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A. CARBONE and G. MARINO (%)

Fixed points and almost fixed points

of nonexpansive maps in Banach spaces (*¥%)

Introduction

Let N be a normed linear space over the real field RB. Set, for x, ¥y in N

lo+tyll el

w(x, ¥)= h :

The following properties of = are well known (see [3] and can be easily
proved):

() «(x, ax+by)=al x|+ belx, y) foraeR b=0 «andyin N.
@) «(x, y+2)=<1(x, y)+(x, 2) for @, y, z in N.

@) —@, —y=-&, Y=t(—2, —y) forax, yin N.

Equality holds in (iii) for any pair x, ¥ if and only if N is smooth, while

(x, y)=—(x, —yY)= (oﬁ ﬁ) if N is a Hilbert space. Now set, for any y, 2zin N

LS(z, y)={xeN; r(z—x, y—2)<0} LS'(z, y)={xeN; =(z—x, z—y)>0}.

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita della Calabria,
1-87086 Arcavacata di Rende (CS).

(**) Work performed under the auspices of G.N.A.F.A. (C.N.R.). ~ Ricevuto: 25-IX-
1987.
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Set, also, for any z, ¥ in N,
G y={xeN; |lz—yl=|z-z|}.

These sets have been studied first in the Hilbert space setting, then in general:
note that if N is Hilbert, then we have

@))] GGz, ) c LSk, y)=LS'(2, y) whenever y+z .

By using the above defined sets, several results concerning fixed points
theory have been given: see e.g. the survey paper [6]. We recall two such
results. The set X will be assumed to be nonempty throughout.

Theorem 0.1 [1] Let N be a Hilbert space; let X be a closed, convex subset
of N, and T: X— X a nonexpansive mapping. If a point z € X exists such that
LS(z, Tz) n X is nonempty and bounded, then T has a fixed point.

Theorem 0.2 ([2], Theorem 2.1) Let N be a Banach space whose bounded
closed convex subsets have the fixed point property for nonexpansive self-
mappings. Let X be a closed convex subset of N, and suppose 7: X— X is a
nonexpansive mapping. If there exists z € X such that G(z, T2) n X is bounded,
then T has a fixed point in X.

Of course, Theorem 0.2 is an extension of Theorem 0.1. Note that for X
bounded, also the converse Theorem 0.1 is true (cf. [6], p. 249).

In the present paper, we give extensions of Theorems 0.1 and 0.2. Also, we
give a characterization of strict convexity of a space, by using the sets LS(z, ¥)
and G(z, ). v

After the present introduction, the paper contains two sections: 1 contains
the results (as well as some remarks). All the proofs are in 2.

1 - Results

We begin with a proposition, concerning the geometry of normed spaces.
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Theorem 1.1. For a normed space N, the following are equivalent:
(a) N is strictly convex.

(o) For any z, y in N, z#vy, we have Gz, y)cLS(z, y).

(¢) Forany z, y in N, z#y, we have Gz, y)cLS'(z, ¥) .

Remark 1. The following example shows that the inclusion in (b) or (c) is
in general strict, also in nice spaces. Let N =R? with the eucliean norm. If
z=(0, 1)and ¥y = (1, 0), then G(z, y) and LS(z, y) are as in the following picture

Fig. 1

Remark 2. When X is not strictly convex, the set G(z, ) can be
«remarkably» larger than LS'(z, y) (which contains LS(z, ¥)). This can be seen
the following example. Let N =R? endowed with the [, norm; z=(0, 1),

y=(1, 0). It is straightforward to verify that the sets G(z, y), LS(z, ¥) and
LS'(2, y) are as in the following picture

=15 y) = LSG )
= |(LS(z,y) is open)

Fig. 2

Remark 3. In any space N, for any pair z, ¥y we have

G, y) cLSG, y)={xeN; «(z—x, y—2)=<0}.
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This inclusion is proved at the beginning of the proof of Theorem 1.1, (2) = (b)
(see 3). In the above example, we have

Now we shall state some results concerning fixed points.

Theorem 1.2. Let T: X— X be a monexpansive mapping, where X is a
closed, convex subset of N. If there ewxists a point z € X such that LS(z, Tz) nX is
bounded, then a bounded sequence {x,} exists such that im|| 7w, — x,[|= 0.

Recall that T:X— X is said to possess the «almost fixed points property»
(aFpP) if inf{||x — Tx|; x e X} =0.

Note that any nonexpansive mapping T:X — X has (AFPP) if X is bounded
closed and convex (this can be seen if we assume 6e X c {xeX; || <1} by
considering — for r sufficiently close to 1 - the fixed points of the contraction
mappings r7: X — X).

Also, the following is known: if 7:X— X is nonexpansive and a bounded
sequence {x,} in X exists such that ||@, — T4, ||— 0, then T has a fixed points if
one of the following holds:

(d) N is uniformly convex and complete.

(e) N is reflexive (or also: K is weakly compact) and it satisfies Opial’s
condition, i.e.: if a sequence {s,} converges weakly to s, then lim inf{|s, — ||
>lim inf| s, — s|| for all © e N\{s}.

These (and more general) results are proved in [4] (p. 247).
Thus we obtain the following Corollary, which extends Theorem 0.1.

Corollary 1.1. Let all the assumptions of Theorem 1.2 kold. Then T has a
Sized point in N satisfies (d) or (e).



{5] FIXED POINTS AND ALMOST FIXED POINTS... © 389

Remark 4. By using our Theorem 1.1, the first part of Corollary 1.1
follows also from Theorem 0.2.

It is known (see [5]) that in reflexive spaces, a closed convex subsets has
(aFPP) for all nonexpansive mappings if and only if it is «linearly bounded» (i.e.,
it has bounded intersection with all lines in N). Therefore we can state the
following

Corollary 1.2. Let N be reflexive and X a bounded, convex subset of X. If
LS(z, T2) nX is bounded for all nonexpansive mappings T: X — X, then X is
linearly bounded.

Finally, we state another fixed point theorem, which extends Theorem 0.2 in
case N is not assumed to be strictly convex. Note that the proof we shall give is
essentially the same as given in [2] for Theorem 0.2.

Theorem 1.3. Let N be such that its closed, bounded, convex subsets have
the fixed point property for nonexpansive self-mappings. Let T:X—X be a
nonexpansive mapping, with X closed convex. If there exists z€ X such that
LS(z, T2) "X is bounded, then T has a fixed point in X.

Remark 5. Let N be the space R? endowed with the [; norm. Let
X ={(a, b)eR% b=max(a—2; 0)} and T a nonexpansive mapping such that
T((0, 1))=(1, 0). The existence of at least a fixed point is assured by Theorem
1.3 (by using z = (0, 1); Theorem 0.2 does not imply the same conclusion (at least
for z=(0, 1)).

2 - Proofs
In this section we shall prove the three theorems stated in 1.

Proof of Theorem 1.1. (a)=-(b). Assume that N is strictly convex. Let
2, yeN; z#y. We want to prove the inclusion G(z, y) c LS(z, ¥).

Let z ¢ LS(z, 1), i.e., t(z—x, ¥ —2)=0. Then we have (by using (i) and (ii))
lz—z||=+@—2x, z—2)=tz—2, y—2)—<z—%, y—2)<|y—=z| @p to now,
the strict convexity of N has not been used).
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Also, |z — x| =]y — x| imples

@) e—x, y—2)=0
and
3) we—a, y—x)=|y—=x].

Since N is strictly convex, the function of ¢ ||z —x+#(y —2)|| must be
strictly convex since z—x#y—2x. But we have instead from (2), since
lz—all=|y —=|, that it would have the constant value of its minimum for
te[0, 1]: this contradiction proves that ||z — x| <|y — x|, thus = ¢ G(z, ¥).

(b) = (c). It follows immediately from the definition, by using (iii).

(¢)=>(a). Assume that N is not strictly convex. Thus, there is on the unit
sphere of N a segment joining two points y and z. Now set w = (y + 2)/2. We have
6 Gw, y), since [w|=|y|=1, while 6¢LS'w, y): in fact, y —w=(y — 2)/2
and the function [lw+#(y—w)||—|lw] has the value 0 for |f|=<1, so
= o(w, w—1y)=rw, ¥ —w)=0. This proves that (c) implies (a), thus concluding
the proof of the theorem.

Proof of Theorem 1.2. If LS(z, Tz) n X = ¢, then clearly z is fixed for
T (since otherwise Tz € LS(z, T%)).

Assume now LS(z, T2) n X nonempty and bounded. For every A€(0, 1)
define the contraction mapping T,: X— X by

4) Tx=0—-Nz+2Tx.
T, has a fixed point x,. Thus

6)) 2=, =AMz~ Tx,)

6) Tz—Te=1-2)(z-T2).

Also, we obtain
(=), 2—u,) + oz — 2, Te—2)

=tz —m,, Te—w)<c@—u,, Te—T2)+<Gz—wx, T,z—x,)
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” X, —2 ” =1z — 0, 2—®)<(z—u, A-0Tz—2)
+ozg—w, Tz—x)—z—ux, Tz—2)

=1 =-Nzg—m, Te—2)—1z—wu, Tz—2)+@z—a, Thz—x).
But | T,z — ;| =Tz — Ty, || < 2|z — .||, thus
o, —z||< — 2z — x5, Tz—2)+ 2|z —a]
and then
(7 A=z, —zl|=— 1z —a,, Tz~2).

Moreover, if there exists A such that z = «,, we obtain by (5) that z is fixed for
T and we are done. On the other hand, if 2 # x, for all X € (0, 1), then (7) implies
x, € LS(z, Tz) nX. Furthermore, Tz, € LS(z, Tz) n X too; indeed, we have from
B) —<z—Tx, Te—2)=— 1)z —2x,, Tz—2)>0. Hence, by setting
d=sup{|z—yl; ye LS(z, T2)nX} <, we obtain

= Tyl = (1 = 02+ ATw, = Ty | = A = D e — Ty | < (1 = ) 8—>0..

Then there exists in X a bounded sequence {x, } such that }gg} (,,— T, ) =0,
which proves the Theorem.

Proof of Theorem 1.3. Assume z+# 7%, otherwise we have noting to
prove. We must show that a bounded, closed and convex set exists, which is
invariant under T.

Take z as in the assumption and set R/4 = sup{||x — Tz||, x € LS(z, T2) nX};
than set K= {x e X; || T2z — x||= R} (K # ¢ since Tz € K). We want to prove that
T(K) c K. We consider two cases:

() Assume x € KN LS(z, Tz). Since
—t(z—(z+T2)2, Tz—2)=12|z—Tz||>0,

we have
(z+T2/2e LSz, Te)nX .
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By definition of R, we obtain

EZHZ_*-TZ——TzH: 2—T%
4 2 2

hence Hx—z]lsllx—Tz[|+[]Tz—z][S§+£2€~<R.

Since T is nonexpansive, we have ||To — T2||<R, hence Tx € K.

(8) Assume w € K; % ¢ LS(z, T2) nX. Then |z — z||<||Tz — z|,, (see proof. of
Theorem 1.1, (a)=>(b)), hence

| Tw—Tz|<||x—z2|<| Tz —z|<R

so, also in this case, Tx e K.
Thus, T maps K into K, which completes the proof.

Acknowledgement. The Authors wish to thank P. L. Papini for some useful
discussions.
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Abstract

In this paper we generalize two fixed point theorems for nonexpamsive mappings on
convex, closed (not necessarily bounded) subset of a Banach space. Also, we characterize
strict convexily of the space by using some geometric sets playing a role in these
theorems. ’
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