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JOSE M. SIERRA (%)

On semi-invariant submanifolds of Kaehlerian manifolds (*¥)

Introduction

The purpose of the present paper is to extend some results obtained about
invariant submanifolds [3], [8], [12] and about complex hypersurfaces [11] of
Kaehlerian manifolds to semi-invariant submanifolds. There are many intere-

. sting examples of submanifolds of this kind. For example, every orientable
hypersurface of an almost Hermitian manifold (so, the sphere and the tangent
sphere bundle are of this kind); the fibers of certain fiber bundles; and some
generalized Heisenberg groups.

In 1 we recall the definition of semi-invariant submanifolds of an almost
complex manifold giving also some relations that will be used later. In 2 some
properties of semi-invariant submanifolds immersed in a Kaehlerian manifold are
considered and a condition to be totally geodesic is also given.

In 3 and 4 we study respectively the cases where the normal connection of the
submanifold is trivial and where the ambient manifold has constant holomorphic
sectional curvature & In this later paragraph we show that the following
conditions are equivalent: (i) the submanifold has flat normal connection; (i) the
Ricci tensors of the manifold and of the submanifold coincide; (iii) ¢ =0 and the
submanifold is totally geodesic; (iv) the Ricei tensor of the submanifold vanishes.

Some examples are given in each paragraph and we end the paper givingin 5
further examples of semi-invariant submanifolds immersed in almost complex
manifolds.

(*) Indirizzo: Departamento de Matemdtica Fundamental, Facultad de Matemati-
cas, Universidad de La Laguna, SP-Canary Islands.
(**) Ricevuto: 6-V-1987.
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1 - Semi-invariant submanifolds of almost complex manifolds

Let M be a submanifold immersed in an almost complex manifold M with
almost complex structure J. Let U be a non-vanishing vector field on M, never
tangent to M, such that

@) JU=&ex(M) i) JX=pX—=pX)U VX eX(M)

where oX is the tangential component to M of JX and # a 1-form on M. In these
conditions we say that M is a semi-invariant submanifold of M with respect

to U.
It is well known that any semi-invariant submanifold of an almost complex

manifold is an almost contact manifold with the induced structure (g, £, ).
Furthermore, if M is an almost Hermitian manifold with structure W, Hand U
is a unit vector field normal to M then (o, £, 3, g) is an almost contact metric
structure on M, where g is the induced metric [1]. Hereafter, M denotes an
almost Hermitian manifold and M a semi-invariant submanifold of M.

-

The following lemmas are of easy proof.

Lemma 1.1. Let U a non-vanishing vector field normal to M. Then the
Jollowing properties hold: (). if U is Killing, then U is autoparallel; (i) if U
ts Killing and parallel in the mormal bundle, then U is parallel on M,
ie., VxU=0 VX eX(M), where V denotes the Riemannian conmection of the
metric §.

Lemma 1.2. Let U be a non-vanishing vector field normal to M and
parallel on M and let B(X, Y) denote the second fundamental form of the
submanifold. Then: (i) B(X, Y) has no component in the direction of U; (ii)
JB(X, Y) has neither tangential component to M nor component in the direction
of U.

Examples. (1) Let M be an orientable hypersurface of an almost
Hermitian manifold M, and let U be the unit vector field normal to M. Then,
JU =¢ is tangent to M and JX = X —n(X) U for all X € X(M), and clearly M is
a semi-invariant submanifold of M with respect to U. In particular, S***! is a
semi-invariant submanifold of C**! with respect to the unit normal vector field
U,= (21, ..., 2y41) for all 2=1{(z1, ..., 2441) €S20+
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(2) Let P(C" be the complex projective space and =: S**1— P(C" the
canonical projection. For >0 we consider the hypersurface of $#**! given by

M,(zns Ir) = {(zly ceey zn+l) € S2n+1 [ z lzilz - lerz-{»l[z}

i=1

and for m e N such that 2<m < n—1 (n=3) and s>0, we consider

n n+l1
M'2n, m, 8)={(21, ..., 2us1) €S| S |22=5 3 |z]*} .
i=1 i

i=m+1

Then, =(M'(2n, M =M@n—1, r) and =(M'@n, m, s))=M@n—1, m, s)
are connected compact hypersurfaces of P(C") and, by consequence, semi-
invariant submanifolds of it.

(8) Let M be a Riemannian manifold with local coordinates (x) (i=1, ..., n)
and TM its tangent bundle. It is well known [5] that TM admits an almost
Hermitian structure J. Then, the tangent sphere bundle T, M is a semi-invariant
submanifold of 7'M with respect to the unit normal vector field U given at a point
Z=ydloxie T'M by U,=y(3/3x")".

Note that the examples (1) and (2) are in fact submanifolds immersed in a
Kaehlerian manifold. So, we study this situation in the next paragraph.

2 - Semi-invariant submanifolds of Kaehlerian manifolds

Let M denote a Kaehlerian manifold with the almost Hermitian structure
(J, §) and M a semi-invariant submanifold of M with respect to a unit vector field
U normal to M. From the definition of Kaehlerian structure it follows that if U is
parallel on M then the almost contact metric structure (¢, & 7, g) on M satisfies

2.1) V.Y = (V)N U+BX, oY)+ JBX, V)=0
for all X, Y e 3(M).
Proposition 2.1. If the vector field U is parallel on M then the almost

contact metric structure (p, & 7, g) 18 o cosymplectic structure on M. Further-
more, M is minimal.
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Proof. The first part is obtained considering in (2.1) the tangential
component to }/, the normal component to M in the direction of U and the normal
component to M not in the direction of U, taking into account Lemma 1.2. From
the last component, changing X by ¢X, we get

2.2) BGX, ¢V)=—-BX, Y) VX, YexX(M).

Hence, M is minimal.

Let R (resp. R) denote the curvature tensor of M (resp. M) and consider a
plane section on M spanned by an orthonormal basis {X, JX}. The holomorphic
sectional curvature is defined by R(X, JX, X, JX). Analogously, if we take a
g-section on M spanned by an orthonormal basis {X, ¢X} with X orthogonal to &, -
the ¢-sectional curvature is defined by R(X, ¢X, X, ¢X). Using the Gauss
equation and (2.2) we get that the relation between them is given by

2.3) R, JX, X, JX)=R(X, oX, X, oX)+2§(BX, X), BX, X))
for all X unit vector field tangent to M and orthogonal to £
The next consequence is immediate.
Proposition 2.2. M is totally geodesic if and only if
RX, JX, X, JX)=R(X, ¢X, X, ¢X)
Jor all X unit vector field tangent to M and orthogonal to &.

Theorem 2.3. Let M be of constant holomorphic sectional curvature & and
dimension 2(n+p+1), p<nn+1)/2. Let M be of dimension 2n+1 and U
parallel on M. In these conditions, M is totally geodesic if and only if M has
constant g-sectional curvature c. Each of these conditions yield ¢=é.

Proof. If M is totally geodesic, by (2.8) it is obvious that M has constant
o-sectional curvature ¢ =2¢é.

Suppose M has constant ¢-sectional curvature c¢. If ¢=¢ then by (2.3)
B(X, Y)=0 because the second fundamental form is a symmetric bilineal form.
Let us now assume ¢ # ¢. Given an orthonormal basis {E;, ¢E;, &} (1=i=<mn) of
Tx(M) it is well known that the n(n+1) vectors B, E)), JBE; E)
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(1 <i=<j=<wn) are linearly independent (see [6], [13]). Moreover, U is orthogonal
to all these vectors by Lemma 1.2. Hence there are at least n(n + 1) + 1 linearly
independent vectors in the orthogonal complement of 7'x(M) which has dimen-
sion 2p + 1, contradicting the hypothesis p <n(rn+1)/2. Then, c=¢ and M is
totaily geodesic.

It is well known [5] that the standard almost Hermitian structure on 7'M is a
Kaehlerian structure if and only if the metric g on M is flat. In this case, the
tangent sphere bundle 7\ M is a semi-invariant submanifold of a Kaehlerian
manifold.

Now, we consider a fiber bundle P(M, G, =), M being a manifold with an
almost contact structure (g, £, ») and G an odd-dimensional connected Lie group
with a left invariant almost contact structure (5, £, %). Let » be a 1-form of
connection. Then P admits an almost complex structure J defined by

a(JX) = o(rX) + HwX) & (I X) = X)) — (=X & .

Then the fibers of P(M, G, =) are semi-invariant submanifolds of P with
respect to U= —&, and if the curvature of the connection is zero then U is
parallel along the fibers. Furthermore, if the curvature is zero and if the almost
contact structures on M and G are cosymplectic, then the almost complex
structure J is Kaehlerian.

On the other hand, we remark that every hypersurface of an almost complex
manifold has flat normal connection and then the previous examples are
submanifolds with flat normal connection immersed in a Kaehlerian manifold.
We study this situation in the next paragraph.

3 - Semi-invariant submanifolds of Kaehlerian manifolds with trivial normal

connection

M denotes, as before, a Kaehlerian manifold with structure tensors (J, §) and
M a semi-invariant submanifold of M with respect to U, where U is a unit vector
field normal to M and parallel on M. Using Gauss-Weingarten equations, Lemma
1.2 and (2.2), we have that for all vector field N normal to M

3.1 vAy=oAy=An=—Ayp=—Axo
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where N =N + AU, N orthogonal to U, and Ay is the second fundamental tensor
of M, which is related with B(X, Y) by g4xX, Y)=§BX, Y), N).

Now, let N be a parallel normal section in the normal bundle to M. Then
JRY (X, Y)N, N')=0 for all X, ¥ vector fields tangent to M and for all N’
normal to M.

By using the Ricci equation we get

(3.2) JRX, V)N, N')=g([Ay, ANX, Y)

where N=N+ U, N’ =N’ +uU.
In particular, taking N’ = JN in (3.2), using (3.1) and substituting ¥ by ¢X
we conclude

RN, N, X, ¢X)=29(Ay¢X, AyeX) .

As a consequence, the holomorphic bisectional curvature for the plane
sections {X, JX} (where X is tangent to M and orthogonal to &) and {N, JN}
(where N = N + AU is normal to M and parallel in the normal bundle) is given by

8.8) H(X, N)=R(X, JX, N, JN)=~R(N, N, X, oX)+ ) R\N, &, X, oX)

= —29(AyoX, AyoX)<0.

Assuming now that the normal connection of M is trivial (i.e. R*=0) we can
derive new results. The next lemma [2] will be useful

Lemma 3.1. Let M be an m-dimensional submanifold of an n-dimensio-
nal Riemannian manifold N. Then, the normal connection of M is trivial if and
only if there exist n—m orthogonal normal unit vector fields {Fi, ..., Fp_n}
such that F; (1<i<mn—m) is parallel in the normal bundle.

Therefore, if {E;, oF;, & (i=1, ..., ) is a ¢-basis defined on an open subset
of M and M has trivial normal connection we can complete this basis with parallel
normal vector fields in the normal bundle and take a J-basis of the form
{E;, F;, U, JE;, JF};, &} (i=1, ..., m, j=1, ..., p). This is possible because,
under the hypothesis that U is parallel on M, if F; is parallel in the normal bundle
then JF; is also parallel.
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Proposition 8.2. If the holomorphic bisectional curvature is non-negative
and M has trivial normal connection, then M is a totally geodesic submanifold
of M.

Proof. Let X be a unit vector field tangent to M and orthogonal to &.
Taking N = F; in (3.3) and from the hypothesis we get that Az X =0(=1, ...,
p). Thus

§(B(X, oY), Fj)=g(ApeX, 9¥)=0 (=1, .., p) VX, YeX().

Analogously, §(B(eX, ¢Y), JF)=0 (=1, ..., p). And then, by (2.2) and
Lemma 1.2

B(Xy Y)=.‘B(@X7 ?Y)=O VX} YE:X:(M) .

‘Let S (resp. S) denote the Ricci tensor of M (resp. M). Using (2.2), (3.1),
Lemma 1.2, the Gauss equation and the first Bianchi identity we have that the
relation between the Ricci tensors of M and M is given by

(3.4) ' S&X, V)
=S&X, N-nXSRWU, Y, JF;, F)+RU, Y, U, X) VX, YedX(M) .

And also

Theorem 8.3. Let M a Kaehlerian manifold, M a semi-invariant subma-
nifold of M with respect to U, where U is a Killing unit normal vector field to M
and parallel in the normal bundle. Then, if M has trivial normal connection, the
Ricci tensors of M and M coincide.

Proof. Using Lemma 1.1 we can write R(U, Y, U, X)=0. In a similar
way, by using (3.1), the Ricci equation and the triviality of the normal connection
we have R(U, Y, JF;, F)=0.

The theorem follows by substitution of this into (3.4).

4 - Semi-invariant submanifolds of complex space forms

Hereafter, M(¢) denotes a complex space form, i.e., a Kaehlerian manifold
with constant holomorphic sectional curvature ¢ and M a semi-invariant
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submanifold of M with respect to U, where U is a unit vector field normal to
and parallel on M.
It is well known [10] that in this case the curvature tensor of M satisfies

@.1 BE, 17
=‘Z‘L‘7(Y: DEX-gRX, HT+§@, INIX - @, JX)JIV + 25X, JV)JZ].

" From the Gauss-Weingarten formulas, the normal component of the curvatu-
re tensor is given by

for X, Y e (M) and N e X(M)*.
In addition, if the normal connection of M is trivial we have

4.3) (BX, YN =BAyX, V)~ B4yY, X).

Let N = N + AU be a normal section to M with N brthogonal to U. By (4.1) we
obtain

44) EX, V)N =200 Y ~ (1) eX + 29X, $V)H +29(X, ¢V)IN] .
Using (3.1), (4.3) and (4.4) we have the following relation holds

4.5) 07N~ gX, MIGN, N)=g(AxX, AxY) .

Proposition 4.1. If M has trivial normal connection then ¢ <0. Further-
more, ¢ =0 if and only if M 1is totally geodesic.

Proof. It follows from (4.5).
Now, let N be a unit vector in T,,(M)*. Ay is an endomorphism of 7,,,(M). We

denote by E(N) the subspace of T,,(M) spanned by all vectors Ay X, X € T,(M).
T,.(M) has dimension 2z + 1, therefore dim E(N) < 2n + 1. But if £ is a vector of



9] IN SEMI-INVARIANT SUBMANIFOLDS OF KAEHLERIAN MANIFOLDS 349

an orthogonal basis {E), ..., By, & of T(M), then Axf(=0 and hence
dim E(N) < 2n.

Proposition 4.2. Let M(¢) be a complex space form, M a semi-invariant
submanifold of M with respect to U and with trivial normal connection, U being
parallel on M. If there exists a wector NeT, (M), N#U, such that
dim E(N) # 2n, then M is totally geodesic.

Proof. Using (4.5) replacing X and Y by the vectors E;, E; (i #7) of the
precedent orthogonal basis we get g(AyE;, AyE)=0 @, j=1, ..., 2n, i#j).
If AyE;#0 (i=1, ..., 2n) there are 2n non-vanishing orthogonal vectors in
E(N). Hence dim E(N) = 2n, contradicting the hypothesis. Thus, AyE;=0 for
some 7, and, by using (4.5), we get

0=g(AyE;, AyE)=—

»h-!ﬁl

We conclude that &= 0 and, according to Proposition 4.1, M is totally geodesic.

On the other hand, if we take in (4.5) N=N + N’ with N and N’ orthogonal
normal vector field on M and orthogonal to U, we get

4.6) AyAy + Ay Ay=0
and we have

Theorem 4.3. Let M@ be a complex space form of dimension
2n+p+1), p=2. Let M be ¢ (2n+ 1)-dimensional semi-invariant submani-
Jold with respect to U, U being parallel on M. Then, the following conditions are
equivalent: '

(i) M has trivial normal connection. (i) €=10and M is totally geodesic.

Proof. (i=-ii) Assume that M is not totally geodesic. From Proposition 4.2
the dimension of E(N) is 2n for every NeT, (M), N+#U. Since p=2,
dim 7',,(M) = 5 and there is at least another veetor N’ orthogonal to N such that
the vectors N, N', JN, JN', U belong to an orthogonal basis of T, (M)*. From
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(4.3) and (4.6) we get
4.7) JRX, V)N, N')=2¢(AyX, Ay Y).

On the other hand, by using (4.1) we have
4.8) J(RX, V)N, N’)=%9(X, 0Y)G(JN, N')=0.

Then, from (4.7) and (4.8), g(Ax X, Ay Y)=0 for X, Y e T,(M). Hence, the
subspace E(N) is orthogonal to E(N'). Therefore, dim (E(N) u E(N")) =4n, in
contradiction with E(N)u E(N') ¢ T,,(M) and dim T,(M) = 2n + 1. Consequen-
tly, M is totally geodesic and, from Proposition 4.1, ¢ =0.

(ii =1i) follows directly from (4.1) and (4.2)j

If p=1 we need to impose a stronger condition on U:

Theorem 4.4. Under the hypothesis of the precedent theorem, if p =1 and
U is Killing and parallel in the normal bundle, then M has trivial normal
connection if and only if M 1is fotally geodesic.

Now, suppose M (@) is a 2(n + p + 1)-dimensional manifold and M is a (2n + 1)-
dimensional submanifold. It is well known [7] that the Riceci tensor S of M is
given by

4.9) S$X, 7 =g m+p+2)&, V) for X, ¥ex().

Using (2.3), (4.1) and the Gauss equatioﬁ we deduce that the Ricci tensor S of
M is given by

@10 S&, N=LEn+3)gX, V- Lr0n(1) - 23 §BX, E), BE, E)

€.

for X, Y e X(M). Then

Theorem 4.5. Let M(E) be a complex space form of dimension
2n+p+ 1), p=2. Let M be a semi-invariant submanifold of dimension 2n+ 1
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with respect to U, U being a unit vector field normal to M and parallel on M.
Then the following conditions are equivalent:
@) M has trivial normal connection.
i) S&X, N=8(X, Y) for X, Y e X(M).
(iii) ¢=0 and M is totally geodesic.
(iv)y S&X, N=0 for X, YeX(M).

Proof. (i<iii) was already proved in Theorem 4.3. (ii = iii) Equalling the
right sides of both (4.9) and (4.10) and taking X = ¥ =&, we obtain é = 0. Putting
this value in (4.9) and (4.10) with Y =X we have > §(B(X, E;), BX, E))=0.
Hence, B(X, E)=0 (t=1, ..., n) and M is totally geodesic. (iii=1iv) follows
directly from (4.10). (iv=-ii) Taking X =Y = ¢ in (4.10) we get &= 0, and then
S&X, N=8X, Y.

Corollary 4.6. Under the hypothesis of the precedent theorem, if M has
trivial normal connection then M is flat.

On the other hand, if M has constant g-sectional curvature, the following
equalities hold [9] for all X, Y, Z, Ve X(M)
(4.11) RV, Z, X, Y)

=§&J(X, VglY, 2)-9X, Z2)g(¥, V)]+;Z—[W(X)n(Z)9(V, Y) +9(V)n(N gX, 2)

—9(X)n(V)9(¥, Z) — oY) n(Z)9X, V)
+oX, 2)o(V, Y)-oX, V)8(Z, Y)+20X, V)8V, 2)]

where ¢ denotes the fundamental 2-form of the cosymplectic structure.

(n+ec (m+Dec

nX)n(¥) .

And we can state the following

Theorem 4.7. Let M@ be a complex space form. Let M be a semi-
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mwariont submanifold with respect to U, U being parallel on M, with constant
p-sectional curvature. Then, the following properties hold:
@) é=0 and c=0.
(i) M 1s locally symmetric (VR =0).
(iii) The Ricci tensor of M is parallel (VS =0).

Proof. (i) follows equalling the right sides of both (4.10) and (4.12) with

X =Y =¢& (i) and (iii) can be proved after some lengthy calculation taking into
account (4.11), (4.12) and Proposition 2.1.

5 - Further examples
Let M and M’ be two manifolds with almost contact metric structures given

respectively by (g, & n, ¢) and (¢, &, ', ¢g’). We consider the Riemannian
product M =M X M', with the metric

X, X1, &, Y)=9X, V)+g'X', Y
and the almost complex structure J defined by
JX, X)=(@X+9X)E ¢ X' —n(X)&) .

If the almost contact metric structuves (¢, &, 0, g) and (¢’, &, v, ¢') are
cosymplectic, then M is a Kaehlerian manifold and M (naturally immersed in M)
is a semi-invariant submanifold of M with respect to the vector field U = (0, &),
which is parallel on M.

Let H(p, 7) the generalized Heisenberg group, that is, the Lie group of real
matrices of the form

SN n
o N
S————

TN
OO;N

where I,, I, are the identity matrices of order » X r and p X p respectively, Sisa
(r X p)-matrix, TeR" and @ e R".
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We consider the immersion i: HQ1, D)— HZ, 2) given by

1 0 a3z 0 agp
1 ap ap 0 1 6 0 O
<0 1 ax ) — |10 0 1 0 agx
0 0 1 0 0 0 1 O
0O 0 0 0 1

which is compatible with the group operation. There exists a left-invariant
almost Hermitian structure J on H(2, 2) [14] such that H(1, 1) is a semi-
invariant submanifold of H(2, 2) with respect to a left-invariant unit vector field
U parallel on H(1, 1).
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Abstract

This paper is devoted to extend some results obtained about invariant submanifolds
and complex hypersurfaces of Kaehlerian manifolds to semi-invariant submanifolds,
giving many interesting examples of submanifolds of this kind.

The definition of a semi-invariant submanifold of an almost complex manifold is
given in 1. In 2 some properties of semi-invariant submanifolds immersed in a
Kachlerian manifold are considered. The cases where the submanifold has trivial normal
connection. and where the ambient manifold has constant holomorphic sectional
curvature are studied in 3 and 4, respectively. Also, in addition to the examples of each
paragraph, further examples of semi-invariant submanifolds are given in 5.



