}=P$. Therefore, $\bigcap\limits_{i\in \varGamma}P_i\subseteq P$. That is, rad A is contained in P for any primitive ideal P of A.

References

- [1] C. T. Anderson and D. L. Outcalt, On simple antiflexible rings, J. Algebra 10 (1968), 310-320.
- [2] H. A. Celik, On primitive and prime antiflexible rings, J. Algebra 21 (1972), 428-440.
- [3] N. H. McCoy, The theory of rings, Macmillan, 1964.
- [4] D. J. RODABAUGH, A generalization of the flexible law, Trans. Amer. Math. Soc. 114 (1965), 468-487.

Abstract

Let R be a right ideal of an antiflexible ring A with characteristic $\neq 2$. If R is maximal and nil, then R is a two-sided ideal. If R is minimal then it is either a two-sided ideal, or the ideal it generates is contained in the middle nucleus of A, rad A is contained in P for any primitive ideal P of A.
