GIOVANNI CIMATTI (*)

On the problem of the electrical heating of a conductor (**)

1 - Introduction

In this paper we study the steady state potential and temperature distribution inside a conductor taking into account the Thomson effect. To make the paper selfcontained we summarize briefly how the basic equations are derived (see [5] and [6]). In the Thomson model a temperature gradient will by itself produce a flow of electrons, even when no electric field is acting on them. Therefore the current density is given by

(1.1)
$$\mathbf{J} = \sigma(\theta)(-\nabla \psi + \beta(\theta) \nabla \theta)$$

where $\sigma(\theta)$ is the electric conductivity, $\beta(\theta)$ a given function of the absolute temperature θ and ψ is the electric potential. Define

(1.2)
$$B(\theta) = \int_{t}^{\theta} \beta(t) dt \qquad \phi = B(\theta) - \psi$$

where $\bar{\theta}$ is an arbitrary reference value. In this way (1.1) becomes

(1.3)
$$\mathbf{J} = \sigma(\theta) \, \nabla \phi \,.$$

The vector flow of energy per unit area (including the potential and kinetic energy of the particles which constitute the current) is given by

(1.4)
$$q = \psi \mathbf{J} + \delta(\theta) \mathbf{J} - \varkappa(\theta) \nabla \theta$$

^(*) Indirizzo: Dipartimento di Matematica, Università di Pisa, via Buonarroti 2, I-56100 Pisa.

^(**) Ricevuto: 11-I-1988.

54

where $\varkappa(\theta)$ is the thermal conductivity and $\delta(\theta)$ a given function representing the mean kinetic energy of the particles.

G. CIMATTI

The conservation of electric charge and energy requires

$$(1.5) \qquad \nabla \cdot \mathbf{J} = 0 \qquad (1.6) \qquad \nabla \cdot q = 0.$$

By (1.3) and (1.5) it follows

$$(1.7) \qquad \qquad \nabla \cdot (\sigma(\theta) \, \nabla \dot{\sigma}) = 0 \, .$$

From (1.4) and (1.6) using (1.5) we have

(1.8)
$$-\nabla \cdot (\mathbf{x}(\theta) \,\nabla \theta) + \tau(\theta) \mathbf{J} \cdot \nabla \theta = \frac{J^2}{\sigma(\theta)}$$

where $\tau(\theta)$ is the Thomson's coefficient given in the present notations by

(1.9)
$$\tau(\theta) = \delta'(\theta) + \beta(\theta).$$

The term on the right hand side of (1.8) represents the heat source due to the Joule effect. The expression $\tau(\theta) \mathbf{J} \cdot \nabla \theta$ corresponds to the Thomson effect. We remark taht $\tau(\theta)$ has no definite sign.

The aim of this paper is to prove, using a fixed point argument, the existence of at least one classical solutions of the system (1.7), (1.8) with Dirichlet boundary conditions i.e.

$$\theta = \theta_0 \qquad \qquad \dot{\varphi} = \dot{\varphi}_0 \qquad \text{on } \partial \Omega$$

where $\partial\Omega$ is the boundary of an open and bounded subset representing the conducting body.

We start with a few preliminary remarks. Since θ is the absolute temperature the minimal hypotheses to make the problem physically reasonable are

(1.11)
$$\sigma(0) = 0 \qquad \qquad \sigma(\theta) > 0 \qquad \text{for all } \theta > 0$$

(1.12)
$$\varkappa(0) = 0 \qquad \qquad \varkappa(\theta) \geqslant \bar{\varkappa} \qquad \text{ for all } \theta \geqslant \theta_m$$

where $\bar{\varkappa}$ is a positive constant and $\theta_m = \min \theta_0$ on $\partial \Omega$. Let $(\theta, \dot{\varphi})$ be a solution of

problem (1.7), (1.8), (1.10) so regular that the classical maximum principle can be applied to (1.8). We have $\theta \ge \theta_m$ in $\bar{\Omega}$.

It is useful to define a new scale of temperatures $u = \Gamma(\theta)$ as follows

(1.13)
$$\Gamma(\theta) = \int_{0}^{\theta} \varkappa(t) \, \mathrm{d}t.$$

By (1.12) $\Gamma(\theta)$ establishes a one to one correspondence of $[\theta_m, \infty)$ into $[u_m, \infty)$ where of course, $u_m = \Gamma(\theta_m)$. In this way problem (1.7), (1.8), (1.10) can be written in the following simpler form

(1.14)
$$\nabla \cdot (a(u) \nabla \phi) = 0 \qquad \text{in } \Omega \quad \phi = \phi_0 \text{ on } \partial \Omega$$

(1.15)
$$-\Delta u + b(u) a(u) \nabla \dot{\varphi} \cdot \nabla u = a(u) |\nabla \dot{\varphi}|^2 \quad \text{in } \Omega \quad u = u_0 \text{ on } \partial \Omega.$$

2 - The existence theorem

The theorem of this section applies only in two dimensions. Thus we suppose Ω to be an open and bounded subset of R^2 representing the orthogonal cross section of a cylindrical body infinitely long in the axial direction. Let $\partial\Omega$ be the regular boundary of Ω (e.g. $\partial\Omega\in C^2$). Suppose u_0 and $\dot{\varphi}_0$ to be traces on $\partial\Omega$ of $C^2(\bar{\Omega})$ -functions and put $u_m=\min u_0$ on $\partial\Omega$. Moreover we assume $a(u)\in C^2(R^1_+)$, $b(u)\in C^2(R^1_+)$ and

$$(2.1) a_1 \ge a(u) \ge a_0 > 0 \text{for all } u \ge u_m$$

$$|b(u)| \le b_1 \qquad \text{for all } u \ge u_m$$

$$(2.3) \qquad \int_{0}^{\infty} |b(t)| \, \mathrm{d}t \leq B_1.$$

Theorem. There exists at least one classical solution of problem (1.14), (1.15) if (2.1), (2.2) and (2.3) hold true.

Proof. Let us consider the following auxiliary problem

$$(2.4) \dot{\varphi} - \dot{\varphi}_0 \in H_0^1 \cap L^{\infty} \int \hat{a}(u) \, \nabla \dot{\varphi} \cdot \nabla \chi \, \mathrm{d}x = 0 \text{for all } \chi \in H_0^1$$

(2.5)
$$u - u_0 \in H_0^1 \qquad \int\limits_{a} \nabla u \cdot \nabla v \, \mathrm{d}x = \int\limits_{a} B(u) \, \hat{a}(u) \, \nabla \dot{\varphi} \cdot \nabla v \, \mathrm{d}x - \int\limits_{a} \dot{\varphi} \hat{a}(u) \, \nabla \dot{\varphi} \cdot \nabla v \, \mathrm{d}x$$
 for all $v \in H_0^1$.

We define $\hat{a}(t) \in C^2(\mathbb{R}^1)$ as follows

(2.6)
$$\hat{a}(t) = a(t)$$
 for all $t \ge u_m$ $2a_1 \ge \hat{a}(t) \ge a_0/2$ for all $t \in \mathbb{R}^1$.

Set $\hat{b}(t) \in C^2(\mathbb{R}^1)$ such that

$$(2.7) \hat{b}(t) = b(t) \text{for all } t \ge u_m |\hat{b}(t)| \le 2b_1 \text{for all } t \in \mathbb{R}^1.$$

We put now

$$B(t) = \int_{u_{\text{out}}}^{t} \hat{b}(z) \, dz \qquad \text{for all } t \in \mathbf{R}^{1}.$$

Using the Schauder fixed point theorem we can prove that (2.4), (2.5) has at least one solution. Define the operator u = T(w) from $L^2(\Omega)$ to $L^2(\Omega)$ with the following linear problems

$$(2.8) \qquad \dot{\varphi} - \dot{\varphi}_0 \in H_0^1 \cap L^{\infty} \qquad \qquad \int\limits_{\Omega} \hat{a}(w) \, \nabla \dot{\varphi} \cdot \nabla \chi \, \mathrm{d}x = 0 \qquad \qquad \text{for all } \chi \in H_0^1$$

(2.9)
$$u - u_0 \in H_0^1 \qquad \int\limits_{a} \nabla u \cdot \nabla v \, \mathrm{d}x = \int\limits_{a} (B(w) - \phi) \, \hat{a}(w) \, \nabla \phi \cdot \nabla v \, \mathrm{d}x$$
 for all $v \in H_0^1$.

Equation (2.8) can be uniquely solved since $\hat{a}(w) \in L^2(\Omega)$. By the maximum principle we have

$$\inf_{\varepsilon_{\mathcal{U}}} \phi_0 \leqslant \phi \leqslant \sup_{\varepsilon_{\mathcal{U}}} \phi_0.$$

Moreover putting $\chi = \dot{\varphi} - \dot{\varphi}_0$ in (2.8) we obtain

(2.11)
$$\int_{a} \hat{a}(w) |\nabla \phi|^2 dx \leq C_1$$

and by (2.6)

$$(2.12) \qquad \qquad \int\limits_{0} |\nabla \phi|^2 \, \mathrm{d}x \leqslant C_2.$$

By (2.10) and (2.12) we have $(B(w) - \phi) \hat{a}(w) \nabla \phi \in L^2(\Omega)$. Hence (2.8) has one and only one solution in H^1 . Thus T is well-defined. Choosing $v = u - u_0$ in (2.9) we

get with simple calculations recalling (2.6), (2.7), (2.10) and (2.11),

(2.13)
$$\int_{0}^{\infty} |\nabla u|^{2} dx \leq C_{3} [1 + (\int_{0}^{\infty} |\nabla u|^{2} dx)^{\frac{1}{2}}].$$

Hence it follows

$$\int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \le C_4$$

moreover applying the Poincarè inequality to $u - u_0$ we obtain

$$(2.14) \qquad \qquad \int\limits_{a} |u|^2 \, \mathrm{d}x \leqslant C_5$$

where the constant C_5 does not depend on the choice of w in L^2 . We claim that T is continuous. Suppose $w_n \to w^*$ in L^2 and let (ϕ^*, u^*) be defined by the problems

$$(2.15) \qquad \phi^* - \phi_0 \in H_0^1 \cap L^\infty \qquad \qquad \int\limits_{\alpha} \hat{a}(w^*) \, \nabla \phi^* \cdot \nabla \chi \, \mathrm{d}x = 0 \qquad \qquad \text{for all } \chi \in H_0^1$$

$$(2.16) u^* - u_0 \in H_0^1 \int_{a} \nabla u^* \cdot \nabla v \, \mathrm{d}x = \int_{a} \left[B(w^*) - \phi^* \right] \hat{a}(w^*) \, \nabla \phi^* \cdot \nabla v \, \mathrm{d}x$$
 for all $v \in H_0^1$.

Let (ϕ_n, u_n) be the sequence of solutions obtained by putting $w = w_n$ in (2.8) and (2.9). Taking $\chi = \phi_n - \phi_0$ we have

$$(2.17) \qquad \qquad \int\limits_{a} |\nabla \phi_{n}|^{2} \, \mathrm{d}x \leq C_{5} \,.$$

Therefore it is possible to extract from $\{\phi_n\}$ a subsequence weakly convergent in H^1 and strongly in L^2 . If $\bar{\phi}$ is the limit function letting $n \to \infty$ we find

$$\bar{\phi} - \phi_0 \in H^1_0 \cap L^{\infty} \qquad \quad \int\limits_{a} \hat{a}(w^*) \, \nabla \bar{\phi} \cdot \nabla \chi \, \mathrm{d}x = 0 \qquad \qquad \text{for all } \chi \in H^1_0 \, .$$

Since the solution of (2.15) is unique, we conclude that the entire sequence $\{\phi_n\}$ converges to ϕ^* . Now $(B(w_n) - \phi_n) \hat{a}(w_n) \nabla \phi_n$ converges weakly to $(B(w^*) - \phi^*) \hat{a}(w^*) \nabla \phi^*$ by (2.6), (2.7) and because by the maximum principle we have $|\phi_n| \leq \sup |\phi_0|$ on $\partial \Omega$. It follows by (2.9) that u_n converges to u^* weakly in H^1 and strongly in L^2 . This implies the continuity of T. Let Σ be a closed and convex subset of L^2 given by

$$\Sigma = \{ v \in L^2; \int_{\Omega} |v|^2 \, \mathrm{d}x \le C_5 \}$$

where C_5 is the constant appearing in (2.14). We have $T(\Sigma) \subset \Sigma$, moreover $T(\Sigma)$ is compact. By the Schauder fixed point theorem, we conclude that T has at least one fixed point. Therefore problem (2.8), (2.9) has at least one solution (ξ, u) .

We claim that $(\dot{\varphi}, u)$ is in fact a classical solution of problem (1.14), (1.15). From (2.4) it follows by a theorem of Meyers [7], that $\nabla \dot{\varphi} \in L^{2+\varepsilon}$, $\varepsilon > 0$. Hence $(B(u) - \dot{\varphi}) \, \hat{a}(u) \, \nabla \dot{\varphi} \in L^{2+\varepsilon}$ and we have $\nabla u \in L^{2+\tau}$, $\tau > 0$ again by Meyers' theorem applied this time to equation (2.5). Therefore $\partial \hat{a}(u)/\partial x_i \in L^{2+\tau}$. This permit to apply alternatively to (2.4) and (2.5) the usual bootstrap argument and to conclude that the regularity of $(\dot{\varphi}, u)$ depends only on the degree of regularity of $\hat{a}(t)$, $\hat{b}(t)$. By our hypotheses we obtain $(\dot{\varphi}, u) \in C^{2,\varepsilon}(\bar{\Omega})$. Integrating by parts in (2.4) we have

(2.18)
$$\nabla \cdot (\hat{a}(u) \nabla \dot{\phi}) = 0 \quad \text{in } \Omega \qquad \qquad \dot{\phi} = \dot{\phi}_0 \text{ on } \partial \Omega.$$

Again by integration by parts in (2.5) and by (2.18) we obtain

(2.19)
$$-\Delta u = \hat{a}(u)|\nabla \phi|^2 - \hat{b}(u)\,\hat{a}(u)\,\nabla \phi \cdot \nabla u \quad \text{in } \Omega \qquad u = u_0 \text{ on } \partial\Omega.$$

Applying the classical maximum principle to (2.19) we infer $u \ge u_m$. Therefore $\hat{a}(u) = a(u)$ and $\hat{b}(u) = b(u)$. We conclude that $(\dot{\varphi}, u)$ is a classical solution of (1.14), (1.15).

Remark. The following weak formulation of equation (1.15)

$$(2.20) \quad u - u_0 \in H_0^1 \qquad \int\limits_a \nabla u \cdot \nabla v \, \mathrm{d}x = \int\limits_a a(u) |\nabla \dot{\varphi}|^2 v \, \mathrm{d}x - \int\limits_a b(u) \, a(u) \, (\nabla \dot{\varphi} \cdot \nabla u) v \, \mathrm{d}x$$
 for all $v \in H_0^1 \cap L^\infty$

appears at first sight the most naturale. However the Stampacchia-Chicco maximum principle [1], [8], at least in its immediate form, does not applies to (2.20).

References

- [1] M. Chicco, Principio di massimo forte per sottosoluzioni di equazioni ellittiche di tipo variazionale, Boll. Union. Mat. Ital. (3) 22 (1967) 368-372.
- [2] G. CIMATTI, A bound for the temperature in the thermistor problem, J. Appl. Math. 40 (1988), 15-22.

- [3] G. CIMATTI and G. Prodi, Existence results for a nonlinear elliptic system modelling a temperature dependent electrical resistor, to appear in Ann. Mat. Pura Appl.
- [4] O. A. LADYZHENSKAYA and N. N. URAL'TSEVA, Linear and quasilinear elliptic equations, Academic Press, New York, 1968.
- [5] L. D. LANDAU and E. M. LIFSHITZ, *Electrodynamics of continuous media*, Pergamon, New York, 1960.
- [6] F. LLEWELLYN JONES, *The physics of electrical contacts*, Oxford Clarendon Press, Oxford, 1957.
- [7] N. G. MEYERS, An L^p-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3) 17 (1968), 189-206.
- [8] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinuous, Ann. Inst. Fourier, Grenoble 15 (1965), 189-258.

Abstract

Using a fixed point argument a theorem of existence is given for the nonlinear boundary value problem governing the electrical heating of a solid conductor. The electrical and thermal conductivities are supposed to be both given functions of the temperature and account is taken of the Thomson effect.

