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Existence, continuous dependence and periodic solutions
of nonlinear integrodifferential equation
with infinite delay (*%)

1 - Introduction

Theory of differential and integrodifferential equations with unbounded de-
lays are studied by several authors (see the survey article by Corduneau and
Lakshmikantham [3]). Burton [2] has established existence theorems for nonlin-
ear integrodifferential equations with infinite delay. He also proved one type of
continuous dependence result and using this he established the periodicity. Bal-
achandran [1] has proved an existence theorem for nonlinear integrodifferential
equations having implicit derivative and infinite delay. In [5] Kaminago discussed
the continuous dependence of solutions for nonlinear integrodifferential equations
with infinite delay. The general question of continual dependence is treated by
Haddock [4] and Kappel and Schappacher [6].

In this paper we shall prove existence theorem for more general class of non-
linear integrodifferential equations by including an operator in the nonlinear term
and infinite delay. We shall also prove the continuous dependence of solutions and
existence of periodic solutions.

(*) Indirizzo degli AA.: K. Balachandran, Department of Mathematics, Bharathiar
University, Coimbatore IND-641 046, Tamil Nadu; A. Anguraj, Department of Mathe-
matics, Gobi Arts College, Gobichettipalayam IND-638 453, Tamil Nadu.

(**) MR classification: 34A12; 45J05. — Ricevuto: 12-X1-1990.
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2 - Basic assumptions

Consider the nonlinear integrodifferential equation with infinite delay

() = h(t, x(t), Ax@®) -+ ftq(t, s, w(s)ds t=1,
W ) =) —o<ist

or an equivalent system

to 14
&) = h(t, z@), Ax@)+ [ q(t, s, ¢(8)ds+ [qt, s, x(s)ds t=t
_ Iy
@)
w(ty) = ¢(tp)-
Here h: (=0, )X R"XR"— R", q: (—o, ®)X(—», )X R"—>R" are
continuous and A: R"— R" is a continuous operator such that for «,, x, e B",
there exists a constant N and a continuous function a: [ty, «)— [{), =)

i
&) |Am, () — Az ()| <N %f a(s)|z; (s) — x4 ()| ds.

Further, the functions ¢ and £ satisfy the local Lipschitz conditions
) lq(t, s, %) —q(t, s, @)| < L|w, — ;]
(5) Ih(t, 1, Ax,) — h(t, Ty, Axy)| < Llx, — 25| + K|Az, — Axs|

for &, x, € R™ where L and K are positive constants.

Assume that for each f;, € R there exists a nonempty convex subset B(fy) of
the space of continuous functions ¢: (—oo, f]—> E” such that ¢ e B(f,) im-
plies

)
(6) _ch qt, s, (s)ds=Q(, t, 3)

is continuous on [, ).
For a given t; let ¢ € B({;), and let 8, be a positive number. Now for
| —3()| <1 and t,<s<t<ty+p there is an M >0 with

Bilg@t, s, @] + |k, ®, An)|+|QC, b, 9l<M

0<p<p ﬁ<—j—‘1{[—.

O

Consider the complete metric space (X, ¢) of continuous functions
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& (=, to+p]— RB" with a(t) = ¢(t) on (—0, ty], |w(t;) — x(ty)| < Mlt, — t,| for
to<t <t+p, and with o(x;, 25) = max ﬁ!fﬁ (&) — 2, (t)|. Assume that

tostsio+

t
® LpB+1+KNa)<1 where a= sup [a(s)ds.

taSt<iy+8 4,

3 - Existence

Theorem 1. Under the assumptions (3)-(8), the equation (1) has a unique
solution x(t, ty, ¢) defined on an interval [t,, to+ B) for 8> 0, for each ty and
each 3 € B(ty).

Proof. Define a mapping P: X — X by

Pa)(®) = ¢(t) for —eo<t<ty;

t
(Px)(@) = ¢(ty) + [ I(s, z(s), Ax(s))ds
ty

[ 22 t
+J [, s, 2()dsdu+ [ Qu, t,, ¢)du for ty<t=<t,+g.
&t f

Now:

|(Px)(®) = (to))]
<| tofth(s, w(s), Aw(s))ds|+| tft tfuq(u, s, @(s))ds dul +tftQ(u, ty, ¢)dul
<plhCt, ©, Aw)|+p8 g, s, @) +HQCE, b, &) <M <1;
[(Px)(t) ~ (P)(Ey))]

23 b u ty
<| tf h(s, x(s), Ax(s))ds| + | tf tf q(u, s, x(s))dsdul + Itf Qu, ty, ¢)dul

< Mty —t,].

So P maps X into itself.
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To see that P is a contraction for small 2,, we have for x;, xs e X

p(Pxy, Pry)

t u
< sup [[ [lglu, s, 2,(s)—qlu, s, x2(s)|dsdu

th<iSt+B fy fy
t
+ [ |hu, 2 (w), Az W)~ h(u, x5w), Avs@))|du]
)
< LB |l — a2 || + BLl; — o + BK]| A, — A
t
< L%y — wo || + BLIlw; — @z || + BENI|w, — @, Htf a(s)ds

< LB%|lwe; — wo|| + ALy — o || + BENaljey — o]l = LAB + 1+ KNax) ||y — |
<|lw; — |

Hence P is a contractions mapping. Consequently P has a unique fixed point (t)
which is the solutions of the equation (1).

Theorem 2. Under the assumptions (3), (6) and (7), the equation (1) has at
least one solution x(t, t,, ¢) for each ty, and each ¢ € B(ty).

Proof. Let X be the space of continuous functions x: (—o», t3+8]— E”
with x(t) = ¢(t) on (—o, ¢,] and with supremum norm. Define

G={xeX: |x—¢t) <BM; |xt)—xl)| <Mt —t]}.

By Ascoli’s theorem G is compact. Also G is convex.
Define an operator P: G— G by

(Px)(t) = ¢(t) o for —o<tsty;

|4
(Px)(@®) = ¢(ty) +tf h(s, x(s), Ax(s))ds

t u t
+{ [qu, s, x(s))ds du+ [ Qu, t,s)du for ty<t<t,+p.
ty t
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Now: [(P)(®) — 4(t)]
t u
<| ftk(s, x(s), Aw(s)ds|+| [ [qlu, s, x(s))dsdu|+| ftQ(u, ty, ¢) duj
ty th b t

<plht, @, Ax)| +88:qCt, s, )| +BlQC, to, )| < pM;
|Px)(t1) — (Pa)tz)] < Mty — to -

Hence P maps G into itself.

To prove that P is continuous let « € G and let . > 0 be given. We must find
7 >0 such that y € G and ||z — y|| < 4 implies ||Px — Py|| <.

Now

|Px)(®) — Py)D)|
t i w
stf |h(s, x(s), Am(s)) — h(s, y(s), Ay(s)|ds+ [ [lglu, s, () — (u, s, y(s))|dsdu.
£ ot
But since ¢ is uniformly continuous so for the « > 0 there is an » > 0 such that
|a(s) — y(s)| < 5 implies

L

lqCu, s, a(s)) — qu, s, y())| < 7

Also since £ is uniformly continuous and A is continuous, given x> 0 there is
an 5 >0 such that |x(s) — y(s)| <y implies

(s, n(s)), Ax(s))— h(s, y(s), Ay(s)| < éi;-

Thus for [ — || <# we have

2
(P2t - Py < L2+ L =,

28 28

Hence P is continuous.
Therefore by Schauder’s fixed point theorem, there is a fixed point which is a
solution of the equation (1)

Remark 1. In the above proof take the set G as it is and define

H={zeX: |v—¢) <pM} P: H-QG.
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Clearly
[(Px)(t) — 3(to)| < BM [(Pa)(t)) — (Pa)(ty)| < Mty —t].

Hence P: H— G, and P(H) c G. Here G is compact and convex. Since P is contin-
uous and P(H) contained in a compact set G, P is a compact mapping. Therefore
by another version of the Schauder’s fixed point theorem P has a fixed
point.

4 - Continuous dependence

Let X denote the set of continuous functions ¢: (—«, 0]— R™ (i) |¢(?)| denote
the Euclidean length of ¢@®); @i |¢ll= sup |¢@®)|, if it exists; (ii) if
g: (=%, 0]— (0, =) is continuous, then = <'=°

lel, = sup |s@®/g®)| if it exists.
- Lt

Let (X, |-|,) be the Banach space of continuous functions ¢. Let ¢ be a metric as
defined in [2] and let (X, p) be a locally convex topological vector space.
Now we shall assume the following

Assumption 1. There is a continuous function g: (—o, 0]— [0, =), g(0)
=1, g(r)— © as r— —» and g is decreasing such that [¢ € X, |¢| < yg(s) for
0
some y>0 and —» <s=<0 and ¢ 0] imply that [ q(, s, ¢(s))ds is continu-
ous.

Def. 1. Equation (1) is said to have a fading memory if for each £ > 0 and
for each B >0, there exists K> 0 such that [¢ € X, ||¢]| < B, ¢ = 0] imply that

-K
gt s, 8N ds <.

Def. 2. Solutions of (1) are g-uniform bounded at t = 0 if for each B;>0
there exists B;>0 such that [¢ e X, |¢[,< B, t=0] imply that |x(t, 0, ¢)|
< B,.

Def. 3. Solutions of (1) are g-uniform wultimate bounded for bound B at
¢t = 0 if for each By > 0 there is a K > 0 such that [¢ € X, |¢|, <Bs, ¢t = K] imply
that |x(t, 0, ¢)| <B.
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Theorem 8. Let the equation (1) have a fading memory, let its solutions be
g-uniform bounded; let h satisfy a local Lipschitz condition in its arguments, let
q satisfy a Lipschitz condition of the following type: for each H >0, each J >0
there exists M >0 such that |x;| < H and —» <s<t<J imply that

IQ(t, S, xl)“q(t; S, xZ)ISM[xl“m2]'

If S is amy bounded (sup norm) subset of X, then solutions of (1) are continuous
i ¢ relative to S and p.

Proof. Let B;>0 be given and find B;> 0 such that [¢ € X, |¢|, <Bi,
t = 0] imply that |2(¢, 0, ¢)| < B,. Define S = {$ € X/|l¢ll < B;} and H = B,. Let
J>0, ¢>0 and ¢S be given. It will suffice to find ¢>0 such that
[WeS, ofs, ¥) < &limply |x(t, 0, ¢) —a(t, 0, )| <cfor0<t<J. Fore >0 sat-
isfying 2e;J A +N+LNV « /9 find D >0 such that [¢ € S, ¢=0] imply that

-D
[ g, s, ¢(s)|ds <e;. Here M and L are Lipschitz constants for # and ¢ when

lo;] < Hand —w <s<t<J.LetyeSande(s, ¢)<dsothat|¢@F) — ()] < Kéfor
some K >0 when —D <t<0 and K1 + MJD) eMA+N+LN /9
Let 2, (t) = 2(t, 0, ¢) and x,(t) = 2, 0, ¢). Then

t
2, (&) — o (t) = h(t, x,, Axy) —h(l, 2z, Axp) +_£ g, s, ®1(s))—q(t, s, x2(s)]ds
4
2, () — wo () = ¢(0) — L(0) + Of [h(s, x,(8), Ax,(8)) — h(s, x3(s), Axs(s)]ds
t u
+J J o, s, @ ()~ g, 5, @) dsdu
t
2, () — 22 (@) < [¢(0) — ¢(0)] +Of |h(s, xy, Axy)— h(s, x5, Ax,)|ds
i -D t u
+of ‘i lq(ur 8, 9'(8)) - (I(’Uq S, 4/(8))] dsdu +0f _£ Mli‘h (S) — ¥ (S)l dsdu
t
<K&+ M [ |z, (s) — x2(s)| ds + Lftlecl (8) — Ay (s)| ds + 25, J
0 0

t 0

t u
+ Of _lf) M|g(s) — ¢(s)| ds du + Of Oflel(s)—x?_(s)[ dsdu



178 K. BALACHANDRAN and A. ANGURAJ [8]

£ t
<K+ M [|a;(s) — wp(8)|ds + L [ |Ax, (s) — Axy (s)| ds
0 0
4
+2e1J + KeMDJ + M [(t — s)|2, (s) — w2 (s)| ds
0
t t

S KS+ MO +J) [ o, (s) — 2(8)| ds + LN« [ [, (8) — @5 ()| ds + 2¢;J + KsMDJ

0 0

t
(where sup [a(s)ds=a)
tost< g

t
< K&(1+ MDJ) + 26 J + [M(1 + J) + LNa] { |2 (s) — 2 (s)] ds
0

(by Gronwall's inequality)
< [K3(1 + MDJ) + 2¢, J] MA+D+LNV o

Therefore |z, () — x5 ()] <&, hence the proof.

Remark 2. The fading memory definition can also be altered as
-K
[6eX, |¢|,<B, t=0] imply that [ |g(t, s, &(s)|ds <e. With this change the

above theorem can be proved when (X, o) is replaced by (X, |-],).

5 - Periodicity

Most investigations into the existence of periodic solutions of differential
equations require that one can verify that x(t + 7) is a solution whenever xz(t) is a
solution. It is easy to verify that a sufficient condition for that property to hold for
(1) is that

h(it+T, x, Ax) = h(t, z, Ax) gt+T, s+ T, x)=q, s, x).

The basic idea is to find a set S of initial functions and define a mapping P: S— S
by ¢ € S implies

Pp=x@t+T, 0, ¢) for —o <t=<0.

Thus if P has a fixed point ¢ then z(t + T, 0, ¢) is a solution which has initial fuc-
tion ¢ and by uniqueness z(t, 0, ¢) =2+ T, 0, ¢).
Now assume the following conditions: (a) If ¢ € X and |g|, <y for any y >0,
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then there is a unique solution (¢, 0, ¢) on[0, ). (b) Solutions of (1) are g-uni-
form bounded and g-uniform ultimate bounded for bound B at t = 0. (¢) For each
y > 0 there is an L > 0 such that |¢(t)] < y on (—, 0]implies that |&(, 0, ¢)| <L
on [0, »). (d) For each y >0, if U = {¢ € X/|¢(t)| < y on (—, 0]} then solutions
of (1) depend continuously on ¢ in U relative to (X, o). (e) If x(¢) is a solution of (1)
on [0, ) so is x({t+ T).

Theorem 4. Under the assumptions (a)-(e) the equation (1) has an mT-
periodic solution for some positive integer m.

Theorem 5. Let the conditions of Theorem (4) hold with (d) modified to re-
quire continuity in (X, |+|,). Then (g) has a T-periodic solution.

) If ¢ € X, then x(t, 0, ¢) exists on [0, =) and is continuous in ¢ relative
to X and |-,

(g) For each H>0 there exists L>0 such that ¢eX and [3()|
<B\gt—H) on (-, 0] imply that |, 0, ¢)| <L on [0, ).

Theorem 6. Under assumptions (b), (e), (f) and (g) the equation (1) has a
T-periodic solution.

The proofs of the Theorems 4.5 and 6 are similar to that of Theorem 4.33, 4.34
and 4.35 in [2] and hence they are omitted.
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Abstract
We consider the nonlinear integrodifferential equation with infinite delay
t
() = k@, x@0), Ax@) + | q(t, s, x(s)ds t=1,
) =40E) —oo<ist.
Ewistence theorems are proved by using the contraction mapping principle and Schau-

der’s fized point theorem. Continuous dependence of solutions is studied and theorems re-
lated with periodicity of solutions are stated.



