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Remarks on a perturbation solution

of the Boltzmann equation for electrons in a gas (**)
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1 - Introduction

In a previous paper[3] we considered the motion of a swarm of electrons
immersed in a background gas of neutral atoms and we made remarks on the
Jlimits of validity of some truncation procedures of solution of the Boltzmann
equation governing the electron distribution function f(r, v, t) in the Lorentz
limit, under the action of an electric field E(r, t) («slowly variable» with time;
see below) and a magnetic field B(r)
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The notations in (1) are rather standard. J is the collision term, which, in the case
when only elastic collisions are taken in account, is a linear integral operator.
In[3] we started with the assumptions

2 w0 Inflot] < 1 |eB ) (mv)| < 1 o /LK< 1
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where <, = 7,(v) is the mean time-of-flight for momentum transfer relevant to an
electron of speed v, and L is a macroscopic scale length such that |3 Inf/r| ~ 1/L.
We claimed that assumptions (2), among other things, «presume situations
which change very slowly on the scale of z,,». We think that such sentence can be
given more details and that the whole problem of the construction of a
perturbation solution of (1) can be treated in a modified way. In particular, we
shall follow such a procedure that the order of magnitude of each term with
respect to the small parameter « =\/m/M (i.e. the square root of the ratio
between electron and atom masses) appears in a natural way and the method can
also be applied in different cases.

2 — The «extended» Boltzmann equation

We start remarking that, as regards the problem of the relaxation towards
equilibrium of the electron distribution function, one can distinguish two
different time scales: a faster one, which is related to the mean time-of-flight <,
and a slower one, which is related to the exchange of energy between an electron
and a neutral atom. As the energy lost in the average by an electron in a collision
with an atom is of the order of o = m/M [2], it will be convenient to introduce a
«slow time» 7, = o*t. Since we shall consider expansions in the parameter «, it is
suitable to introduce also 7, = af. Moreover we set 7p=t. We also suppose that
the electric field £ may depend on 7, but not on 7, and ;.

In order to reach our aim, we substitute to f{r, v, t) in (1) the «extended
function» F(r, v, 7o, 7, w)[4], [5] such that ()

3) F(r, U, 7, 71, 7o) o=t Ef(ry v, 1)

Ty=al,
To=a

() We can generalize without any difficulty this notion of extended function to each
integer order k. So we can set

fir, v, O—=F@, v, w5, t1, ooy T with

F(r) U, Toy Ty eeny Tk) ‘r,-=ait kEf(r; v, t)-
i=0,1, ...

i=0,1,..

For our aim, however, we can limit ourselves to the case k=2,
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and set, moreover,

oF , oF , ,oF
4 o, 20F
@ ot an %o T on

The assumptions (2), and (2); can be quantified by assuming that, accordingly
with[1] and [3], the second and the third term in the Lh.s. of (1) are of the order
of a. The fourth term, on the contrary, will not be considered small. Different
assumptions are, however, possible, so that the procedure we follow equally
applies.

In order to make automatic the specification of the order of each term, it is
suitable to introduce a «reduced velocity» &=av, a «reduced spatial variable»
x=c"r and a «reduced temperature» 6 =o?T for the background gas particles.
Moreover we set

6)) F(x; 5’ Tos 71y 72)=F(x/a27 5/06, Ty Ty, 7).
Then eq. (1) is converted into the «extended Boltzmann equation» (EBE)
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where a= —¢E/m and o, = eB/(mc).
In our hypotheses we have, moreover (see[l], p. 133)

JIF) = JUF) + 2 JAF) + O(a)

where

TE) = [[Fly 1, ) =F., & .)1qE 2dQ
®
JF) = J[F( )= Fl, & IVEGE, ) do

kg0 OF(..., 1, ...)
98

+a%;—' [ 29, DA~ nn)-[EFC..., 7, ..) + 1d0.

As well as in[3] we mean that g = 2nn —I) - &, where I is the unit dyadic and n is
the unit vector directed along the biseetor of the angle between the relative
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velocities before and after collision. Moreover kg is the gas Boltzmann constant
and V2 indicates the Laplace operator in the (reduced) velocity space.
Now we expand F' in power series of «

(9) F=F0+(ZF1+O(2F2+....

It is just inserting the expansion (9) in (6) that we are gonig to build up our
perturbation solution to the given equation.

3 — The perturbation solution of EBE

We start by considering the terms of zero-order in « in both sides of (6). We
obtain then

aF°+mc><§-§-E-°-+J°(FO).
870

(10) 3E

If we introduce
an H(x, 7, 71, )= fFo(x, & 7, 1, InFox, & 7o, 7, T2)d§
g

we prove without any difficulty (see Appendix) that a sort of «H-theorem» holds
for F on the scale of 7;, namely

12) SH g
81‘0

where the sign of equality is valid if and only if F, is an isotropic function in the
velocity space. Then F; relaxes to an isotropic function on the (fast) scale of z,. So
we can write F, as the sum of a «transient part» Ff, which tend to zero when
79— %, and an «asymptotic part» F§ (independent, therefore, of 7,) which results
to be isotropic. We can think of a similar decomposition for all F')’s, with k=1,
i.e. we can set F, = F£ + FT, where F{— 0 on the scale of ;. At this point we can
better define the meaning of the expression of Introduction «situations which
change very slowly on the scale of 7,,» (i.e. of 1), according to assumption (2),:
we mean that F), = F4 where F'4 is independent of 7. Then we shall identity F,
with F¢ in what follows.
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If we now take in account the terms of the first order with respect to « in (6),
we obtain

8F0+§-8F°+a-aF0+a)cX§»%

3 ax & =

(13)

where 0F/3& = (1/£)(8F ,/38) & (Fy being isotropic in &).
In a quite similar way like in[3] one can obtain that

(14) : F1=G1'€+_.FT1 with
(15) Gl == TmM ) A(FO)

where (b=B/B):

We Ty
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an A(F) = ( 8x+ £ GE)FO

and F, is the isotropic part of F;, for which we shall obtain an equation later.
Note that G, is an isotropic vector with respect to &(2).
Taking the isotropic part of (13) we have, moreover,

o,

18 o,

=0

so that Fy depends on time only through r,.
Turning now to second order terms, we have

oF, o8F, OF, dF, oF,

D o e T T g T8 g =TI+ FE.

() If, according to the fact that spherical harmonics (in velocity space) are
eigenfunctions of both m, X & - (8/8€) and J°, we start with a spherical harmonics expansion
of Iy, we see by invoking orthogonality and completeness properties that F; can have no
form but (14). Analogous conclusions hold for F,, with k=2.
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If we remember (14) for F, and observe that

2@ o e=St@-ten+iel g
@0)
=1 %%:(éé 521)+ é;’a 96, —+a-Gy,

26 9-a 5E

o
the components of 65/52— (1/3)1 being the 2-order spherical harmonies[3], we
obtain that the first four terms in the Lh.s. of (19) are of the form P(&)
+Q(F) - E+ R(&) : (EE — % £21) while JX(F) is isotropic in & Then it is natural to
seek a solution (see also foot-note (¥)) for F, in the form

@1) Fo=GCy: EE+FP -E+ T,

where G, is an isotropic traceless symmetric 2-tensor so that Gg:&&
=G,: (EE—L22I), FP and F, are, respectively, an isotropic vector and an
isotropic scalar function.

We have, after some calculations,

©2) O E- a;; = —20,X Gy (€~ 18D — @ X PP ¢
@ PE)=-wGyEE-3ED 1P
where [3]

4) w(®= [ g Il — Pycos]dR

(Py(cosx) = (8/2) cos®x — 1/2 being the second-order Legendre polynomial in
COS %).
So, if we equate the isotropic parts of each side of (19), we obtain

25) 9F, 8F1+ 52—- G+l Leg —q—+a Gy =J(FY)
8’272 E

As F,is independent of ; and G, can be expressed in terms of F, by (15), so must
be F,, since otherwise the integration of (25) with respect to =, would cause
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secular behaviour. Thus (25) yields to the basic equation for F,, namely

oF T
(26) _9.=.1_(§. +a _8_)‘ g
Or &
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If we now look at the coefficients of the 1-order spherical harmonics in (19),
we obtain

@0 oF, 1 9F,

o TE a 5% @, - FP=— —F, ie. (cf. [3])
(27)’ Fg) = TmM ¢ A(Fl) .
The remainder yields
S _ad\q _ NTTIEE ST
(28) [ ax+ 5 aE)Gl 20, X Gy + vo G, : (EE 35 =0.

Following the same procedure as in [3], we can solve (28) for G, in terms of G,
and, therefore, of Fy. The result, in compact form, is

v A — 20 X A° + (2/0?) [0 X (A’ @)] @ + (2/v:)(A’: 0w) I
v% + 4o
A o) oll@xD+4{oloX A 0)]+[ox (A’ o) o}
4&)2(\1% + wz)

N (6/v)(AY: ww) o + 12v,[(A° - ) @ + o(A° - )]
(v% + 40)2)(\/5 -+ wz)

29 Gp=

where we have written o instead of w, and we have indicated with A° the
«symmetric traceless part» of the tensor

= _ (9 ,a3d, :
30) A= (ax+E SE)Gl i.e.
G1) A°=%(A+AT)~~§—(A:I)I(3).

(® Note that if B is any traceless symmetric 2-tensor, then
A:B=AT:B=A":B for each 2-tensor A.
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If we now take in account the third order terms, we get

OF, oF, , oF,  oF, oF,
(32) ot At E T e b
=J0(F3)+J2(F1).

Taking once again the isotropic part, we obtain

an 'aﬂ‘}'lf F§1)+a 8F§)+3a_J2(F1)

(33) o + dr, 3 8 & ©O& &

By the same argument as before we conclude that, since F{’ can be written in
terms of F; by (27), also F, is independent of =;, so that (33) yields

&, 18,8 kz0 OF,

7M) (——+--——)F + == (F1+m£ 5%

& o g3 i

(ax E_) (¢

8_1
(34) 67 P

i.e. a self-consistent equation for F,. Note that (26) for F, is identical to (34) for
F,. .
Then we can consider the terms in (32) containing the spherical harmonics of
order 1, 2, 8, and so on for higher order terms in «, obtaining each time a new
information and/or a new equation for some Fi.

4 — Conclusive remarks

The procedure we have followed in last sections can be developed at the
desired order, supplying the required perturbation solution. One can see that, as
remarked in[3], [5], the expansion in spherical harmonics appears as a
consequence of the expansion in the small parameter « = \/m/M and can justify
the truncation procedures which are classically followed.

Although we have made use of some results and some ideas of our previous
paper [3], we think that something has been improved now, expecially as regards
the mathematical translation of our assumptions.

As a matter of fact, the use of the «extension method» (with different time
scales) and the introduction of «reduced» variables and constants allow to obtain
the expansion with respect to « in a natural way and can be applied to different
physical situations.
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Appendix

We are going to prove that the function H introduced in 3 by (11) is never
inereasing with o, i.e. 8H/37,<0, the equality sign holding if and only if F, is
isotropic in the velocity space.

We start by multiplying both sides of (10) by 1+ InF, and integrating over the
whole velocity space. We observe that

oF

(a1 cocxé-—ag—o(1+lnFo)=wcx§~8%(FolnF0)
. InF
—a—g'[(wcxf)Fon o]

and the contribution of this term, by divergence theorem and taking account of
the behaviour of F, at infinity, vanishes. Moreover, introducing the vector
l=&— n and recalling that g(¢, x) = N&(&, x), where N is the atom (constant)
number density and (&, x) is the (elastic) differential cross section relevant to
collisions between electrons and atoms, we see, by the properties of the Dirac
«delta function», that

(A2) éf SF)A +InFo()d§
=2N gf lf S —2&- Do, NFo(&—D)—Fo&I1+InFy(&)dldg
=2N J ”I 8n? = &) o, DIFo() — Fo(EIA + InFo(&)) dndé
=2N gf ”f &n? = & o, WF(8) — Fo(mIL + InFo(m)) dndg.

In (A2) we have suppressed the explicit indication of the variables x, 7y, 71, .
Remembering that £=|& =|n|=7 and returning to ! as an integration
variable, we obtain finally

(A3) JIPF)A +InFy(&) dg
3

Fy(&)
Fo&-D

=N gf ,f NP —=2&-DalE, ) [FyE—D—Fy&)ln dlde<o.
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As
(Ad) 13 4 tmFyag=2- [ FyinFyae=2H

i O Y 37,

it follows immediately the validity of our assertions.
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Sunto

Si considera il problema, gid affrontato in un precedente lavoro, del moto di uno

sciame di elettroni (di massa m) in un gas di fondo neutro monoatomico (le cuti particelle
hamno massa M), nel limite di Lorentz, sotto Uazione di campi esterni. Viene formulato
un metodo perturbativo, valido in diverse situazioni fisiche, di soluzione dell’equazione
di Boltzmann per gli elettroni, basato su sviluppi nel parametro «="\/m/M.
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