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1 - Introduction

In this paper we study the steady state potential and temperature distribu-
tion inside a conductor taking into account the Thomson effect. To make the
paper selfcontained we summarize briefly how the basic equations are derived
(see [5] and [6]). In the Thomson model a temperature gradient will by itself
produce a flow of electrons, even when no electric field is acting on them.
Therefore the current density is given by

1.1 J = a(0)(— V¢ + 5(6) V)

where s(6) is the electric conductivity, 8(6) a given function of the absolute
temperature ¢ and ¢ is the electric potential. Define

(1.2) BO=[smdt  s=BO -9

where 6 is an arbitrary reference value. In this way (1.1) becomes
1.3) J=35(6) V3.

The vector flow of energy per unit area (including the potential and kinetic
energy of the particles which constitute the current) is given by

1.4 q =4 +30)J — »(0) Vo
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where x(0) is the thermal conductivity and ¢(6) a given function representing the
mean kinetic energy of the particles.

The conservation of electric charge and energy requires
(1.5) V-J=0 (1.6) V-g=0.
By (1.3) and (1.5) it follows
(1.7 V- (s(§) V) =0.

From (1.4) and (1.6) using (1.5) we have

J‘Z

(1.8) — V- (0) VO) + =(6)J - Vo = 0

where <(6) is the Thomson’s coefficient given in the present notations by
1.9 =(6) = 2'(0) + 5(6) .

The term on the right hand side of (1.8) represents the heat source due to the
Joule effect. The expression =(6)J - Vo corresponds to the Thomson effect. We
remark taht =(6) has no definite sign.

The aim of this paper is to prove, using a fixed point argument, the existence
of at least one classical solutions of the system (1.7), (1.8) with Dirichlet
boundary conditions i.e.

(1.10) 0= 0, = ¢0 on 90
where 802 is the boundary of an open and bounded subset representing the
conducting body.

We start with a few preliminary remarks. Since 6 is the absolute temperature
the minimal hypotheses to make the problem physically reasonable are
(1.11) s(0)=0 5(6) >0 for all 6>0

(1.12) =(0)=0 %(0) = x for all 0=0,,

where x is a positive constant and 6,, = min 6, on 3Q. Let (0, ¢) be a solution of
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problem (1.7), (1.8), (1.10) so regular that the classical maximum principle can be
applied to (1.8). We have 6=0,, in Q.
It is useful to define a new scale of temperatures « =1I(0) as follows

4

(1.13) o) = [ «t)dt.

0

By (1.12) I(6) establishes a one to one correspondence of [, %) into [w,, =)
where of course, u, =110,). In this way problem (1.7), (1.8), (1.10) can be
written in the following simpler form

(1.14) V-(a(u)Ve) =0 in Q =2, on 0

(1.15) — A+ b(u) ) Ve - Voo = a(u)| V& inQ wu=u, on 8G.

2 - The existence theorem

The theorem of this section applies only in two dimensions. Thus we suppose
2 to be an open and bounded subset of R? representing the orthogonal cross
section of a cylindrical body infinitely long in the axial direction. Let 8Q be the
regular boundary of Q (e.g. 8Q € C%). Suppose u, and &, to be traces on 9Q of
C%(Q)-functions and put 2, = minu, on Q. Moreover we assume a(u) e CARL),
b(w) e CXRL) and

@.1) G =zau)=a,>0 for all w=u,,
(2.2) [b(w)| < b, for all u=u,,
2.3) [ )| dt<B,.

0

Theorem. There exists at least one classical solution of problem (1.14),
(1.15) if (2.1), (2.2) and (2.3) hold true.

Proof. Let us consider the following auxiliary problem

(2.4) s—¢oe HYNL™ . fau)Vg-Vyde=0 for all ye H}

2.5) wu—wu,eH} fVu-Vode= [ Bw)dw) Ve Vode — [ ¢d(u) V- Vode

for all ve Hj.
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We define 4(t) e CXRY) as follows

2.6) at) =a(t) for all t=u, 20, = 4(t) = a,/2 for all teR!.
Set b(t) e CARY) such that

2.7 bt)=b@) for all t= U lé(t)l < 2b, for all teR'.

We put now

B(t) = f b(z)dz for all teR*.

i

Using the Schauder fixed point theorem we can prove that (2.4), (2.5) has at
least one solution. Define the operator « = T(w) from L*Q) to LAQ) with the
following linear problems

2.8) ¢—¢eHiNnL” [ aw) Vg - Vyda =0 for all y e H}

(2.9) w—uy € Hy JVu-Vode = [ (Bw)—¢)d@w) Vs - Vode

for all ve H}.

Equation (2.8) can be uniquely solved since d(w)e L¥Q). By the maximum
principle we have

(2. 10) inf ¢() = ¢ = sup ¢0 .

an )

Moreover putting y=¢—¢, in (2.8) we obtain

2.11) [aw)|vePde<C,y
and by (2.6)
2.12) [Vs)Fdx < C,.

14

By (2.10) and (2.12) we have (B(w) — ¢) 4(w) Vé € L*Q). Hence (2.8) has one and
only one solution in H'. Thus T is well-defined. Choosing v =u — 1, in (2.9) we
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get with simple calculations recalling (2.6), (2.7), (2.10) and (2.11),
(2.13) JIVulPde < Cyll + (f [Vulde)].

Hence it follows

[VuPde<C,

o]

moreover applying the Poincare inequality to u — w4, we obtain

(2.14) [uPde<Cy

where the constant C; does not depend on the choice of w in L2. We claim that 7"
is continuous. Suppose w,— w* in L* and let (¢*, u*) be defined by the problems

(2.15) ¢*—¢ye Hin L~ [ aw*) V¥ - Vyda =0 for all y e H}

(2.16) w*—wuye H} [Vus-Vode = [[Bw?*) — £¥]d(w*) Vé* - Vo da
for all ve Hj.
Let (¢,, u,) be the sequence of solutions obtained by putting w = w, in (2.8)

and (2.9). Taking y = ¢, — ¢, we have

2.17) fIvePde<Cs.

Therefore it is possible to extract from {¢,} a subsequence weakly convergent in
H' and strongly in L% If ¢ is the limit function letting n— o we find

¢~ 2o HinL" Jaw*) V- Vyde=0 for all y e Hs.

Since the solution of (2.15) is unique, we conclude that the entire sequence {g,}
converges to ¢*  Now (B(w,)—¢,)dw,) V¢, converges weakly to
(Bw*) — %) d(w*) V* by (2.6), (2.7) and because by the maximum principle we
have |¢,| < sup || on 802. It follows by (2.9) that u, converges to u* weakly in H
and strongly in L?. This implies the continuity of 7. Let X be a closed and convex
subset of L* given by

T={vel? [plde<C;}
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where C; is the constant appearing in (2.14). We have T'(¥) c £, moreover T'(¥) is
compact. By the Schauder fixed point theorem, we conclude that T" has at least
one fixed point. Therefore problem (2.8), (2.9) has at least one solution (g, u).

We claim that (¢, u) is in fact a classical solution of problem (1.14), (1.15).
From (2.4) it follows by a theorem of Meyers [7], that V¢ e L**, > 0. Hence
(Bw) — &) d(u) V¢ e L*** and we have Vu e L***, >0 again by Meyers’ theorem
applied this time to equation (2.5). Therefore 8d(u)/dx; e L***. This permit to
apply alternatively to (2.4) and (2.5) the usual bootstrap argument and to
conclude that the regularity of (¢, u) depends only on the degree of regularity of
a(t), b(t). By our hypotheses we obtain (¢, u) e C?%(Q). Integrating by parts in
(2.4) we have

(2.18) V-(@u)Ve)=0 in Q d=¢, on Q.
Again by integration by parts in (2.5) and by (2.18) we obtain
(2.19) — A= )|V — b(u) au) V- Vu  in Q u =1, on 9Q.

Applying the classical maximum prineiple to (2.19) we infer w = u,,. Therefore
() = a(w) and bw) = bu). We conclude that (¢, u) is a classical solution of
(1.14), (1.15).

Remark. The following weak formulation of equation (1.15)

(2.20) u—ue Hj [Va-Vode = [a)|Velfvde — [ bw)alu) (Ve - Vv de
for all ve Hin L™

appears at first sight the most naturale. However the Stampacchia-Chicco
maximum principle [1], [8], at least in its immediate form, does not applies to
(2.20).
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Abstract

Using a fixed point argument « theovem of existence is given for the nonlinear

boundary value problem governing the electrical heating of a solid conductor. The
electrical and thermal conductivities are supposed to be both given functions of the
temperature and account is taken of the Thomson effect.
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