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GIOVANNI BATTISTA RI1ZZA (%)

Geometric meaning of some equalities
concerning the curvature tensor (**)

1. Introduction

The aim of this paper is to show how the notion of bisectional curvature can
be used to give geometric meaning to some classical identities and to some
known conditions for the Riemann curvature tensor.

More explicitly, we are able to translate the mentioned relations in terms of
bisectional curvatures of oriented planes. The new relations do not depend on
any choice of bases in the planes.

We begin in 2 with some algebraic remarks, concerning a general quadrili-
near mapping on a real vector space (Propositions 1, 2).

In 4 we give a system of equations, involving the bisectional curvatures, that
results to be equivalent to a system of classical identities for the Riemann tensor
R (Theorem 1). In particular, to give a geometric form to the first Bianchi
identity, the triples of mutually orthogonal oriented planes, having a common
line, play an essential role.

In Theorem 2 of 7 we give three geometric conditions, which are shown to be
equivalent to some almost complex conditions, that often occur in the literature
on the almost hermitian manifolds. The second condition involves a special
systems of antiholomorphic planes, introduced in my paper [4],.

Theorem 8 of 8 gives a geometric meaning to another almost complex
condition, introduced in my recent paper [4],. Here again the above mentioned
triples of planes are an essential tool.

(*) Address: Dipartimento di Matematica, Via Universita 12, 1-43100 Parma.
(**) This work was partially supported by a contribution Ministero Pubblica
Istruzione. ~ Ricevuto il 21-XII-1988,
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Finally, in 9 a well-known curvature identity on the hermitian manifolds,
obtained by A. Gray in 1975, is traslated into a relation, involving only geometrie
invariants of oriented planes (Theorem 4).

The results of the present paper suggest that other relations, concerning the
Riemann curvature tensor, could be replaced by geometric relations in terms of
bisectional curvature.

2 - Algebraic remarks

Let M be a riemannian manifold of dimension n = 4 and of class C*. Let g be
the metric of M. All the tensor fields occurring in the paper are assumed to be of
class C~.

Let « be a point of M and T, the tangent space to M at x ().

Two remarks play an essential role in what follows. Consider a real valued
quadrilinear mapping @ on T,. Then

Proposition 1. If equations
1 X, Y, ZW=-QY,X,2Z, W) QX, Y, 2, W=-QX, Y, W, 2)
@ QX, Y, 2z, W=QZ, W, X, Y)
are satisfied by two arbitrary pairs X, Y and Z, W of vectors of T,, each formed
of independent vectors, then equations (1), (2) are satisfied by any set X, Y, Z, W
of vectors of T,.

Proposition 2. If equations (1), (2) are satisfied by two arbitrary paifs
X, Y and Z, W of vectors of T,, each formed of independent vectors, and also
equation
@ QX, Y, Z, M+QX,Z, W, N+QX, W, Y, 2)=0
is satisfied by any set X, Y, Z, W of orthonormal vectors of Ty, then equation

(5) is satisfied by any set X, Y, Z, W of vectors of T,

() For general references see S. Kobayashi - K. Nomizu[3].
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Proposition 1 shows that equations (1), (2) are significant only when any pair
X, Y Z, W is formed of independent vectors of T.,.

" Proposition 2 shows that the system of equations (1), (2), (8) is significant
only when any pair X, ¥ Z, W, occurring in (1), (2), is formed of independent
vectors of T, and when the four vectors, occurring in (8), are assumed to be
orthonormal vectors of T,.

3 - Proofs

Let B be a real valued bilinear mapping on T, and S be a real valued quadri
linear mapping on T,
Two elementary lemmas are useful

Lemma 1. If equation

@ BX, Y)=0

is satisfied by any pair X, ¥ of independent vectors of T, then equation (4) is
satisfied by any pair X, Y of vectors of T,.

Lemma 2. If S is skew-symmetric and equation
) SX,Y,Z,W)=0

is satisfied by any set X, Y, Z, W of orthonormal vectors, then equation (5) is
satisfied by any set X, Y, Z, W of vectors of T,.

The proof of Lemma 1 is trivial. The proof of Lemma 2 is also easy, If
X, Y, Z, W are not independent vectors, then equation (5) is satisfied ([1], Cor.
1, p. 300). If X, ¥, Z, W are independent vectors, -construct the orthonormal
vectors X, Y, Z, W, choosing X in the line spanned by X, ¥ in the plane
spanned by X, ¥, and so on. Since S(X, Y, Z, W) is equal to S(X, Y, Z, W) up
to a factor, we are able to complete the proof.

To prove Proposition 1, consider first the expression

BX,Y,Z, W=QX,Y,Z, W+Q, X, Z, W)
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where Z, W is an arbitrary pair of independent vectors of 7. Since B is a
bilinear mapping in the first two variables, using Lemma 1, we get
BX,Y,Z, W)=0 for any X, Y of T,. In particular, if X, Y are dependent
vectors, we derive Q(X, Y, Z, W) =0.

Similarly we get B(X, ¥, Z, W) =0 for any Z, W of T and for any pair X, Y
of independent vectors of T,. In particular, if Z, W are dependent vectors, we
derive QX, Y, Z, W)=0. ,

Now, since for any pair Z, W of dependennt vectors @ is a bilinear form in
X, Y, using again Lemma 1, we get Q(X, Y, Z, W)=0 for two arbitrary pairs
X,Y Z, W, each formed of dependent vectors.

It is now immediate to check that (1) holds true for any veectors X, Y, Z, W
of T,.

As a consequence of (1) the two members of (2) vanish, when X, Yor Z, W
are dependent vectors of T,. This completes the proof of Proposition 1.

To prove Proposition 2, consider the expression

SX, Y, Z,W=QX,Y,Z WM+QX, Z, W, N+QX, W, 7Y, 2).

By virtue of Proposition 1 equations (1), (2) hold true for any X, ¥, Z, W of T.,.
We check easily that S is a skew-symmetric quadrilinear form, so Lemma 2 leads
to the conclusion.

4 - The classical identities for the Riemann tensor

It is well-known that the Riemann tensor R of T* ® T* ® T @ T* satisfies
equations (1), (2), B) for any X, Y, Z, W of T,.

On the other hand the bisectional curvature of two oriented planes p, q of T,
defined by the veectors X, Y and Z, W respectively, is given by

ol

-1
XX Xvy|?®
YX YY

z.Z ZW

® qu:R(X, Yy Z; W)‘ WZ WW

where the dot denotes theinner product with respect to the metric g of M and the
square roots are assumed to be positive.

We denote by p’, ¢’ the same planes as p, g with opposite orientation. We call
strictly orthogonal two planes p, ¢ of T\, when any line of p is orthogonal to any
line of q.
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It is useful to introduce triples pi, pg, ps of mutually orthogonal oriented
planes of T,, having a common line. Any such triple defines a 4-dimensional
oriented subspace of T,. Denote by p; (i=1, 2, 3) the plane, which is strictly
orthogonal to p; in the mentioned 4-space and orient $; in such a way that the
oriented bases of p;, p; give to the 4-space the due orientation.

We are now able to translate the system of identities (1), (2), (3) for the
-Riemann tensor R at point x in terms of bisectional curvature. More explicitly,
we will prove

Theorem 1. The system of equations

() Xpg = T Xp'q Xpg = — Xpg'
€)) Xpg = Xop .
(9) Apih + Xpsps + xpaﬁa =0

where p, q are arbitrary oriented planes of T, and py, ps, s is any triple of
mutually orthogonal oriented planes of T,, having a common line, results to be
equivalent to the system of identities (1), (2), () for the Riemann tensor R.

Theorem 1 shows that the notion of bisectional curvature permits us to give
a geometric meaning to the classical identities (1), (2), (8) for the Riemann
tensor E.

5 - Proof

Let p, q be arbitrary oriented planes of T,. Consider two bases XY and ZW in
p, q respectively; thus YX, WZ are bases of p', q¢' respectively.

Choose a unit vector X of the line, which is common to the oriented planes
D1, P2, P3, oceurring in Theorem 1. Let X Y, X Z, X W be orthonormal bases in
these planes. The vectors X, Y, Z, W define a 4-dimensional oriented subspace
of T..

It is easy to check that the couples Z W, W Y, Y Z are orthonormal bases of
the oriented planes p,, f, Ps of 4.

Now, starting from the classical identities (1), (2), (8), concerning the
Riemann tensor R, and taking into account the definition (6) of bisectional
curvature, we define immediately obtain relations (7), (8), (9).
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Conversely, consider first two arbitrary pairs XY, ZW of vectors of T,, each
of them formed by independent vectors. Let X, Y, Z, W be any set of four
orthonormal vectors of T..

Denote by p, ¢ the oriented planes defined by XY and ZW, respectively.
Denote then by pi, ps, ps the oriented planes defined by the couples X ¥, X Z,
X W, respectively.

We are now able to use equations (7), (8), (9). The definition (6) of bisectional
curvature and Proposition 2 of 2 lead us to the classical identities (1), (2), (3) for
the Riemann tensor K.

So Theorem 1 is completely proved.

6 - Almost hermitian manifelds

From now on M is assumed to be an almost hermitian manifold of dimension
n=2m=4. Let J be the almost complex structure of M.

For any oriented plane p of the tangent space T, the kolomorphic deviation
& (0<é,<n) (G. B. Rizza [4]y) is defined by

[S3E

XX XY

(10) cossp=(JX.Y)|Y.X Yy

where X, Y is a basis of p, the dot denotes inner product and the square root is
assumed to be positive.

Denote by Jp the oriented plane of T, spanned by JX, JY. Then p is
holomorphic, if and only if p is orthogonal to Jp. A holomorphic plane p of T, is
said canonically oriented if p is oriented by a couple Z, JZ of vectors of T.,.
Finally, we have ¢, =0, if and only if p is a canonically oriented holomorphic

plane. We have é‘,,=g-, if and only if p is an antiholomorphic plane.

. *
If p is a non holomorphic plane of T,, we consider the system 3, of the «’
antiholomorphic oriented planes of T, having a line in common with p and a line
in common with Jp (G. B, Rizza [4],, p. 40).

7 - Almost complex conditions

Many conditions, involving the almost complex structure J and concerning
the curvature tensor B, have heen considered in the literature.
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We begin here to list the conditions
an RX,Y, Z, W=RX,Y,JZ, JW)

R&X, Y, Z, W)

(12) :
=RUX,JY,Z, W)+RWJUX,Y,JZ, WM)+RUJX, Y, Z, JW)

(13) ) RX,Y,Z, W=R(UX, JY, JZ, JW)

where X, Y, Z, W are arbitrary vectors of T,.

For these conditions see for example A. Gray [2], p. 605 and F. Tricerri-L.,
Vanhecke [6], p. 368. '

It is easy to check that (11) implies (12) and that (12) implies (13).

Condition (11) is sometimes called the Kdhler condition for the curvature
tensor. If this condition holds true at any point x of M, then M is called a

parakdhler manifold (G. B, Rizza [4];) or an F-space (S. Sawaki [5]) The Kéhler
manifolds are a special case.

Condition (18) means that R is J-invariant at the point # of M. An almost
hermitian manifold M with J-invariant curvature tensor R at any point is
sometimes called an RK-manifold (L. Vanhecke [7]).

Condition (12) can be written in the symmetric form

RUX,Y,Z, W+RX,JY, Z, W)

(14)
+RX,Y,JZ, W+RX, Y, Z, JW)=0.

Now we will prove

Theorem 2. The conditions

(15) Xpg = Xpig
(16) (qu* -— qut) Sin é\q -+ (Xp*q fand XJP*(I) Sin é\p = 0
an Xpg = XJpig

* %
where p, q are arbitrary planes of T, and p*, g* are arbitrary planes of >, 24
resull to be equivalent to the conditions (11), (12), (13), respectively.

Theorem 2 shows that the notion of bisectional curvature permit us to give a
geometric meaning to the known almost complex conditions (11), (12), (13) for
the curvature tensor R.
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We begin to prove that (11) and (15) are equivalent conditions. Given two
oriented planes p, q of T,, let X, Y and Z, W be orthonormal bases for them.
Taking account of (6), from (11) we immediately derive (15).

Conversely, since R satisfies (3) of 3, condition (11) is trivially satisfied, when
X, Yor Z, W are not independent vectors. Assume thenthat X, Y and Z, W are
two pairs of vectors of T, each formed of independent vectors, and denote by
D, q, respectively, the oriented planes spanned by X, Y and Z, W. Starting from
(15), we imediately prove (11).

Similarly we can prove that condition (13) is equivalent to condition (17).

Sinee (12), (14) are equivalent conditions, we have only to prove that (14) and
(16) are equivalent. Let p, q be two arbitrary oriented planes of T, and let p*, ¢*

be arbitrary oriented planes of 2,,, Eq, respectlvely We can choose orthonormal
bases X, Y and Z, W for p, q, such that X, JY and Z, JW span the antiholomor-
phic oriented planes p*, g*. Then, using definitions (6), (10) of 4, 6, from (14) we
derive (16).

Conversely, remark first that (14) is trivially satisfied, when X, Y or Z, W
are not independent vectors of T,.. Consider then the case, when both pairs X, ¥
and Z, W are formed of independent vectors of T, and put

X=aX, Y=bX+cY, Z=dZ, W=eZ+W

where X, ¥ and Z, W are two pairs of orthonormal vectors. Using linearity, we
see that condition (14) for X, ¥, Z, W is an immediate consequence of condition
(14) for X, Y, Z, W.

Finally, let p, q be the oriented planes of 7', spanned by X, ¥ and by Z, W.
Denote then by p*, ¢* the antiholomorphic oriented planes spanned by X, JY
and by Z, JW. It is easy now, starting from (16), to derive (14) for X, ¥, Z, W.

So condition (14), (16) are equivalent.

This concludes the proof of Theorem 2.
8 - A Bianchi-type condition

In a recent paper of mine [4];, the condition

RX,Y,JZ, W+RX, Z, JW,JY)+RX, W, JY, JZ)
(18) :
+RJX,JY, Z, W)+ RUX,JZ, W, )+ RUJX, JW, Y, Z)=0

where X, Y, Z, W are assumed to be arbitrary vectors of T,, is introduced.
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Condition (18), also involving the almost complex structure J of the manifold,
can be regarded as a Bianchi-type condition. Namely, if the curvature tensor R
satisfies the Kéhler condition (11) of Sec. 7, then condition (18) simply reduces to
the classical first Bianchi identity (8).

Using the same notations as in Theorem 1, we will prove

Theorem 3. The condition

(19) XpiJpy + Kol + X psips + XJpipy + XJpspe + Xipaps = 0

Jor any triple p;, ps, ps of mutually orthogonal oriented planes of T,, having a
common line, results to be equivalent to the condition (18).

In other words we can say that the notion of bisectional curvature permit us to
give a geometric meaning to condition (18), concerning the curvature tensor R.

As we saw in 5, given the oriented planes p,, p;, ps of T, we can choose for
them the orthonormal bases XY, X Z, X W and check that ZW, WY, Y Z
are orthonormal bases for p,, p, 3. Then, using definition (6) of 4, from (18) we
immediately derive (19). To prove the converse denote by S(X, Y, Z, W) the
first member of (18). It is easy to check that S(X, Y, Z, W) vanishes, if two of
the vectors X, Y, Z, W coincide. Therefore S is a skew-symmetric quadrilinear
map. Consider now four arbitrary orthonormal vectors X, Y, Z, W of T, and
denote by pi, pe, ps the oriented planes spanned by XY, X Z, X W. This
implies that the oriented planes p,, p,, ps are spanned by ZW, WY, Y Z,
respectively. Starting from (19), we immediately derive S(X, Y, Z, W)=0.
Using Lemma 2 of 2, we conclude that S(X, Y, Z, W)=0 for any vectors
X,Y,Z, W of T,. So (19) implies (18) and Theorem 38 is proved.

9 - A Gray’s identity

In this Section M is assumed to bé a hermitian manifold.
In 1975 A. Gray proved the following remarkable identity

RX,JY,Z, W+RX,Y,JZ, W+RX, Y, Z, JW)
19 +RWJX,Y, Z, W)~R(X, JY, JZ, JW)
-R(JX, Y, JZ, JW)—-R(JX, JY,‘Z, JW)—-R(JX, JY,JZ, W)=0.

(See [2], (3.2), p. 603).
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The following theorem gives geometric meaning to the Gray’s identity.
Theorem 4. The relation
(20) (qu* = XJpg* ~ XpJg* -+ XJPJQ*) sin 8,1 + (prq = XJptq — Xp¥g + XJP*JQ) sin 8,, =0

.k X
where p, g are arbitrary planes of T, and p*, ¢* are arbitrary planed of 3.5, 2.¢s
results to be equivalent to the identity (19).

The proof of Theorem 4 is very similar to the proof we gave in 7 to show that
conditions (14), (16) are equivalent.
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Sommario

Questo lavoro mostra come la nozione di curvatura bisezionale permetta di dare
significato geometrico ad alcune classiche identita ed ad alcune note condizioni per il
tensore di Riemann.
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