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MicHAEL G. VOSKOGLOU (¥)

Prime ideals of skew polynomial rings (**)

1 - Preliminaries

All the rings considered in this paper are with identities.

Let R be a ring and let f be an endomorphism of R, then we recall that a map
d:R— R, such that d(a + b) = d(a) + d(b) and d(abd) = ad(d) + d(a)f(b) for all a, b
in R is called a f~-derivation of R; when fis the identity then d is a derivation of K.

Now let H = {fi, ..., [} be a finite set of automorphisms of R, then an ideal /
of R is called a H-ideal if f(I) =1, for all f; in H. Notice that when R is right
Noetherian and f{(I) ¢ I for some f; in H, we have the ascending chain of ideals
Icfi'D) cf3U) c..., which becomes stable after a finite number of steps, say
n. Then f7™(I) =f7*YI) and therefore f(I)=1.

Next let D= {d,, ..., d,} be a finite set of mappings from R to R, such that d;
is a fi-derivation of R, for alli=1, ..., n. Then an ideal I of R is called a D-ideal if
dDcl for all d; in D. -

An ideal I of R which is both a H-ideal and a D-ideal is called for brevity in
this paper a (H, D)-ideal of R. In the special case where H = {f} and D = {d} [ is
called a (f, d)-ideal of R.

Furthermore a (H, D)-ideal I of R is called a (H, D)-prime ideal if, given any
two (H, D)-ideals A and B of R suchthat AB ¢, iseither Acl,orBcland R is
called a (H, D)-prime ring if (0) is a (H, D)-prime ideal of B. The notions of a H-
prime and of a D-prime ideal of R can be also defined in the obvious way.

Assume next that d;od; — djod;, fiof;=fiof; and d;of;=f;od; for all 1, j=1,
..., 1 and consider the set S, of all polynomials in % variables, say =y, ..., x, over
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R. Define in S, addition in the usual way and multiplication by the relations:
;v =fi(r)@; + di(r) and a;%;=w;2;, forallrin R and all 4, j=1, ..., n. Then S; is
an Ore extension over S, (cfr. [6]) for all i=1, ..., n, where S;=R (cfr.
Theorem 2.4 of [8]p). We call the ring S, a skew polynomial ring in n-variables
over B and we denote it by S, =[xy, fi, di] ... [Xn, fr, Dl

Notice that under these conditions one can extend f; to an automorphism and
d; to a f-derivation of S,,, by putting fi(x,) = %; and di(xp) =0, for alls, j=1, ..., n

(cf. Theorems 2.2 and 2.3 of [8]y).

For reasons of brevity we write @ instead of ... 2% for any non negative

integers ay, ..., a,, therefore the typical element of S, is a finite sum of the form

> 1@ ®@, with 7 in B, for each (a)=(ay, ..., a,).
(@)

In the special case where f; is the identity for all f; in H we get the skew
polynomial ring Si = R[»,, di] ... [%,, d,], while if d; =0 for all «; in D we get the
skew polynomial ring S, = R[x,, fil ...[2%., fl.

When R is right Noetherian the usual proof of the Hilbert’s Basis Theorem
adapts easily to show (together with induction on ») that S, is a right Noetherian
ring too (this is not true if we take H to be any set of monomorphisms of R, cf.

[5D.

2 - Relations among the prime ideals of S, and those of R

In the next of this paper we deal with the skew polynomial rings S,, S} and
S, defined in 1. We need first the following

Lemma 2.1. @) If I is a H-ideal of S, then I "R is a (H, D)-ideal of R.
(i) If A is a (H, D)-ideal of R, then AS, is a (H, D)-ideal of S,.

Proof. (@) For all » in InR d()=x;r—fi(r)x; is in INR, for each
1=1, ..., n () v;A cfi(Aa; +d(A) c A, + A c AS,, therefore AS, is an ideal of
S,.. The rest of the proof is obvious.

We now prove the following

Theorem 2.2. Let P be a H-prime ideal of S,, then PnR is a
(H, D)-prime ideal of R.

Proof. By the previous lemma P "R is a (H, D)-ideal of B. Let A and B be
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any (H, D)-ideals of R such that AB ¢ B n P. Then AS,, and BS,, are H-ideals of
S, and (AS,)(BS,)=A(S,BS,) cABS,c(PnR)S,cP, therefore AS,cP, or
BS,cP. Hence AcAS,nRcPnR, or BcPnR.

The theorem above has the following two corollaries.

Corollary 2.3. Let P be a prime ideal of S§, then P N R is a D-prime ideal
of R.

The proof is obvious. -

Corollary 2.4. (@) If P is a H-prime ideal of S, then P N R is a H-prime
ideal of R. (i) If P is a prime ideal of S,, such that x; is not in P for each
i=1, ..., n, then PnR is a H-prime ideal of R.

Proof. (@) Obvious. (i) It suffices to show that P is a H-ideal of S.. For
this, given g in P, f{g) »; = ;g is also in P, therefore fi(g) S, x; = f{g) x; Sy, ¢ P and
so fi(g) is in P.

Conversely, if fi(g) is in P, then ;¢ is also in P, therefore «;S,g=S,x;9gc P
and so g is in P.

Next we need the following

Lemma 2.5. Let A be an H-ideal of S, and let T(A) be the set of all the
leading coefficients of the elements of A, written as po'lynomials m x, with
cogfficients in S,_;. Put T{A)=T(T;,(4)) in S;, for each 1=0,1, ..., n—1,
where Sy=R and T.(A)=A. Then: (G) To(A) is a (H, D)-ideal of R. (i) If B is
another H-ideal of S,, then TyWA) To(B) c Ty(AB).

Proof. (i) Let a and b be any elements of T(A), then there exist elements g
an k of A of degrees k and m with respect to , and leading coefficients a and b
respectively. A

Without the loss of generality we may assume that k=m. Then , for all s in
Sn-1, @ £ b, sa and as are all in T(A), being either zero or the leading coefficients
of g £ hei™™, sg and gf;™(s) respectively. Thus T(4) is an ideal of S,_;.

Similarly T,_»(4) is an ideal of S,_, and so on, so that To(A) is an ideal of E.
Furthermore T(A) is a (f,, d,)-ideal of S,_;, because f,(a), f»(a) and d,(a) are
the leading coefficients of f,(¢), f>%¢) and x,9— f.(¢) z, respectively.
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In the same way T',_5(A) is a (f,-1, dy-1)-ideal of S,_,. Now let r=r(xy, ...,
%,-2) be an element of 7',_,(4), then there exists s in T(4) with leading coefficient
7 with respect to «,-;. Hence f,(s), f7(s) and d,(s) are all in T(A), while
Jul@ny) = 2,1 and d,(x,-,) = 0, therefore f,(*), f7'() and d,(+) are all in T,_x(4).
Thus T,»(4) is also a (f;,, d,)-ideal of S,_,.

We keep going in the same way, until we finally find that T(A) is a
(H, D)-ideal of B, as we wish.

(i) Given g in A and % in B with leading coefficients a and b and degrees m
and m’ with respect to x, respectively, it is easy to check that ab is either zero or
the leading coefficients of gf,;™(h). Thus T(A) T(B) c T(AB).

Next, applying induction on k, assume that 7',_(A) T,,_.(B) ¢ T,,—.(AB). Then
Tyo-slA) Tyopa(B) = T(T i (A)) T(T,(B)) ¢ T(T',-(A) T,p—i(B)) ¢ T(T,—1(AB))
= Tp-1-1(AB) and we are through.

We now prove the following

Theorem 2.6. If I is a (H, D)-prime ideal of R, then IS, is a H-prime
ideal of S,. Therefore S, is a H-prime ring if, and only if, R is a (H, D)-prime
ring. ’

Proof. Let A and B be any H-ideals of S, such that AB ¢ IS,. Without loss
of the generality we may assume that A > IS, and B 218, otherwise we work
with A+1S, and B+ 1S, respectlvely

Then, by Lemma 2.5, Ty(A) and T(B) are (H, D)-ideals of R and T(A) T«(B)
¢ To(AB) ¢ Ty(IS,) = I, therefore Ty(A) cI or Ty(B)c .

Assume that To(A)cI and let g= §a,-x§; be a polynomial in A with
i=0
coefficients in S,_;; then a,, is in T,_;(A).

71)'2 4 y . : . )
We write a,, = 2 bix;_;; then b,, is in T, 4(A) and Qg T = by, TR 202,
mg—1 =

+ Z bixf‘b_l am,

i=0

We keep going in the same way, until we find some 7 in To(A), such that
h=ragm, . o™ is a term of @, X2, Then 7 is in I, therefore & is in IS, c A.
Thus g —h is in A.

Repeating the same process for g — k and keep going in the same way we

my~1 .
eventually find that a,, 2 is in IS, c A. Thus g=g— G, X3t =, a; %% is in A.
. i=0
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Applying the same argument for § and keep going in the same way we finally
find that ¢ is in IS,, as we wish.

The last part of the theorem is a straightforward consequence of the first part
and of the Theorem 2.2.

The preceding theorem has the following two straightforward corollaries.

Corollary 2.7. IfIis aD—pm'méideal of R, then IS} is a prime ideal of S¥,
therefore S is a prime ring if, and only if, R is a D-prime ring.

Corollary 2.8. IfIis a H-prime ideal of R, then IS}, is a H-prime ideal of
S,, therefore S, is a H-prime ring if, and only if, R is so.

Next, with the additional assumption that R is right Noetherian, we prove
the following result, stronger than Corollary 2.8.

Theorem 2.9. Let R be a right Noetherian ring. Then, if I is a H-prime
deal of R, IS, is a prime ideal of S, therefore S}, is a prime ring if, and only if,
R is a H-prime ring.

: Proof. Sinceisa H-ideal of R, for all f; in H, f; induces an automorphism f;
‘of RII=R, by flr+ D) =f(r)+1I, for all » in R.
Then it is easy to check that the map ¢ from R[xy, fi] ... [2,, f,] to SL/IS.,

defined by (3 7y 2@) = 3, 7o« + IS, is a ring isomorphism, therefore it suf-
(@ (@)

fices to show only the last part of the theorem.

For this, let A and B be any ideals of S;, such that AB =0. Then, if B, is the
right annihilator of A and A, is the best annihilator of B, it is clear that A CAy,
B ¢ B; and that 4, B;=0.

From the other hand since A;x;c Ay, is A;%;B,=A,f(B)%;=0. But x; is
regular in S;, therefore A,f(B,)=0 and f7%A;)B,=0. Thus f(B,) cB, and
fiAD c Ay, for each i=1, ..., n.

Hence, since S, is right Noetherian, A, and B, are H-ideals of S.. Then, by
Lemma 2.5, To(A,) and Ty(B,) are H-ideals of R and Ty(A,) To(By) ¢ To(A, By = 0,
therefore either T\(A)) =0 or To(B,) =0, fact which shows that either A =0 or
B =0 and this completes the proof.
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3 - Remarks - Examples

(1) The statement of Theorem 2.2 remains true even if we take P to be
a (H D)-prime ideal of S,, because, by Lemma 2.1, AS, and BS, are in fact
(H, D)-ideals of S, (the rest of the proof remains unchanged). Therefore, an
analogue to Corollary 2.3 gives that, if P is a D-prime ideal of S¥, then Pn R isa
D-prime ideal of R.

(2) A (H, D)-ideal I of R is said to be a (H, D)-semiprime ideal, if, for
all (H, D)-ideals A of R, such that A* ¢ I for some non negative integer %k, we
have that Acl and R is said to be a (H, D)-semiprime ring, if (0) is a
(H, D)-semiprime ideal of R.

The statements of Theorems 2.2, 2.6, 2.9 and of their corollaries remain true
if we replace the word «prime», whenever it appears, with the word «semipri-
me»> (see also Remark 3). In fact the only modification, which is needed in the
proofs, is to put A* =B,

(8) Especially the statement of Corollary 2.4(ii) must be restated as follows:
«If R 1s right Noetherian and P is a semiprime ideal of S, none of whose
minimal primes contains x; for each i=1, ..., n, then P "R is a H-semiprime
ideal of R». ,

For this notice that, since S, is right Noetherian, there exist finitely many
prime ideals of S;, say Py, ..., P, such that P;, ..., P,c P and Py, ..., P, 2 P.
Then (Pyn...nPy'cP and, since P is a semiprime ideal, we get that
P =P;n...NPy. Therefore, in the proof of Corollary 2.4(ii), P can be replaced
with one of the P/s, while the rest of the proof remains unchanged.

(4) For n=1, Corollaries 2.4 and 2.8 are due to Goldie and Michler [1], while
Theorem 2.9 is essentially due to Jategaonkar [3], but in its final form can be also
found in [1]. ’

Also Corollaries 2.3 and 2.7, for n=1, are due to Jordan [4];.

(6) The hypothesis that «; is not in P for each ¢, appearing in the statement of
Corollary 2.4(ii) is not superflous (cf. [1], Example 8, p. 338). The same counter
example can be also used to show that, if P is a H-prime ideal of S}, then PN R
need not be a prime ideal or R.

Also the assumption that R is right Noetherian, appearing in the statement
of Theorem 2.9, is necessary (cf. [4];, Example 8.1.14, p. 71).
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(6) The following example illustrates Theorems 2.6 and 2.9.

Let K be a field and let R = K[y,, y,] be a polynomial ring over K. Define a
K-automorphism of B by f(y1) = y1, f(y2) = y. + 1 and let d be the f-derivation of
E defined by d(K) =0, d(y) =0 and d(y,) = 1.

Then it is easy to check that f(d(y}y5) = d(f (¥} y8)), for any non negative
integers n and m, therefore fod=dof. Moreover it is clear that 4, R is a
(f; d)-prime ideal of R, therefore, by Theorem 2.6, ¥, S is a f-prime ideal of
S=Rlz, f, dl.

Also, since R is a Noetherian ring, Theorem 2.9 shows that %, S’ is a prime
ideal of S8’ =R[z, f1.

(7) We denote by J(R) the Jacobson radical of B. Assume that J(R) # R and
that R is a D-simple ring (i.e. it has not non zero, proper D-ideals). Then S¥ has
no non zero nil ideals.

For this, let A be a nil ideal of S¥, then, by Lemma 2.5, T(A) is a D-ideal of
R, therefore To(A) =0 or To(A)=R. But it is easy to check that Ty(A) is a nil
ideal of R, therefore Ty(A) c J(R), so Ty(A)=0.

Notice that, when R is a D-simple, then, under some additional assumptions,
S is a simple ring (cfr. Theorems 8.4 and 8.5 of [8];).

(8) It is well known (cfr. Corollary 2.5 of [4];) that, if R is right Noetherian
and d-prime, then S} is semiprimitive (.e. J(S;) = 0).

An analogue of this for S} is as follows: If R is right Noetherian and D-prime,
then S is semiprimitive. For this, by Corollary 2.7, S¥ is a prime ring. Write
Sy =S¥ lw,, d.]; then, by Corollary 2.7 again, S¥, is a d,-prime ring and the
result follows.

(9) Assume that, for all f; in H, there exists a non negative integer m; and a
regular element ¢; of B, such that fi({,) = t; and t;7 =f7(r) t;, for all in R and each
J=1, ..., n. Then, if R has non zero nil ideals, S, is semiprimitive.

The result above for n = 1, is essentially due to C. R. Jordan, but in its final
form can be found in [4], (Theorem 3.1.11, p. 69).

Next, applying induction on %, assume that S;_; is semiprimitive, then S;_,
has no nonzero nil ideals. Write S, =S, _,[,, f.], then it is easy to check that
t.g =fwg)t,, for all g in S;_; and the result follows.

Notice that the hypothesis fi(¢,) = ¢, is not needed to show the result for # = 1.

(10) Given an ideal I of B we denote by J(I) the ideal of B such that JJ)/I is
the Jacobson radical of R/I.
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We recall that R is said to be a Jacobson ring if J(P) = P, for all prime ideals
P of R.

It is well known that, if R is right Noetherian and Jacobson ring, then the
rings S¥, S{ and the skew Laurent polynomial ring 7;, obtained from S; by
loealizing at the powers of x; are Jacobson rings (see [4]; and [1]). Therefore, a
straightforward induction shows, that the skew polynomial rings S, S, and the
quotient ring T, of S}, with respect to the set of all powers x® where (a) are n-
tuples of non negative integers (see [8]s) are Jacobson rings.

The assumption that R is right Noetherian is not superflous, as an example of
Pearson and Stephenson [7] shows.

Also notice that, since Sj/x;Si=R and every homomorphic image of a
Jacobson ring is a Jacobson ring, the converse is also true for S;, but it is not true
for S¥ (see section 4 of [4];, where n=1).
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Abstract

Results on the prime ideal structure of a skew polynomial ring Rlz, f, d] over a ring
R has been obtained only if additional assumptions are made; Goldie and Michler
assume that R is right Noetherian and d =0, Jordan asswmes that R is right Noetherian
and f is the identity map of R, while Irving asswmes that R is a commutative ring.

In the present paper we study what happens when fis a non trivial automorphism of
R and d is a non zero f-derivation of R and we give analogous results for skew polynomial
rings in finitely many variables over K.






