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A. ALZATI and M. BERTOLINI (¥)

On the rétionality of a certain class of cubic complexes (*¥*)

1 - Introduction

Let V be the intersection of a smooth quadric hypersurface @ and a smooth
cubic hypersurface X in P¥C). V is a well known non rational Fano variety,
though unirational (see [7]y)-

If we identify @ with the Grassmannian G(1, 3) of lines of P¥C), V is
classically called a cubic complex.

Let V, be the complete intersection of smooth @ and X containing n=1
planes two by two meeting at one pont only. Conte proved that V, is not rational,
(see [4]5); he used Beauville’s theory of conic bundles.

E. Ambrogio and D. Romagnoli proved the non rationality of V, and V; (see
[2]). When n=4 V,, is rational; it follows from the existence of a birational map
between G(1, 3) and PXC), under which some cubic complexes in P5(C)
correspond to cubic hypersurfaces in PYC) (see 3; the idea is due to Fano, see
[5D.

In this paper we study a conic bundle structure arising from V,: it provides
an example for which Beauville’s theory fails. We prove the rationality of V,,
n=4, as an application of some recent results given by Sarkisov and Iskovskih
about the rationality of conic bundles (see [10], [7]y34).

These conic bundle structures also arise from cubic threefolds of P*C), so
that our results work in this case too; we have outlined these further applications
in Remark 5.4. In 6 we prove that V; always contains another plane, so that the 8
planes contained in Vi are not in general position. '

(*) Indirizzo: Dipartimento di Matematica «F. Enriques», Universita, Via Saldini
50, 1-20133 Milano.

(**) Both authors are members of G.N.S.A.G.A. of the Italian C.N.R. — Ricevuto:
2-X1-1988.
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We also prove 7 <8: namely if n =9 X splits into Q and into a hyperplane. As
a consequence of our results we obtain a confirm to the Conjecture 8.3 of
Iskovskih on the rationality of conic bundles (see [7];). The same techniques
allow us to show that V; is not rational, according to [2], but in another way.

In a separated paper, [1], we also solved the problem of rationality for cubic
complexes containing » planes with the remaining incidence conditions.

We wish to thank prof. A. Conte, who called this problem to our attention,
and prof. F. Bardelli for many helpful conversations.

2 - Notations and preliminaries

Variety: by this term we mean an algebraic projective variety on C.

P r-dimensional projective space on C.

V.. the complete intersection of a smooth quadric hypersurface and a smooth
cubic hypersurface in P?, containing n planes two by two meeting at one point
only.

Ps: s™ plane contained in V,.

Prym(C, C): Prym variety associated to the double covering C of the curve
C. :

J(Y): intermediate Jacobian of the 3-variety Y.
H*(Y, Z): cohomological ring with integer coefficients of the variety Y.

Def. 2.1. We call conic bundle a non singular variety V with a surjective
morphism h:V-—S, where S is a smooth surface, satisfying the following
condition: for every point s of S, the fibre ~71(s) is isomorphic to a conie, singular
or not.

Def. 2.2. The conic bundle V' is called standard if for every irreducible
divisor D of S, h™Y(D) is an irreducible divisor of V.

Def. 2.3. (See [10]). A triple (V, S, h), where h:V— § is a rational map
whose generic fibre is an irreducible rational curve and S is a non singular
surface, is called a conic fibration (c.f.) over S.

Remark 2.4. We use a term different from Sarkisov’s to avoid confusion
with 2.1.



[3] ON THE RATIONALITY OF A CERTAIN CLASS OF CUBIC COMPLEXES 29

Def. 2.5. A cf. is called regular if b is a flat morphism of nonsingular
varieties.

Remark 2.6. A regular c.f. such that every fibre is a conie, is a conic
bundle according to Def. 2.1.

3 - Rationality of V,, when n=4

In P* we choose (2;:25:25: 241 25) as coordinates; the advantage of this unusual
choice will be clear in the sequel (see Remark 5.4). We fix three lines in general
position:

ll: 23=Z4=Z5=0
ZZZ Z1“23=Zg=25=0
ls Zi=2a=24=0.
In P° we choose (,: 1 %2 X5 241 X5) as coordinates. We consider the rational
map @:P*— P’ associated to |[0p42) — 1, — I, — L]
It is easy to see that @ is birational between P* and the hyperquadric @ of P
whose equation is ‘

3.1) LoXs — X1 T4+ X223 =0

We identify the smooth hyperquadric @ with G(1, 3), the Grassmannian of

lines of P5.
@' is the restriction to @ of the rational map, from P° to P, associated to

|0P5(2) — T2 T W3 7723]? where
Mo L1 =X =25=0
gt Lo =X =12%4=0
Tiogt Xz = Xy = Ly =

are the images of the hyperplanes of P* spanned respectively by L, lo; I, I3; Lo, Is.
79, g, 7oz Meet two by two at one point only.
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Under &, cubic threefolds in P* containing I, I, I3 correspond to the cubic
complexes containing s, 73, 7. If we choose another plane ¢, meeting =y, w3,
73 at one point only, ¢7(Y) is a plane in P%; so that a cubic complex as V,,, n =4,
containing 4 (or more) such planes is birational to a cubic threefold containing a
plane, which is singular and therefore rational. While a cubic complex containing
3 such planes, as V;, is birational to a smooth cubic threefold, which is not
rational (see [4]y).

4 - Conic bundle structure arising from _V1

From now on V,, will be the complete intersection of the hyperquadric Q
previously considered and a smooth cubic hypersurface X in P5.

We consider n = 1; we have V; containing only one plane P'. Now we want to
prove that a generic V) is singular and has 7 ordinary double points on P2
Meanwhile we fix a coordinate system useful in the sequel.

Obviously a generic V; is smooth out of P!; we determine the singular points
on P! Every line in P? is determined by a couple of points (ag:a,:as:as) and
(bo: b1:by:by); then the point of G(1, 3), corresponding to the line joining
(@o:a1:az:a3) and (by: by:by:by), has coordinates (see [6]):

To=aob; —boay X1 =00by— boars
4.1 To=0Qobs—boaas %3=a,b:— b0,
Ty=a1bs—bias T5=0azb3— byas.

As the planes in V,, meet at one point only, we can suppose that they belong
to only one ruling of @; the ruling corresponding to the stars of lines in P%. We
choose a coordinate system in P? such that P! corresponds to the star of lines
centered in (1:0:0:0); by (4.1) P* has equations: 23 = ;= &; = 0. So we can say
that the generic X containing P! has equation

(4.2) x%El-l-x%Fl-F x%Gl"}'xolel"f‘xomng

+m1w2M1+w0Nz+m1P2+x2QZ+R3=O
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where
El =E1(a73:x4:905) = €3 + 32%4'{‘ €35 F1 =F1(903:a?4:w5) =ﬂx3 +ﬁm4 +f;3m5
etc. are degree one homogeneous polynomials in @, @, s Ny, Py, @, are of
degree two; R; is of degree three.
A point on P* is singular for V, if and only if the hyperplanes tangent to @ and
to X are the same. We confuse the letters @ and X, respectively, with the

equations (3.1) and (4.2); then the partial derivatives of @ and X, evaluated at
points of P!, are:

Q%:O Qa:l:O Qx2=()
ng =Xy Qx4 =% Qx5 = %o

X,=0 X,=0  X,=0

=
Xxs-_-' e;:v% +ﬁx§+g1x%+ hlxoxl + llxoxé+ml$1m2
Xy = 25 + fo 0t + go 0§ + o o 0y + I %9 Ty + M 6y
X = €305 + fo 6] + ga 08 + hg oy + Ly 200 Xp + Mg 1 5.
The tangent hyperplanes are the same if and only if
Xxg: ng = Xx4 . Qxl, = Xx5 : Qx5 or
(4.3) ngx4 + lexs =0 fb‘ngs - xOX@S =0.

The solutions of system (4.3) are the 9 intersection points of two cubic plane
curves. To obtain the singular points of V; we do not consider the intersection
points of the line x, =0 and of the conic X,,=0. So we have only 7 singular
points; it is easy to see that, in general, they are ordinary double points.

Now we show the following

Proposition 4.4 (see [4];). Let Vi the blowing up of V; along P; Vi is a
conic bundle over P% its discriminant locus is a degree T smooth curve C,.
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Therefore V, is not rational (see [3];).

Proof. We consider the plane = in P® whose equations are: X;= 2, =, = 0.
= and P! are skew. We project V, from P! on = and we call f such projection. For
every point A on =, we indicate by the symbol (A, P') the 3-dimensional linear
space generated by A and P!. The intersection of (A, P!) and @ is a quadric
surface which splits into P! and into another plane PY; the intersection of
(A, P') and X is a cubic surface which splits into P! and into a quadric surface
Q'. So that the fibre f~(A) is given by P* and the conic P’ n Q’. If we blow up V;

along P!, we obtain a conic bundle V7.
Now we calculate the degree of the discriminant curve C; on =. The

‘coordinates of A are: (0:0:0:23:%,:25). The generic point of (A, P!') has
coordinates: («:f:7:8%y:8%,:8%5). This point lies on V; if and only if V

(4-5)3 0(8375 e ,35‘034 + Yaxg =0
(4.5), o?8E | + B OF, + v28G, + afdH | + aySLy + BydM, + ad®* N,
+‘382P2+ )’82Q2+33R3= 0.

If =0 we have P'. If we delete 8, the equations (4.5) are the equations of a
conic ¢ of (4, P') which is the intersection of the plane (4.5), with the quadric
(4.5)p. A belongs to C, if and only if this conic is degenerated this happens if and
only if the projection of ¢ over the plane « =0, for example, is degenerated; and
this happens if and only if
(4.6)  Ry«f4E\F,— HY) +a{4E, G, — L) + «¥4F G, — M3 + 22524 2E M, — H, L))

— 203052F Ly — Hy My) + 22, 25(2H, Gy — Ly M) — E (03 Py + 0, Qo)
— Fy(3 Ny — 5 Q0)* — G1(04 N + 5 Po)* — M (4 Ny + @5 Po)(a63 Ny — 25 Qo)
+ Hy(23 Py + 0, Qo) (@3 Np — 25 Q2) + L4 N + 05 Po) (w3 Py + 24Q2) = 0.
(4.6) is the equation of C, and it has degree 7.

By Proposition 1.2 of [3]; this curve is §mooth because it is easy to see that,
for a generic V,, rank ({)=2.
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5 - Conic bundle structure arising from V,,, n=2

Now we consider V,,, n=2. By Proposition 4.4 it exists a singular conic
bundle V;, over P? with a degree 7 discriminant curve C,: the blowing up of V,,
along P'. V, is singular because the previous caleulation shows that there are
double ordinary points on every P? ..., P". We call f, the morphism from V), to
P? whose fibres are conics.

The existence of P? ..., P"in V, implies that C, splits in the following way
Co=Tsyuliulyu...uL,_;, where I'y_, is a degree 8 — 7% smooth curve and
Ly, Ly, ..., L,-; are n—1 lines in generic position.

In fact if in V; there is an other plane P/, it generates a hyperplane of P* with
P*;this hyperplane cuts = in a line L;. L; is a component of C, because for every
point A of L;, (A, P') cuts a line, through the point P* n P/, on PJ. This line is
contained in @ and in X and so it belongs to te fibre f,"(4). Whence Fi(A) splits

into this line and into another line meeting the former one.
Every plane in V, different from P!, implies the existence of a line in Cy;s0it

is clear that an irreducible V; can have at most 7 planes other than PL In this
way we have proved that n<8.

Now we prove the following

Proposition 5.1. On every plane P in V, there are 7 ordinary double
points; among these points, n— 1 correspond to the intersections of P’ with the
other n—1 planes of V.

Blowing up V, along P, on every plane P’ the double point PIn P!
disappear. The remaining 6 points project as follows: the n — 2 intersections of
PJwith the other planes fall in the n — 2 intersections of L; with the other lines of
Cy; the other 8 —n full in the intersections of L; with I's_,.

Proof. By the configuration of the planes P, it is enough to verify
Proposition 5.1 when in @ "X there are only two planes P! and P?. We may
suppose that P? corresponds to the star of lines centered in (0:1:0: 0); by 4.1)
its equations are: x; = 2, = a5 =0.

Then the equation of X is (e =e;, see.(4.2))

exdas + XL Fy + 2§ Gy + 2wy Hy + @9 % Ly + 10 20 M,

+:L'0905N1+w1P2+w2QZ+x5R2=O.
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By the same technique used to determine the double points of V; on P, we
have that the double points of V, on P? (y: a5 x,) are among the 9 intersections
of these curves

(6.2), @(xo Hy + Py) + 2y(o Ly + Q) =0

(5.2)b xo(moHl + Pg) + x4(ew% + moNl + Rg) =

where H,= H(xs3:2,:0) ete.

As usual we have to delete the intersections of the line 2, = 0 and of the conic
%o H; + P;=0. One of these points is P'nP? and its coordinates on P? are
(1:0:0). But this point is an ordinary double point for the cubic (5.2),; so it is one
of the double points of V, on P2 v

Now we analyze the double covering of C,. The hyperplane generated by P!
and P? cuts the line L; on =(xs: x,: 5); the equation of Ly is a5 = 0; Co =TIy u L, and
the equation of I'; on = is

Ri[wi(4exs 'y — HY) + ai(dexs Gy — LY + w3(AF, Gy~ M + x5 0,205 M, — H, L)
— 2w w5(2F Ly — H M) +'2§c4 x5(2H, Gy — Ly M,)] — e(ies Py + 2, @0)*
— ®5 (23 Ny — Qo) — 205 G1(04 N + P2)? — 5 M1 (2 N1 + Po) (s Ny — Qy)
+ Hy(@3 Py + %4 Qo) (a3 N1 — Q2) + Li(a04 N1 + Po)(ws Py + 2, Q) =0.
The generic point A(s) of L, has non homogeneous coordinates (0:0:0:s:1:0)

in P°. (4, P') has equations: &5=u; — sz, =0.
Let us intersect (A, P') with V, and obtain

=0 X3=8wy Xyxi—STwy=0
w%Fl"}‘mgGl'l‘molei’{"xoszl +x1x2M1+w1P2+ x2Q2=0

where F; = F(sx,:2,:0) ete.
If x,=0 we have the equations of P!. Otherwise we have the conic

=0 X3=8%; X =5%

Xo(S* 0o F'y + w5 Gy + s Hy + o Ly + 8o My + 52, Py + 2, Qp) = 0
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where F; = F(s:1:0) ete. This conic splits into two lines: i(s), joining A(s) with
P'n P? and 7(s), whose equations are respectively -

5=0 (@X3=8sx4 X=8%y

-'B()(SHI -+ Ll) + xz(stl + Gl + SMI) + x4(SP2 + Qz) =0

Whence f(Ly) = P2 U P?, where P? is the ruled surface generated by 7(s).
This surface intersects P* along a curve 7, whose equation on P? is:
Xowg Hy + 2024 Ly + 23 Py + 24 Q2 = 0, where  H; = H,(x3:1,:0) ete.

7 is the same curve (5.2), on which there are the double points of V, on P2 The
line 7(s) intersects = in the same point at which I(s) meets = other than P! n P2, It
is easy to verify that the conditions under which A(s) is a double point of C; (i.e.
it is the intersection of L, with I;) are the same conditions under which i(s)
passes through a double point of V;, on P2 different from P! n P2, This fact proves
that the double points of V3 project by f3 into the double points of Cs.

Remark 5.3. The family of lines of the singular fibres of £} becomes a
curve C,. The previous proof also shows that splits into a smooth curve I'; and
into a couple of rational curves Lm and Ll,g one of which is a line. I; is an
unramified double covering of I'; and Em U fq,z is an unramified double covering
of Ly: El,l does not intersects I:l,z while I intersects I:l,i (=1, 2) transversally in
6 points; these points project by f3 into the intersection points of I's with L, so
that the double covering f4:Cy,— Cs, induced by f}, is unramified (it is not a
«pseudorevétement» accordmg to Beauville (see [3];), in spite of the singular C5).
If n=3 we have G, I‘s_nuLl 1 ungu Ul 11ULn—12 and C, is always an
unramified double covering of C, with the characteristics above explained.

Remark 5.4. The conic bundle structures we have studied for »=3 are
nothing else than conic bundle structures arising from cubic threefolds in P* it is
easy to see this by using the birational map & described in 3.

We may always suppose that the third plane in V, has equations:
%= xy = 1, =0, it corresponds to the star of lines centered in (0:0:1:0). In this
case the line L, on » has equation: x,=0. Now we look at & and we put
W,=0"%V,), n=8. W, is a cubic hypersurface of P it contains I, I, and I3
(because V,, contains wy, 7, 7p) and n — 3 planes. If we project W, from I, to
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the skew plane =', whose equations are: 2, =2, =0, and we blow up W, along [,
we obtain a conic bundle structure which is well-known when »n = 3 (see [4];). By
our suitable choice of coordinate system it is easy to see, by direct calculation,
that the diseriminant locus in »’ is a curve D, which is exactly C, \ (L, u L) if we
set z;=w;, 1= 3, 4, 5. What we have proved for V,, and C,, is also true for W, and
Dy in fact these conic fibrations are birationally equivalent (see [10]).

6 - The cases n="7 and n=2_8

We recall that Vj is the rational cubic complex of lines lying on the quadfics of
a net in P°. Now we prove the following

Proposition 6.1. Let us choose 7 generic points By, B, ..., By in P3, let us
consider V; containing the 7 planes corresponding to the 7 stars of lines centered
i By, Bs, ..., By. Vi contains another plane which corresponds to the stars of
lines centered in the univocally determined point Bg such that By, B, ..., Bgare
the base locus of a met of quadrics in P2,

Corollary 6.2. If we choose 8 generic points in P? and we look for a cubic
X containing the 8 planes corresponding to the 8 stars of lines centered in these 8
points, we have that X splits into @ and a hyperplane.

Proof. We can prove our thesis directly by calculation, but we prefer to
use a synthetic reasoning which is substantially contained in [4]),.

Let us suppose By, By, ..., By and V; fixed. We consider the net of quadrics
determined by B, By, ..., Bq; this net has another base point Bg. We call M the
cubic complex of lines lying on the quadrics of this net. It is sufficient to show
that V; = M. On the contrary suppose that V,; # M. We fix a quadric R of the net
such that B does not contain the lines joining B; with B; (%, j=1, ..., 8). The two
rulings of KB determine two conics ¢; and ¢, in G(1, 8) =Q. Since V;#M and
since R is generic in the net, ¢, is not contained in V. Let Q(1, 3) the generator }
of the equivalence class of 3-dimensional cycles of @ in H*(Q, Z) (see [6]). Let
Q(0, 2) the analogous generator for 1-dimensional cycles, and Q(0, 1) for 0-
dimensional ones. Then V,;=23Q(1, 8) and ¢, =20Q(0, 2) in H¥Q, Z); so that
Vi e, =6Q(0, 1). 1t means that there are 6 lines common to V; and to the ruling
c;. But there are at least 7 lines common to V; and the ruling ¢;: the 7 lines of ¢;
going through the 7 points B,, B, ..., B; of R. This is a contradiction.
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7 - The cases 4<n<6

By previous sections we see that we can apply Beauville’s theory to V,,, n=2
(see [31;, § 2.9, p. 335). In our case the double covering f7,: C,—C,is unramified
and C, is smooth except for the intersections of its components; therefore £, is
unramified and N,, is isomorphic to the disjoint union of I's,, and # — 1 copies of
PL N, is isomorphic to the disjoint union of Ty, and 2(n~1) copies of Pl

If we call V), the blowing up of V,, at its ordinary double points, we have
Prym(N,, N,)=Prym(Ts_,, I's_) =J(V}).

Remark 7.2. If n=2, the well known Mumford theorem (see [8] and [3]5)
says that J(V3) is not the product of Jacobians, so that Vj, and V, are not rational.
If n=3, J(Vi) may be the Jacobian of a curve (and if n=4 that is the case),
therefore the theory of Prym varieties does not prove the rationality or
irrationality of V.

We can apply Theorem 1.13 of [10] (Prop. 1.16 and 1.17) to (V}, P% f)),
n=2. ‘
If we blow up P? at the singular points of C,, we have a smooth rational
surface H and a birational map ¢ : H— P2 By Sarkisov’s theorem there exists the
following commutative diagram

Vit v

nt
n

5
\ ¥

P2 H

where 2 is a birational map and (V3;, H, f3) is a regular c.f. whose discriminant
locus is the proper transformed of C, by o, i.e. the disjoint union of ¢*(I's_,) and
of o¥(Ly), i=1, ..., n—1.

By construetion (V}/, H, f7) is a regular c.f.; but it is not standard because
oY e*(Ly), i=1, ..., n—1, splits into a couple of irreducible surfaces, each of
them is a P-bundle. ‘

Sarkisov’s Theorem assures that blowing down one of these P*-bundle, we
can obtain a standard c.f. (V)', H, ), birationally equivalent to the previous
one; now the discriminant locus is only ¢*(I's-,,) (see also [9], Prop. 6.3). Finally
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we can embed (V, H, ) in a projective space to obtain (V, #, H, f,#) which
is a conic bundle according to Def. 2.1 (see [10], 1.5).

V., is rational if and only if V,, # is rational. (V,,#, H, f,#)is a standard conic
bundle, so we can apply Theorem 1 of [7l.

Let » =4. I'; is a smooth plane quartic; let us fix a point of I, and consider the
pencil of lines {L,} going through it. Then the pencil of curves {C,} = {c*(L,)}
satisfies the hypothesis of Theorem 1 of [7], for the standard conic bundle
(Vy#, H, fi#). So V,# and V, are rational.

Let »=5. We obtain the rationality of V; as in the case n =4.

Letn=6. Cs=IyUL;U... U Ls Since the double covering of C; is always an
unramified covering, I, must split into a couple of rational curves.

Then f§~'(c*(I'») splits too and when we consider (Vo#, H, f;#) the
component *(I';) disappears from the discriminant locus: it reduces to @. The
rationality of Vi follows from Iskovskih’s theorem.

Finally we remark that it is possible to prove the rationality of V; and Vs as in
the case n=86.

8 - Case =3 and Iskovskih’s conjectures

Recently Iskovskih has made the following two Conjectures 8.1 and 8.8 about
the rationality of conic bundles. ~

Conjecture 8.1. (See [Tl3,). Let h:V—> S be a standard conic bundle over
the rational surface S, with a connected diseriminant curve C (C # @). Then V is
rational if and only if one of the following assertions holds: '

(i) There exists a pencil of rational curves {C,, veP'}, having no fixed
components on S such that C,- C <3 for every v (i.e. {C,} defines a rational map
n:C— P! whose degree does not exceed 38).

(i) There exists a birational map p:S— P? such that o(C) is a curve of degree
5, which has at most ordinary double points, and such that for the double
covering h:o(C)— o(C), induced by h, the condition 1 (C), h*(L))——S is
fulfilled, where L is a hyperplane divisor of P%

This conjecture has been proved when S=P% or S is a Pl-bundle over a
rational curve (see [11]); the if part of the conjecture is always true.

Remark 8.2. Ifdsn<7 (V,#, H, f,#) satisfies condition (i) of 8.1. If
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n=3 (Vy#, H, fy#) satisfies condition (ii) of 8.1 with p=ocand o(C) =TI} and we
have W5, fo#*(L)) = h(Ts, F3*(L)). Moreover hO(Ts, F*(L)) =3 if and only if
the ¢-characteristic L + N is even, where N is the point of order two, in the
Jacobian of I';, corresponding to the unramified covering considered before (see
[11]). This condition is also necessary and sufficient to guarantee that J(V3) is
isomorphic to the Jacobian of a curve, according to Beauville’s theory (see [3],);
actually the 6-characteristic L + N is odd as V; is not rational.

Conjecture 8.3. (See [7];). Under the hypothesis of Conjecture 8.1, V is
rational if and only if one of the two following conditions holds

1) [2Ks+C|=0 (2) condition (ii) of Conjecture 8.1

(when it exists a birational map ¢:S—s P2 such that e(C) is a curve of degree 5,
which has at most ordinary double points, you have to check condition @y.

This conjecture has been proved for S =P% or S a PL-bundle over a rational
curve (see [11]).

Remark 8.4, What we have proved in 7 agrees with 8.3: in fact we can
apply Conjecture 8.3 to (V,#, H, f,#), with n= 1, n+#3, and we obtain:
Ky=—3L, Ky=—3*(L) + E, where «<=» means linear equivalence and Z is the
sum of all the exceptional divisors introduced by o. Then C=(8—n)c*{L) —2E
and so [2Ky +C|=|@2—n)o*(L)| =@ if and only if n=4. If n=3 we have to
check condition (2), which is not fulfilled as we said before.

Remark 8.5. The quoted results of Iskovskih and Beauville allow us to
prove the following theorem (see [11]).

Theorem 8.6. Letf:V— P2 be an ordinary (hence sfandowd) conic bundle.
Then V is rational if and only if J(V) is isomorphic to the Jacobian of a curve.
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Sommario

Si prova la razionalita di una classe di fibrati in coniche su superfici razionali
utilizzando alcuni recenti risultati di Sarkisov ed Iskovskih. Tali fibrati provengono
dallintersezione di una iersuperficie quadrica liscia e di una ipersuperficie cubica liscia
in IP%, contenente piami che si incidono due a due in un solo punto; essi sono
birazionalmente equivalenti a fibrati in coniche provenienti da ipersuperfici cubiche di
IP*. Si mostra inoltre che 8 & il massimo numero di tali piani che le due ipersuperfici
POSSONO contenere Senzo, SPezrarsi. .

Le nostre conclusioni costituiscono una conferma di una celebre congettura di
Iskovskih sulla razionalita det fibrati in cowniche.
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